Artificial Sweeteners and Sugar Substitutes -Some Properties and Potential Health Benefits and Risks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of Saccharin on Saccharomyces Cerevisiae Yeast
Journal of Undergraduate Biology Laboratory Investigations 2018 The Impact of Saccharin on Saccharomyces Cerevisiae Yeast Fermentation Parker Brown, Megan Hanson, Edison Huo, Derica Smith, and Bianca Galletti * 1 University of Oklahoma, Department of Biology, 730 Van Vleet Oval, Room 314 Norman, OK 73019 _________________________________________________________________________________________ Previous research has shown that mammals struggle to metabolize sugar substitutes such as saccharin. But these results are less clear when it comes to microorganisms such as yeast. Because many animals cannot metabolize saccharin, we hypothesize that yeast growth will be less in saccharin dominate solutions as compared to glucose dominate solutions. To test this, differing solutions of glucose and saccharin were fed to Saccharomyces cerevisiae, a yeast type which uses the Crabtree Effect to carry out alcoholic fermentation in the presence of glucose. Like in animals, it was found that saccharin also negatively impacts the growth of yeast meaning that saccharin could not be used in industrial processes wishing to use yeast to make ethanol. _________________________________________________________________________________________ Introduction sugars in processes requiring yeast growth such as In the last several decades, sugar substitutes the alcoholic beverage industry. have become more common in the food and Because yeast is a commonly used organism beverage industry as they allow “healthier” low in the food industry, the process of yeast calorie foods to be produced and marketed to fermentation has been well established. In certain consumers. However, these sugar substitutes have types of yeast, such as Saccharomyces cerevisiae, not been introduced without controversy with past yeast can utilize glucose to undergo alcoholic research voicing their harmful impacts and others fermentation in what is called the Crabtree Effect revealing no deleterious impacts (Sharma et. -
MINI REVIEW Neotame: High Intensity Low Caloric Sweetener
Asian Journal of Chemistry Vol. 22, No. 7 (2010), 5792-5796 MINI REVIEW Neotame: High Intensity Low Caloric Sweetener K. SATYAVATHI*, P. BHOJA RAJU, K.V. BUPESH and T. NAGA RAVI KIRAN Chandigarh College of Pharmacy, Landran, Mohali-140 307, India E-mail: [email protected] Neotame is an artificial sugar substitute which is N-alkyl derivative of aspartame. It is non caloric and 7000-13,000 times sweeter than sucrose, 30-60 times sweeter than aspartame respectively. It has excellent shelf life in dry conditions. Neotame is more stable in aqueous form at neutral pH. It is heat stable and consequently used in cooking and baking. Unlike aspartame it is safe for people with phenylketonurea. It is compatible with wide range of food ingredients, so blended with other caloric sweeteners to enhance taste and flavour. It doesn't show any significant toxicity and is non-carcinogenic. Neotame is a highly potent sweetener that can be used to modify and enhance flavour of foods and beverages. Key Words: Neotame, Sweetner. INTRODUCTION Sweeteners are the agents added to foods to enhance the taste. Nowadays most of people use food and beverages with sugars which are less caloric sweeteners. Naturally occurring sweeteners such as sucrose, fructose and maltose are used, but because of their toxicity and high food value, artificial sweeteners are used like sucrose, fructose, aspartame, saccharin which are sweeter and low caloric value than table sugar. Neotame is an artificial sweetener manufactured by NutraSweet Company in 1991. Neotame is a non-nutritive, non-caloric sweetener and 7000-13000 times and 30-60 times sweeter than regular table sugar and aspartame, respectively. -
An Analysis of the Link Between Aspartame and Cancer and Its Public Health Implications
Review Article Annals of Short Reports Published: 05 Feb, 2019 An Analysis of the Link between Aspartame and Cancer and Its Public Health Implications Yen Dang* Department of Oncology, University of Maryland Eastern Shore School of Pharmacy, USA Abstract There have been conflicting reports that artificial sweeteners, including aspartame, increase the risk of malignancy despite their beneficial weight loss marketing. A literature review was conducted to determine the causality between aspartame and the incidences of cancer. Studies involving animals and humans were explored to determine the association and its impacts on the public health domain. Based on the current evidence, it appears that the link between aspartame and cancer is inconclusive at this time and that there seems to be no strong causality between the two factors. Future research should be directed at longer studies that are stronger in design to further explore the association between aspartame and cancer. Introduction America has a sweet tooth, and the sugar industry has generated billions of dollars in their contributions to baked goods, cooked items, desserts, and soft drinks. However, since the turn of the century, natural sugar products are slowly being replaced by artificial sweeteners as a more health conscientious option. Artificial sweeteners, or “sugar substitutes”, are a group of agents that are synthetic sugar products, and some items on the market have a higher level of sweetness compared to natural sugar [1]. Currently, there are over 6 different types of artificial sweeteners used in approximately 17 trademarked sugar substitute products including popular products such as Splenda, Sweet N’ Low, and Equal. -
Enhancing Sweetness and Stability of the Single Chain Monellin MNEI
www.nature.com/scientificreports OPEN Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through Received: 08 July 2016 Accepted: 07 September 2016 molecular design Published: 23 September 2016 Serena Leone1, Andrea Pica1, Antonello Merlino1, Filomena Sannino1, Piero Andrea Temussi1,2 & Delia Picone1 Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction. Sweet proteins are a family of structurally unrelated proteins that can elicit a sweet sensation in humans. To date, eight sweet and sweet taste-modifying proteins have been identified: monellin1, thaumatin2, brazzein3, pentadin4, mabinlin5, miraculin6, neoculin7 and lysozyme8. With the sole exception of lysozyme, all sweet proteins have been purified from plants, but, besides this common feature, they share no structure or sequence homology9. -
Artificial Sweeteners: a Review Kranthi Kumar Poshala School of Health and Life Sciences, Teesside University, England
ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.10 Artificial Sweeteners: A Review Kranthi Kumar Poshala School of Health and Life Sciences, Teesside University, England Abstract: Sugar gained a bitter name regards to health. Consumption of more sugars involves risk of more calories which leads to diseases like obesity, diabetes and cardiovascular problems in human body. These days food which is sugar free acquired much more reputation because of their low or no calorie content. So as a result many food industries use different low calorie artificial sweeteners instead of sugars. Food and Drug Administration (FDA or USFDA) accepted the use of six sugar substitutes (aspartame, saccharine, sucralose, neotame, acesulfame-k and stevia) safe human consumption. Advantame and extract from swingle fruit have recently discovered and added to the list of nonnutritive sweeteners. These artificial sweeteners or sugar substitutes are extensively applied in the fields of processed foods, dairy and therapeutic industries. The main aim of this review is to discuss the different types of artificial sweeteners, their history, synthesis, metabolism, uses, toxicity, therapeutic use, nontherapeutic use, health benefits and toxic effects. Keywords: Artificial sweeteners, diabetes, nonnutritive sweeteners, obesity, sugar substitutes. I. INTRODUCTION Many of Non-nutritive sweeteners (NSSs) have been manufactured, but intense research and development in natural In the recent and current years people are very much conscious NSSs is expanding (Toews et al., 2019). about their health and showing a great concern on quality of life. Imbalanced consumption of excess calories and saturated fats is Non-nutritive sweeteners (NSSs) vary from sugars not only in leading most of the population to obesity. -
Reports of the Scientific Committee for Food
Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Directorate-General Internal Market and Industrial Affairs 1985 EUR 10210 EN Published by the COMMISSION OF THE EUROPEAN COMMUNITIES Directorate-General Information Market and Innovation Bâtiment Jean Monnet LUXEMBOURG LEGAL NOTICE Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information This publication is also available in the following languages : DA ISBN 92-825-5770-7 DE ISBN 92-825-5771-5 GR ISBN 92-825-5772-3 FR ISBN 92-825-5774-X IT ISBN 92-825-5775-8 NL ISBN 92-825-5776-6 Cataloguing data can be found at the end of this publication Luxembourg, Office for Official Publications of the European Communities, 1985 ISBN 92-825-5773-1 Catalogue number: © ECSC-EEC-EAEC, Brussels · Luxembourg, 1985 Printed in Luxembourg CONTENTS Page Reports of the Scientific Committee for Food concerning - Sweeteners (Opinion expressed 14 September 1984) III Composition of the Scientific Committee for Food P.S. Elias A.G. Hildebrandt (vice-chairman) F. Hill A. Hubbard A. Lafontaine Mne B.H. MacGibbon A. Mariani-Costantini K.J. Netter E. Poulsen (chairman) J. Rey V. Silano (vice-chairman) Mne A. Trichopoulou R. Truhaut G.J. Van Esch R. Wemig IV REPORT OF THE SCIENTIFIC COMMITTEE FOR FOOD ON SWEETENERS (Opinion expressed 14 September 1984) TERMS OF REFERENCE To review the safety in use of certain sweeteners. -
Essen Rivesta Issue 26
ISSUE NO 27 FEB ‘19 2 ABOUT THE EDITION, 3 SWEETNER FOR SUGAR INDUSTRY SWEET NEWS FOR FARMERS: NOW, ELECTION REPORT: ‘LOAN OF A DISEASE-RESISTANT SUGARCANE ₹12,000 CRORES’ Sujakumari M Keerthiga R R Indira Gandhi Krishi Vishwavidyalaya has The Narendra Modi government is looking at yet produced tissue culture saplings of disease-free another relief package for sugar companies, and this sugarcane plant with naturally high level of is going to be twice the size of one announced in sweetness, which will translate into good quality September 2018.This relief package facilitates the sugar in mills. This is the first time such a sapling has loan which is nearly ₹12,000 crore for which the ex- been produced. chequer will bear 5-6% interest subvention for 5 IGKV has four lakh such saplings available for sale years. The loans will be granted for enhancing at a rate of ₹8 per piece. The IGKV tissue culture lab ethanol production. The package is being finalised by developed the variety using sugarcane from the Prime Minister’s Office, Finance Ministry, Coimbatore. Lab in charge, Dr SL Verma said, Agriculture Ministry and the Food Ministry. farmers generally sow sugarcane either as a mature India is staring at a second consecutive year of step bud shoots, or by extracting buds by a chipping surplus sugar production this season. Indian Sugar machine and sowing them directly in the soil. “The Mills Association has estimated the country’s sugar practice however requires massive quantity of buds output in 2018-19 at 31.5-32 million tonnes. -
Stevia Leaf Reb M” (I, 2018) Suppliers: • 2017: I • 2018 C, D
9/27/2018 1 Answer Today’s High Sugar and Clean Label Concerns with 3rd Generation Stevia Alex Woo, PhD Chief Innovation Officer Nascent SoPure Stevia 9/27/2018 2 We love it! Nascent Innovation Core Competencies • Taste • Plant-based High • Smell potency sweeteners • Sight • Non/low caloric • Sound bulk sweeteners • Touch • Natural flavors Sweeteners Neuroscience and Flavors Taste Formulation Modulation • Sweetness • Stacking modulators • Matrix • Bitterness • Beverages & Foods modulators • Enhancement without ingredients 9/27/2018 3 We love it! Executive Summary • 2nd generation stevia extracts were all about high purity RA, the higher the purity the better the taste. • Farm-based 3rd generation stevia extracts are the newer 2-way and 3-way blends of RABCDM for even more sugar like taste but at higher cost. Alternatively, fermentation and enzymology-based stevia already co-exist with farm-based stevia in 2018. • Enzymatically modified stevia extracts are sweet taste enhancers that can be used as part of the stacking strategy for sugar reduction. • Stacking is a sugar reduction strategy for building up to the required sweetness intensity and profile while staying below the off flavor thresholds for all the plant-based ingredients used 9/27/2018 4 We love it! Agenda • Sweetness neuroscience • Stevia as sweetener • Stevia as flavor • Stacking 9/27/2018 5 We love it! Re-Defining “Flavor” = Taste + Smell + More Taste (5+ primary) Smell (aroma) Somatosensation (Touch): • Mechanoreception: Touch, Pressure and Vibration (Prescott, 2015), • Thermoception: Temperature, • Nociception: Pain (Youseff, 2015), and • Up to total 30 senses? (Smith, 2016) can they all be part of somatosensation? Vision (“Seeing the flavor”. -
School Menu Allergy List
SCHOOL MENU All items are analyzed using the most accurate information as of: 10-Dec-15 ALLERGY LIST Items denoted with an X contain the allergen in the corresponding column. If your child has an approved form on file with the cafeteria, items with an X* Mary Andreae, MS, RD, LDN can be prepared without that allergen, upon request. Email: [email protected] Phone: 423-209-5679 Wh- Pea- Tree Snflwr Glu- Carra- Red Coc Milk Egg Soy Fish Oats Corn eat nut Nut Oil ten geenan Dye onut Notes: BEVERAGES Milk, Skim, Plain X Milk, 1%, Plain X Milk, Chocolate X X X Milk, Vanilla X X Juice, Apple Juice, Fruit Punch Juice, Grape Juice, Orange BREAKFAST ITEMS Bagel, Mini, Cinnamon X X X X X Cinnamon Bagel, Mini, Strawberry X X X X X Biscuit, Plain X X X X Biscuit w/ Chicken X X X X X Biscuit w/ Gravy X X X X X X Biscuit w/ Sausage X X X X Breadstick, Apple-Filled X X X X Breakfast Bar (Apple or Choc) X X X X X X X Cinnamon (Apple) Breakfast Pizza, Gravy Based X X X X X Artificial Color Breakfast Pizza, Red Sauce X X X X X Artificial Color Chicken Patty, Breakfast X X X X Egg, Scrambled X X X French Toast Sticks, Cinnamon X X X X X X Cinnamon Graham Crackers, Choc Bear X X Graham Crackers, Elves X X X Honey Graham Crackers, Squares X X X X Produced in a nut-free/peanut-free facility; Honey, Cinn. -
Review on Artificial Sweeteners Used in Formulation of Sugar Free Syrups
International Journal of Advances in Pharmaceutics ISSN: 2320–4923; DOI: 10.7439/ijap Volume 4 Issue 2 [2015] Journal home page: http://ssjournals.com/index.php/ijap Review Article Review on artificial sweeteners used in formulation of sugar free syrups Afaque Raza Mehboob Ansari*, Saddamhusen Jahangir Mulla and Gosavi Jairam Pramod Department of Quality Assurance, D.S.T.S. Mandal’s College of Pharmacy, Jule Solapur-1, Bijapur Road, Solapur- 413004, Maharashtra, India. *Correspondence Info: Abstract Prof. Afaque Raza Mehboob Ansari Sweetening agents are employed in liquid formulations designed for oral Department of Quality Assurance, administration specifically to increase the palatability of the therapeutic agent. The D.S.T.S. Mandal’s College of main sweetening agents employed in oral preparations are sucrose, liquid glucose, Pharmacy, Jule Solapur-1, Bijapur glycerol, Sorbitol, saccharin sodium and aspartame. The use of artificial Road, Solapur- 413004, Maharashtra, sweetening agents in formulations is increasing and, in many formulations, India saccharin sodium is used either as the sole sweetening agent or in combination Email: [email protected] with sugars or Sorbitol to reduce the sugar concentration in the formulation. The Keywords: use of sugars in oral formulations for children and patients with diabetes mellitus is to be avoided. The present review discusses about the Artificial sweetening agents Sugar free syrup, which are generally used while the preparation of Sugar-free Syrup. Artificial sweeteners, Diabetes mellitus, Sucralose, and Aspartame. 1. Introduction Syrups are highly concentrated, aqueous solutions of sugar or a sugar substitute that traditionally contain a flavoring agent, e.g. cherry syrup, cocoa syrup, orange syrup, raspberry syrup. -
The Skinny on Sweeteners FA CT S HE E T
The Skinny on Sweeteners FA CT S HE E T Aspartame (Equal) S ucralose (Splenda) S accharin (Sweet’N Low) 1. How sweet is it? Aspartame is about 200 times Sucralose is about 600 times Saccharin is about 300 times sweeter than table sugar. sweeter than table sugar. sweeter than table sugar. 2. How is it made? Aspartame is made by joining Sucralose is made through a Saccharin is made through a together two amino acids with multi-step process, which multi-step process combining a methyl ester group. These results in three chlorine groups two chemical groups, including components are also found in being substituted onto a sugar a sulfur molecule. foods eaten everyday. molecule. 3. Is it safe? Yes. Aspartame is safe and FDA Yes. Sucralose is safe and FDA Yes. Saccharin is safe and FDA approved. approved. approved. The FDA has studied aspartame More than 100 scientific studies Saccharin has been the subject throughout the last 23 years, and on sucralose, done over a 20-year of extensive scientific research. has never had any safety period, have demonstrated the It is one of the most studied concerns. safety of sucralose. ingredients in the food supply. 4. How is it handled Aspartame is digested by the Most sucralose passes through Saccharin passes through the by the body? body. the body unchanged; a small body unchanged. percentage of sucralose is absorbed and metabolized. 5. How many studies More than 200 scientif c studies More than 100 scientific studies More than 30 human studies have been conducted? done over 35 years have of sucralose done over 20 years done over 20 years have demonstrated the safety of have demonstrated the safety of demonstrated the safety of aspartame. -
Does the Australian Health Star Rating System Encourage Added Sugar Reformulation? Trends in Sweetener Use in Australia
nutrients Article Does the Australian Health Star Rating System Encourage Added Sugar Reformulation? Trends in Sweetener Use in Australia Cherie Russell 1,* , Sarah Dickie 1 , Phillip Baker 1,2 and Mark Lawrence 1,2 1 School of Exercise and Nutrition Sciences, Deakin University, Geelong 3217, Australia; [email protected] (S.D.); [email protected] (P.B.); [email protected] (M.L.) 2 Institute for Physical Activity and Nutrition, Deakin University, Geelong 3217, Australia * Correspondence: [email protected] Abstract: Dietary risk factors, including excess added sugar intake, are leading contributors to Australia’s burden of disease. An objective of the Australian Health Star Rating (HSR) system is to encourage the reformulation of packaged foods. Manufacturers may improve a product’s HSR by replacing added sugar with non-nutritive sweeteners (NNS). Concerns have been raised regarding the potential substitution effects of ultra-processed foods containing NNS for whole foods, and the long-term impact this may have on population health. The aim of this study was to determine whether the implementation of the HSR system has impacted the use of added sugars and NNS in the food supply. Four product categories were used: products with no added sweetener, products containing added sugar only, products containing NNS only, and products containing a combination of added sugar and NNS. Of 6477 newly released products analyzed displaying a HSR in Australia between 2014–2020, 63% contained added sugars. The proportion of new products sweetened with added sugars increased over time, while NNS use did not, despite a higher average and median Citation: Russell, C.; Dickie, S.; Baker, P.; Lawrence, M.