Cell Stimulation

Total Page:16

File Type:pdf, Size:1020Kb

Cell Stimulation American journal ofPathology, Vol. 144, No. 6, June 1994 Copynght © American Societyfor Investigative Pathology Granulophysin Is Located in the Membrane of Azurophilic Granules in Human Neutrophils and Mobilizes to the Plasma Membrane Following Cell Stimulation Bonnie P. Cham,* Jon M. Gerrard,* and teins, and they are peroxidase positive.3'5 Azurophilic Dorothy F. Baintont granules are considered to be classic primary lyso- From the Department ofPediatrics and the Manitoba somes in that they contain acid hydrolases that have Institute of Cell Biology,* University ofManitoba, not yet entered into a digestive event. They are Winnipeg, Manitoba, Canada; and the Department of mobilized to the surface of the neutrophil, and their Pathology,t University of California School ofMedicine, San contents discharged by formyl-methionyl-leucyl- Francisco, California phenylalanine (FMLP) following cytochalasin B stimu- lation, but this translocation occurs only to a minimal extent when the neutrophils are stimulated by phorbol myristate acetate (PMA) or FMLP in the absence of Granulophysin, a protein described in platelet cytochalasin B.6 Specific (secondary) granules, on dense granule membranes, has been shown to be the other hand, appear later in development and are similar or identical to CD63, a lysosomal mem- smaller, but more numerous, than azurophilic gran- brane protein. We have previously shown granu- ules. They are peroxidase-negative and contain lophysin to be present in neutrophils using lactoferrin and many other proteins. Considerable immunofluorescence. We now localize granulo- heterogeneity exists within the group of peroxidase- physin to the neutrophil azurophilic granules by negative granules with regard to their content and fine structural immunocytochemistry. Granulo- mobilization. In addition, the neutrophil also contains physin expression on the surface membrane of gelatinase granules and secretory vesicles as re- the neutrophil is increasedfollowing stimulation viewed by Borregaard et al.7 Many of these ofthe ceUs, demonstrated byflow cytometry and nonperoxidase-containing granules are released fine structural immunocytochemistry. A similar early in the inflammatory response and likely allow for pattern is shown for an anti-CD63 antibody. In- cell diapedesis and adhesion via their membrane cubation of activated neutrophils with D545, a constituents of C3bi and FMLP receptors. They are monoclonal antibody to granulophysin, blocks translocated to the cell surface in vitro by low con- subsequent binding ofanti-CD63 antibodies to the PMA as as low concentrations ceU surface, and anti-CD63 antibodies prevent centrations of well by subsequent binding ofD545 as assessed byflow of FMLP even in the absence of cytochalasin B.6 As cytometry and immunoblotting. Our results sup- a result, it has been speculated that specific granules, port the homology of CD63 and granulophysin and other compartments, mobilize easily and early in previously demonstrated inplatelets and confirm the course of inflammation, allowing for chemotaxis, CD63 as an activation marker in neutrophils whereas azurophilic granules predominantly form in- and the first azurophilic granule membrane tracellular phagolysosomes and participate in cell marker of neutrophils. (Am J Pathol 1994, 144: killing.6 1369-1380) Granulophysin is a protein originally described as present in platelet-dense granule membranes,9 Various subsets of neutrophil granules have been Supported by Children's Hospital Research Foundation, Winnipeg, identified and characterized by physical and bio- and NIH grant number DK 10486. chemical properties.1" Azurophilic (primary) gran- Accepted for publication February 4, 1994. ules appear earliest in maturation and are the largest Address reprint requests to Dr. Bonnie Cham, ON 141 Manitoba granules. Their contents include acid hydrolases, mi- Cancer Treatment and Research Foundation, 100 Olivia Street, crobicidal enzymes, proteases, and cationic pro- Winnipeg, Manitoba, Canada R3E 0V9. 1369 1370 Cham et al A/P Julne 1994, Vol. 144, No. 6 which has subsequently been shown to be similar or granulophysin to the azurophilic granules by fine identical to CD63, a platelet lysosomal protein.10 structural immunocytochemistry.12 D545 was found Using a monoclonal antibody, granulophysin was to co-localize with myeloperoxidase in the azurophilic shown to be present in a granular pattern in many cell granules. In addition, D545 was separate in location types, including endocrine, exocrine, and neuronal from lactoferrin, a content marker for specific gran- tissues, endothelial cells and certain leukocytes.11 ules. Binding of D545 to the surface of the neutrophil We have previously shown this protein to be present is increased following stimulation of the cells by cyto- in neutrophils using immunofluorescent techniques.9 chalasin B and FMLP, as demonstrated by flow cy- We now extend our previous observations localizing tometry and fine structural immunocytochemistry. A Figure 1. Frozen-thin sectioni of normal resting PMN labeled uitb D545 as the prinarl antibody anid GAM-10 nin gold as the secondary anitibody to demonstrate the presence of D545 along the membranes oJ large extracted grannules, characteristic of azurophilic grannIes (ag). Specific gr-anl- ides (sg) were lint labeled (AV, Iticlenis) ( X 72,000). Localization of Granulophysin in Neutrophils 1371 AJPJune 1994, Vol. 144, No. 6 similar pattern is shown for an anti-CD63 antibody in terized elsewhere.9 Anti-CD63 antibody used for activated neutrophils, in agreement with a previous most studies was purchased from Amac Inc. (West- report.13 Incubation of activated neutrophils with brook, ME). An additional anti-CD63 antibody (HS56) D545 blocks subsequent binding of anti-CD63 anti- and fluorescein isothiocyanate (FITC) anti-CD63 bodies to the surface of the neutrophil, and anti-CD63 were kindly provided by Dr. James Hildreth (The antibodies prevent subsequent binding of D545. Johns Hopkins University, Baltimore, MD). Similarly, incubation of neutrophil homogenates with anti-CD63 diminish binding of D545 in immunoblot- ting studies. Our results are in agreement with the Neutrophil Isolation homology of CD63 and granulophysin previously demonstrated in platelets10 and extend the observa- After obtaining consent, blood was drawn from vol- tion that CD63 is an activation marker in neutrophils13 unteer adult donors into syringes containing ACD 1.5 and the first azurophilic granule membrane marker of ml/l0 ml total volume. It was then mixed with 5% neutrophils. dextran in phosphate-buffered saline and allowed to sediment for 30 minutes. The leukocyte-rich plasma was layered onto Ficoll-Paque (Pharmacia) and cen- Materials and Methods trifuged at 400 x g for 30 minutes. Residual eryth- Monoclonal Antibodies rocytes in the pellet were lysed with 0.87% ammo- nium chloride, and the neutrophils were then washed The monoclonal antibody against granulophysin with Hanks' balanced salt solution (HBSS). The cells used in the present study (D545) has been charac- were counted by Coulter Counter and resuspended Figure 2. Dual staining showing myeloperoxidase (with the small gold panicles, GAR-O) and D545 (with the large gold particles, GAM-10) co- existing in the same large azturophilic granules (ag) (x 70,000). 1372 Cham et al A/PJune 1994, Vol. 144, No. 6 Figure 3. Dual staining showing segregation of D545 (10-nm gold particles) and lactoferrin antibodies (5-nm gold particles) in distinct granule subsets; (X 70,000). A Figure 4. Representative data from a single flow cytometry experiment showing binding of D545 to the plasma membrane of neutrophils that have been stimulated with the following stimuli. The vertical line separates negative and positive fluorescent populations. Fluorescence intensity is displayed on a 3-decade loganithmic . T . scale. A: unstimulated neutrophils ( 17.77% posi- tive, mean channelflourescence [MCFI, 51.4) B: c! 5 minutes of FMLP ic-6 mol/L ( 79.6% positive, _~~~~~~~~~1 D MCF, 66.7). C: A23187 5 jmo'L for 5 minutes (80.5% positive, MCF, 85.0) D: PMA 10-9 mol/L for 5 minutes (49.6% positive, MCF, 52.9). (Note: results of all flow cytometry experiments are expressed quantitatively as the percentage of cells that are positive for fluorescence, and the MCF, is a measure of how intense thefluo- rescence is within the positive population). to an appropriate cell concentration. Where indi- free HBSS. The samples were centrifuged in an Ep- cated, CaCI2 was then added for a final concentra- pendorf micro-centrifuge and the supernatants tion of 1 mmol/L. stored at -20 C for further assays. Stimulation of Neutrophils Immunofluorescence Neutrophils were prewarmed in a 37-C waterbath for Immunofluorescence was performed essentially as 5 minutes. Those samples that were subsequently go- previously described.9 Neutrophil pellets were sus- ing to be stimulated with FMLP were incubated with pended in primary antibody (D545) at 20 pg/ml in cytochalasin B (Sigma, St. Louis, MO) at a concen- HBSS with 0.1% bovine serum albumin (BSA). This tration of 5 pg/mI. FMLP, PMA, or A23187 (Sigma) mixture was incubated on ice for 30 minutes. Samples were then added at the indicated concentrations. The were then centrifuge washed three times with HBSS/ cells were incubated in a shaking water bath at 37 C 0.1% BSA. The second antibody, biotinylated goat for the time period indicated, and the reaction was anti-mouse, was applied in the HBSS/0. 1% BSA for 30 stopped by dilution with 600 pl of ice-cold, calcium- minutes.
Recommended publications
  • Diagnosing Platelet Secretion Disorders: Examples Cases
    Diagnosing platelet secretion disorders: examples cases Martina Daly Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Disclosures for Martina Daly In compliance with COI policy, ISTH requires the following disclosures to the session audience: Research Support/P.I. No relevant conflicts of interest to declare Employee No relevant conflicts of interest to declare Consultant No relevant conflicts of interest to declare Major Stockholder No relevant conflicts of interest to declare Speakers Bureau No relevant conflicts of interest to declare Honoraria No relevant conflicts of interest to declare Scientific Advisory No relevant conflicts of interest to declare Board Platelet granule release Agonists (FIIa, Collagen, ADP) Signals Activation Shape change Membrane fusion Release of granule contents Platelet storage organelles lysosomes a granules Enzymes including cathepsins Adhesive proteins acid hydrolases Clotting factors and their inhibitors Fibrinolytic factors and their inhibitors Proteases and antiproteases Growth and mitogenic factors Chemokines, cytokines Anti-microbial proteins Membrane glycoproteins dense (d) granules ADP/ATP Serotonin histamine inorganic polyphosphate Platelet a-granule contents Type Prominent components Membrane glycoproteins GPIb, aIIbb3, GPVI Clotting factors VWF, FV, FXI, FII, Fibrinogen, HMWK, FXIII? Clotting inhibitors TFPI, protein S, protease nexin-2 Fibrinolysis components PAI-1, TAFI, a2-antiplasmin, plasminogen, uPA Other protease inhibitors a1-antitrypsin, a2-macroglobulin
    [Show full text]
  • Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen Under Flow in Mice Lacking the Atypical Rho Gtpase Rhobtb3
    cells Article Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen under Flow in Mice Lacking the Atypical Rho GTPase RhoBTB3 Martin Berger 1,2, David R. J. Riley 1, Julia Lutz 1, Jawad S. Khalil 1, Ahmed Aburima 1, Khalid M. Naseem 3 and Francisco Rivero 1,* 1 Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, HU6 7RX Hull, UK; [email protected] (M.B.); [email protected] (D.R.J.R.); [email protected] (J.L.); [email protected] (J.S.K.); [email protected] (A.A.) 2 Department of Internal Medicine 1, University Hospital, RWTH Aachen, 52074 Aachen, Germany 3 Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, LS2 9NL Leeds, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1482-466433 Received: 8 January 2019; Accepted: 7 February 2019; Published: 11 February 2019 Abstract: Typical Rho GTPases, such as Rac1, Cdc42, and RhoA, act as molecular switches regulating various aspects of platelet cytoskeleton reorganization. The loss of these enzymes results in reduced platelet functionality. Atypical Rho GTPases of the RhoBTB subfamily are characterized by divergent domain architecture. One family member, RhoBTB3, is expressed in platelets, but its function is unclear. In the present study we examined the role of RhoBTB3 in platelet function using a knockout mouse model. We found the platelet count, size, numbers of both alpha and dense granules, and surface receptor profile in these mice were comparable to wild-type mice.
    [Show full text]
  • Nihms124287.Pdf (2.042Mb)
    Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Melo, Rossana C.N., Sandra A.C. Perez, Lisa A. Spencer, Ann M. Dvorak, and Peter F. Weller. 2005. “Intragranular Vesiculotubular Compartments Are Involved in Piecemeal Degranulation by Activated Human Eosinophils.” Traffic 6 (10) (July 28): 866–879. doi:10.1111/j.1600-0854.2005.00322.x. Published Version doi:10.1111/j.1600-0854.2005.00322.x Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28714144 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Traffic. Author manuscript; available in PMC 2009 July 24. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Traffic. 2005 October ; 6(10): 866±879. doi:10.1111/j.1600-0854.2005.00322.x. Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils Rossana C.N. Melo1,2, Sandra A.C. Perez2, Lisa A. Spencer2, Ann M. Dvorak3, and Peter F. Weller2,* 1Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil 2Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 3Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Abstract Eosinophils, leukocytes involved in allergic, inflammatory and immunoregulatory responses, have a distinct capacity to rapidly secrete preformed granule-stored proteins through piecemeal degranulation (PMD), a secretion process based on vesicular transport of proteins from within granules for extracellular release.
    [Show full text]
  • The Endogenous Antimicrobial Cathelicidin LL37 Induces Platelet Activation and Augments Thrombus Formation
    The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation Article Published Version Salamah, M. F., Ravishankar, D., Kodji, X., Moraes, L. A., Williams, H. F., Vallance, T. M., Albadawi, D. A., Vaiyapuri, R., Watson, K., Gibbins, J. M., Brain, S. D., Perretti, M. and Vaiyapuri, S. (2018) The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Advances, 2 (21). pp. 2973-2985. ISSN 2473-9529 doi: https://doi.org/10.1182/bloodadvances.2018021758 Available at http://centaur.reading.ac.uk/79972/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1182/bloodadvances.2018021758 Publisher: American Society of Hematology All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online REGULAR ARTICLE The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation Maryam F. Salamah,1 Divyashree Ravishankar,1,* Xenia Kodji,2,* Leonardo A. Moraes,3,* Harry F. Williams,1 Thomas M. Vallance,1 Dina A. Albadawi,1 Rajendran Vaiyapuri,4 Kim Watson,5 Jonathan M. Gibbins,5 Susan D. Brain,2 Mauro Perretti,6
    [Show full text]
  • Myeloperoxidase Modulates Human Platelet Aggregation Via Actin Cytoskeleton Reorganization and Store-Operated Calcium Entry
    916 Research Article Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry Irina V. Gorudko1,*, Alexey V. Sokolov2, Ekaterina V. Shamova1, Natalia A. Grudinina2, Elizaveta S. Drozd3, Ludmila M. Shishlo4, Daria V. Grigorieva1, Sergey B. Bushuk5, Boris A. Bushuk5, Sergey A. Chizhik3, Sergey N. Cherenkevich1, Vadim B. Vasilyev2 and Oleg M. Panasenko6 1Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus 2Institute of Experimental Medicine, NW Branch of the Russian Academy of Medical Sciences, 197376 Saint-Petersburg, Russia 3A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus 4N. N. Alexandrov National Cancer Center of Belarus, Lesnoy, 223040 Minsk, Belarus 5B. I. Stepanov Institute of Physics, National Academy of Science of Belarus, 220072 Minsk, Belarus 6Research Institute of Physico-Chemical Medicine, 119435 Moscow, Russia *Author for correspondence ([email protected]) Biology Open 2, 916–923 doi: 10.1242/bio.20135314 Received 1st May 2013 Accepted 24th June 2013 Summary Myeloperoxidase (MPO) is a heme-containing enzyme released store-operated Ca2+ entry (SOCE). Together, these findings from activated leukocytes into the extracellular space during indicate that MPO is not a direct agonist but rather a mediator inflammation. Its main function is the production of hypohalous that binds to human platelets, induces actin cytoskeleton acids that are potent oxidants. MPO can also modulate cell reorganization and affects the mechanical stiffness of human signaling and inflammatory responses independently of its platelets, resulting in potentiating SOCE and agonist-induced enzymatic activity. Because MPO is regarded as an important human platelet aggregation.
    [Show full text]
  • Myeloperoxidase-Mediated Platelet Release Reaction
    Myeloperoxidase-Mediated Platelet Release Reaction Robert A. Clark J Clin Invest. 1979;63(2):177-183. https://doi.org/10.1172/JCI109287. Research Article The ability of the neutrophil myeloperoxidase-hydrogen peroxide-halide system to induce the release of human platelet constituents was examined. Both lytic and nonlytic effects on platelets were assessed by comparison of the simultaneously measured release of a dense-granule marker, [3H]serotonin, and a cytoplasmic marker, [14C]adenine. Incubation of platelets with H2O2 alone (20 μM H2O2 for 10 min) resulted in a small, although significant, release of both serotonin and adenine, suggesting some platelet lysis. Substantial release of these markers was observed only with increased H2O2 concentrations (>0.1 mM) or prolonged incubation (1-2 h). Serotonin release by H2O2 was markedly enhanced by the addition of myeloperoxidase and a halide. Under these conditions, there was a predominance of release of serotonin (50%) vs. adenine (13%), suggesting, in part, a nonlytic mechanism. Serotonin release by the complete peroxidase system was rapid, reaching maximal levels in 2-5 min, and was active at H2O2 concentrations as low as 10 μM. It was blocked by agents which inhibit peroxidase (azide, cyanide), 2+ degrade H2O2 (catalase), chelate Mg (EDTA, but not EGTA), or inhibit platelet metabolic activity (dinitrophenol, deoxyglucose). These results suggest that the myeloperoxidase system initiates the release of platelet constituents primarily by a nonlytic process analogous to the platelet release reaction. Because components of the peroxidase system (myeloperoxidase, H2O2) are secreted by activated neutrophils, the reactions described here […] Find the latest version: https://jci.me/109287/pdf Myeloperoxidase-Mediated Platelet Release Reaction ROBERT A.
    [Show full text]
  • The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host
    International Journal of Molecular Sciences Review The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host Katharine M. Lodge 1, Andrew S. Cowburn 1 , Wei Li 2 and Alison M. Condliffe 3,* 1 Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; [email protected] (K.M.L.); [email protected] (A.S.C.) 2 Department of Medicine, University of Cambridge, Cambridge CB2 0SP, UK; [email protected] 3 Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield S10 2RX, UK * Correspondence: a.m.condliffe@sheffield.ac.uk Received: 13 January 2020; Accepted: 8 February 2020; Published: 11 February 2020 Abstract: Neutrophils are key effector cells of innate immunity, rapidly recruited to defend the host against invading pathogens. Neutrophils may kill pathogens intracellularly, following phagocytosis, or extracellularly, by degranulation and the release of neutrophil extracellular traps; all of these microbicidal strategies require the deployment of cytotoxic proteins and proteases, packaged during neutrophil development within cytoplasmic granules. Neutrophils operate in infected and inflamed tissues, which can be profoundly hypoxic. Neutrophilic infiltration of hypoxic tissues characterises a myriad of acute and chronic infectious and inflammatory diseases, and as well as potentially protecting the host from pathogens, neutrophil granule products have been implicated in causing collateral tissue damage in these scenarios. This review discusses the evidence for the enhanced secretion of destructive neutrophil granule contents observed in hypoxic environments and the potential mechanisms for this heightened granule exocytosis, highlighting implications for the host. Understanding the dichotomy of the beneficial and detrimental consequences of neutrophil degranulation in hypoxic environments is crucial to inform potential neutrophil-directed therapeutics in order to limit persistent, excessive, or inappropriate inflammation.
    [Show full text]
  • Control of Secondary Granule Release in Neutrophils by Ral Gtpase
    Georgia State University ScholarWorks @ Georgia State University Biology Dissertations Department of Biology Spring 5-7-2011 Control of Secondary Granule Release in Neutrophils by Ral GTPase Xiaojing Chen Follow this and additional works at: https://scholarworks.gsu.edu/biology_diss Recommended Citation Chen, Xiaojing, "Control of Secondary Granule Release in Neutrophils by Ral GTPase." Dissertation, Georgia State University, 2011. https://scholarworks.gsu.edu/biology_diss/96 This Dissertation is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. CONTROL OF SECONDARY GRANULE RELEASE IN NEUTROPHILS BY RAL GTPASE by XIAOJING CHEN Under the Direction of Yuan Liu, MD., Ph.D. ABSTRACT Neutrophil (PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocyto- sis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, I found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules, but not primary or tertiary granules, and caused dy- sregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, while chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Over- expression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, I found that Ral, which was associated with the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation.
    [Show full text]
  • Loss of Pikfyve in Platelets Causes a Lysosomal Disease Leading to Inflammation and Thrombosis in Mice
    ARTICLE Received 14 May 2014 | Accepted 13 Jul 2014 | Published 2 Sep 2014 DOI: 10.1038/ncomms5691 Loss of PIKfyve in platelets causes a lysosomal disease leading to inflammation and thrombosis in mice Sang H. Min1, Aae Suzuki1, Timothy J. Stalker1, Liang Zhao1, Yuhuan Wang2, Chris McKennan3, Matthew J. Riese1, Jessica F. Guzman1, Suhong Zhang4, Lurong Lian1, Rohan Joshi1, Ronghua Meng5, Steven H. Seeholzer3, John K. Choi6, Gary Koretzky1, Michael S. Marks5 & Charles S. Abrams1 PIKfyve is essential for the synthesis of phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2] and for the regulation of endolysosomal membrane dynamics in mammals. PtdIns(3,5)P2 deficiency causes neurodegeneration in mice and humans, but the role of PtdIns(3,5)P2 in non-neural tissues is poorly understood. Here we show that platelet-specific ablation of PIKfyve in mice leads to accelerated arterial thrombosis, and, unexpectedly, also to inappropriate inflammatory responses characterized by macrophage accumulation in multiple tissues. These multiorgan defects are attenuated by platelet depletion in vivo, confirming that they reflect a platelet-specific process. PIKfyve ablation in platelets induces defective maturation and excessive storage of lysosomal enzymes that are released upon platelet activation. Impairing lysosome secretion from PIKfyve-null platelets in vivo markedly attenuates the multiorgan defects, suggesting that platelet lysosome secretion contributes to pathogenesis. Our findings identify PIKfyve as an essential regulator for platelet lysosome homeostasis, and demonstrate the contributions of platelet lysosomes to inflammation, arterial thrombosis and macrophage biology. 1 Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA. 2 Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
    [Show full text]
  • Neutrophil Extracellular Traps Induce Aggregation of Washed Human Platelets Independently of Extracellular DNA and Histones
    Elaskalani et al. Cell Communication and Signaling (2018) 16:24 https://doi.org/10.1186/s12964-018-0235-0 RESEARCH Open Access Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones Omar Elaskalani, Norbaini Binti Abdol Razak and Pat Metharom* Abstract Background: The release of neutrophil extracellular traps (NETs), a mesh of DNA, histones and neutrophil proteases from neutrophils, was first demonstrated as a host defence against pathogens. Recently it became clear that NETs are also released in pathological conditions. NETs released in the blood can activate thrombosis and initiate a cascade of platelet responses. However, it is not well understood if these responses are mediated through direct or indirect interactions. We investigated whether cell-free NETs can induce aggregation of washed human platelets in vitro and the contribution of NET-derived extracellular DNA and histones to platelet activation response. Methods: Isolated human neutrophils were stimulated with PMA to produce robust and consistent NETs. Cell-free NETs were isolated and characterised by examining DNA-histone complexes and quantification of neutrophil elastase with ELISA. NETs were incubated with washed human platelets to assess several platelet activation responses. Using pharmacological inhibitors, we explored the role of different NET components, as well as main platelet receptors, and downstream signalling pathways involved in NET-induced platelet aggregation. Results: Cell-free NETs directly induced dose-dependent platelet aggregation, dense granule secretion and procoagulant phosphatidyl serine exposure on platelets. Surprisingly, we found that inhibition of NET-derived DNA and histones did not affect NET-induced platelet aggregation or activation. We further identified the molecular pathways involved in NET-activated platelets.
    [Show full text]
  • Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections
    RESEARCH ARTICLE Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections Yanbao Yu, Keehwan Kwon, Tamara Tsitrin, Shiferaw Bekele, Patricia Sikorski¤, Karen E. Nelson, Rembert Pieper* The J. Craig Venter Institute, Rockville, MD, United States of America ¤ Current address: Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD; Department of Microbiology and Immunology, Georgetown University, N.W., Washington, DC * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Neutrophils have an important role in the antimicrobial defense and resolution of urinary tract infections (UTIs). Our research suggests that a mechanism known as neutrophil extra- cellular trap (NET) formation is a defense strategy to combat pathogens that have invaded the urinary tract. A set of human urine specimens with very high neutrophil counts had OPEN ACCESS microscopic evidence of cellular aggregation and lysis. Deoxyribonuclease I (DNase) treat- Citation: Yu Y, Kwon K, Tsitrin T, Bekele S, Sikorski ment resulted in disaggregation of such structures, release of DNA fragments and a prote- P, Nelson KE, et al. (2017) Characterization of ome enriched in histones and azurophilic granule effectors whose quantitative composition Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections. PLoS Pathog 13(1): was similar to that of previously described in vitro-formed NETs. The effector proteins were e1006151. doi:10.1371/journal.ppat.1006151 further enriched in DNA-protein complexes isolated in native PAGE gels. Immunofluores- Editor: David Weiss, Emory University School of cence microscopy revealed a flattened morphology of neutrophils associated with decon- Medicine, UNITED STATES densed chromatin, remnants of granules in the cell periphery, and myeloperoxidase co- Received: April 5, 2016 localized with extracellular DNA, features consistent with early-phase NETs.
    [Show full text]
  • Neutrophil Azurophilic Granule Glycoproteins Are Distinctively Decorated by Atypical Pauci- and Phosphomannose Glycans ✉ Karli R
    ARTICLE https://doi.org/10.1038/s42003-021-02555-7 OPEN Neutrophil azurophilic granule glycoproteins are distinctively decorated by atypical pauci- and phosphomannose glycans ✉ Karli R. Reiding 1,2,4 , Yu-Hsien Lin1,2,4, Floris P. J. van Alphen3, Alexander B. Meijer1,3 & ✉ Albert J. R. Heck 1,2 While neutrophils are critical first-responders of the immune system, they also cause tissue damage and act in a variety of autoimmune diseases. Many neutrophil proteins are N-glycosylated, a post-translational modification that may affect, among others, enzymatic 1234567890():,; activity, receptor interaction, and protein backbone accessibility. So far, a handful neutrophil proteins were reported to be decorated with atypical small glycans (paucimannose and smaller) and phosphomannosylated glycans. To elucidate the occurrence of these atypical glycoforms across the neutrophil proteome, we performed LC-MS/MS-based (glyco)proteomics of pooled neutrophils from healthy donors, obtaining site-specific N-glycan characterisation of >200 glycoproteins. We found that glycoproteins that are typically membrane-bound to be mostly decorated with high-mannose/complex N-glycans, while secreted proteins mainly harboured complex N-glycans. In contrast, proteins inferred to originate from azurophilic granules carried distinct and abundant paucimannosylation, asymmetric/hybrid glycans, and glycan phospho- mannosylation. As these same proteins are often autoantigenic, uncovering their atypical gly- cosylation characteristics is an important step towards understanding autoimmune disease and improving treatment. 1 Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands. 2 Netherlands Proteomics Center, Utrecht, The Netherlands. 3 Department of Molecular and Cellular Hemostasis, Sanquin ✉ Research, Amsterdam, The Netherlands.
    [Show full text]