Secure Failure Detection and Consensus in Trustedpals

Total Page:16

File Type:pdf, Size:1020Kb

Secure Failure Detection and Consensus in Trustedpals 610 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012 Secure Failure Detection and Consensus in TrustedPals Roberto Cortin˜as, Felix C. Freiling, Marjan Ghajar-Azadanlou, Alberto Lafuente, Mikel Larrea, Lucia Draque Penso, and Iratxe Soraluze Abstract—We present a modular redesign of TrustedPals, a smart card-based security framework for solving Secure Multiparty Computation (SMC). Originally, TrustedPals assumed a synchronous network setting and allowed to reduce SMC to the problem of fault-tolerant consensus among smart cards. We explore how to make TrustedPals applicable in environments with less synchrony and show how it can be used to solve asynchronous SMC. Within the redesign we investigate the problem of solving consensus in a general omission failure model augmented with failure detectors. To this end, we give novel definitions of both consensus and the class P of failure detectors in the omission model, which we call PðomÞ, and show how to implement PðomÞ and have consensus in such a system with very weak synchrony assumptions. The integration of failure detection and consensus into the TrustedPals framework uses tools from privacy enhancing techniques such as message padding and dummy traffic. Index Terms—Failure detection, fault-tolerance, smart cards, consensus, secure multiparty computation, message padding, dummy traffic, general omission model, security performance, reliability. Ç 1INTRODUCTION ONSIDER a set of parties who wish to correctly compute modules are realized using Java Card Technology enabled Csome common function F of their local inputs, while smart cards [3], tamper-proof Subscriber Identity Modules keeping their local data as private as possible, but who do not (SIM) [4] like those used in mobile phones, or storage cards trust each other, nor the channels by which they commu- with built-in tamper-proof processing devices [5]. Roughly nicate. This is the problem of Secure Multiparty Computation speaking, solving SMC among processes is achieved by (SMC) [1]. SMC is a very general security problem, i.e., it can having security modules jointly simulate a Trusted Third Party be used to solve various real-life problems such as (TTP), as we now explain. distributed voting, private bidding and online auctions, To solve SMC in the TrustedPals framework, the sharing of signature or decryption functions and so on. function F is coded as a Java function and is distributed Unfortunately, solving SMC is—without extra assump- within the network in an initial setup phase. Then, processes tions—very expensive in terms of communication (number hand their input value to their security module and the of messages), resilience (amount of redundancy), and time framework accomplishes the secure distribution of the input (number of synchronous rounds). values. Finally, all security modules compute F and return TrustedPals [2] is a smart card-based security framework the result to their process. The network of security modules for solving SMC which allows much more efficient solutions sets up confidential and authenticated channels between to the problem. Conceptually, TrustedPals considers a each other and operates as a secure overlay within the distributed system in which processes are locally equipped distribution phase. Roughly speaking, within this secure with tamper-proof security modules. In practice, processes overlay arbitrary and malicious behavior of an attacker is are implemented as a Java desktop application and security reduced to process crashes and message omissions. Trus- tedPals therefore allows to reduce the security problem of . R. Cortin˜as, A. Lafuente, M. Larrea, and I. Soraluze are with the Facultad SMC to a problem of fault-tolerant synchronization [2], an de Informa´tica, University of the Basque Country UPV/EHU, Paseo area which has a long research tradition in fault-tolerant Manuel de Lardizabal 1, E-20018 Donostia, Spain. E-mail: {roberto.cortinas, alberto.lafuente, mikel.larrea, distributed computing (see, for example, Lynch [6]). How- iratxe.soraluze}@ehu.es. ever, solving the synchronization problem alone is not trivial, . F.C. Freiling is with the Friedrich-Alexander-University Erlangen- especially since we investigate it under message omission Nu¨rnberg, Lehrstuhl fu¨r Informatik 1 (IT-Sicherheitsinfrastrukturen), failures, a failure scenario which is rather unusual. Further- Am Wolfmantel 46, 91058 Erlangen, Germany. E-mail: [email protected]. more, the reduction from security to fault-tolerance creates a . M. Ghajar-Azadanlou is with the Bayer Business Services, 51368 new set of validation obligations regarding the integration of Leverkusen, Germany. a fault-tolerant algorithm into a secure system, which is also E-mail: [email protected]. L.D. Penso is with the Faculty of Mathematics and Economics, Institute for far from being trivial. Optimization and Operations Research, University of Ulm, 89069 Ulm, The initial definition of TrustedPals and its implementa- Germany. E-mail: [email protected]. tion assumed a synchronous network setting, i.e., a setting in Manuscript received 2 July 2010; revised 23 June 2011; accepted 9 Feb. 2012; which all important timing parameters of the network are published online 17 Feb. 2012. bounded and known. This makes TrustedPals sensitive to For information on obtaining reprints of this article, please send e-mail to: [email protected], and reference IEEECS Log Number TDSC-2010-07-0109. unforeseen variations in network delay and therefore not Digital Object Identifier no. 10.1109/TDSC.2012.23. very suitable for deployment in networks like the Internet. 1545-5971/12/$31.00 ß 2012 IEEE Published by the IEEE Computer Society CORTINAS~ ET AL.: SECURE FAILURE DETECTION AND CONSENSUS IN TRUSTEDPALS 611 In this paper, we explore how to make TrustedPals can cause processes to only be able to communicate indirectly applicable in environments with less synchrony. More and we admit processes to participate in consensus even if precisely, we show how to solve the asynchronous version they cannot communicate directly. Delporte-Gallet et al. [21] of SMC using asynchronous synchronization algorithms only guarantee that all processes that can communicate inspired by recent results in fault-tolerant distributed directly with each other solve consensus. In contrast, we allow computing: we use an asynchronous consensus algorithm also another set of processes to propose and decide: those and encapsulate (some very weak) timing assumptions which are able to send and receive messages even indirectly. within a device known as a failure detector [7]. As a minor difference, we focus on the class P of eventually The concept of a failure detector has been investigated in perfect failure detectors whereas they [21] implement the quite some detail in systems with merely crash faults [8]. In failure detector. Furthermore, they [21] do not describe such systems, correct processes (i.e., processes which do not how to integrate failure detection and consensus within the crash) must eventually permanently suspect crashed pro- TrustedPals framework: a realistic adversary who is able to cesses. There is very little work on failure detection and selectively influence the communication messages of the consensus in message omission environments. In fact, it is algorithms for failure detection and consensus can cause their not clear what a sensible definition of a failure detector (and consensus algorithm to fail. This problem is partly addressed consensus) is in such environments because the notion of a in a recent paper [22] where consensus and failure detection correct process can have several different meanings (e.g., a are integrated for efficiency purposes, not for security. process with no failures whatsoever or a process which Apart from Delporte-Gallet et al. [21], other authors also does not crash but just omits some messages). In this work, investigated solving consensus in systems with omission instead of correct processes, we will consider well-connected faults. Work by Dolev et al. [23], [24] also follows the failure processes, i.e., those processes which are able to compute detector approach to solve consensus, however they focus and communicate without omissions with a majority of on the class SðomÞ of failure detectors. Babaoglu et al. [25] processes. also follow the path of S to solve consensus in partition- 1.1 Related Work able systems. Alternatively, Santoro and Widmayer [26] assume a synchronous system model, and Moniz et al. [27] Our work on TrustedPals can be regarded as building use randomization. failure detectors for arbitrary (Byzantine) failures, which has Recently, solving SMC without security modules has been investigated previously (see, for example, Malkhi and received some attention focusing mainly on two-party Reiter [9], Kihlstrom et al. [10], Doudou et al. [11], Doudou protocols [28], [29], [30], [31], [32], [33]. In systems with et al. [12], Haeberlen et al. [13], [14], and more recently security modules, Avoine and Vaudenay [34] examined the Haeberlen and Kuznetsov [15]). In contrast to previous approach of jointly simulating a TTP. This approach was works on Byzantine failure detectors, we use security later extended by Avoine et al. [35] who show that in a modules to avoid the tar pits of this area. This contrasts system with security modules fair exchange can be reduced TrustedPals to the large body of work that tackles Byzantine to a special form of consensus. They derive a solution to fair faults directly, like Castro and Liskov’s “Practical Byzantine exchange in a modular way so that the agreement abstrac- Fault-Tolerance” [16] or more recently the Aardvark system tion can be implemented in diverse manners. Benenson et al. by Clement et al. [17] and the Turquois protocol by Moniz [2] extended this idea to the general problem of SMC and et al. [18]. While being conceptually simpler, Byzantine- showed that the use of security modules cannot improve the tolerant protocols necessarily have to assume a two-thirds resilience of SMC but enables more efficient solutions for majority of correct processes in nonsynchronous settings SMC problems.
Recommended publications
  • Failure Detectors for Wireless Sensor-Actuator Systems
    Cleveland State University EngagedScholarship@CSU Electrical Engineering & Computer Science Electrical Engineering & Computer Science Faculty Publications Department 7-2009 Failure Detectors for Wireless Sensor-Actuator Systems Hamza A. Zia Cleveland State University Nigamanth Sridhar Clevealand State University, [email protected] Shivakumar Sastry University of Akron Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub Part of the Digital Communications and Networking Commons How does access to this work benefit ou?y Let us know! Publisher's Statement NOTICE: this is the author’s version of a work that was accepted for publication in Ad Hoc Networks. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ad Hoc Networks, 7, 5, (07-01-2009); 10.1016/j.adhoc.2008.09.003 Original Citation Zia, H. A., Sridhar, N., , & Sastry, S. (2009). Failure detectors for wireless sensor-actuator systems. Ad Hoc Networks, 7(5), 1001-1013. doi:10.1016/j.adhoc.2008.09.003 Repository Citation Zia, Hamza A.; Sridhar, Nigamanth; and Sastry, Shivakumar, "Failure Detectors for Wireless Sensor-Actuator Systems" (2009). Electrical Engineering & Computer Science Faculty Publications. 64. https://engagedscholarship.csuohio.edu/enece_facpub/64 This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU.
    [Show full text]
  • The Dynamic Enterprise Bus∗
    Fourth International Conference on Autonomic and Autonomous Systems The Dynamic Enterprise Bus∗ Dag Johansen Havard˚ Johansen Dept. of Computer Science Dept. of Computer Science University of Tromsø, Norway University of Tromsø, Norway Abstract This is where autonomic computing [18] comes into play. Our goal is that information access software should In this paper we present a prototype enterprise informa- keep manual control and interventions outside the compu- tion run-time heavily inspired by the fundamental principles tational loop as much as possible. Closely related is that of autonomic computing. Through self-configuration, self- such autonomic solutions should consolidate and utilize re- optimization, and self-healing techniques, this run-time tar- sources better, with the net effect that large-scale informa- gets next-generation extreme scale information-access sys- tion access systems can be built in smaller scale. In this tems. We demonstrate these concepts in a processing cluster vein, self-configuration, self-optimization, and self-healing that allocates resources dynamically upon demand. become important. We are building the next generation run-time for fu- ture generation information access systems. Autonomic be- 1 Introduction havior is fundamental in order to dynamically adapt and reconfigure to accommodate changing situations. Hence, the run-time needs efficient mechanisms for monitoring Enterprise search systems are ripe for change. In their in- and controlling applications and their resource, moving ap- fancy, these systems were primarily used for information re- plications transparently while in execution, scheduling re- trieval purposes, with main data sources being internal cor- sources in accordance to end-to-end service-level agree- porate archives.
    [Show full text]
  • Low-Overhead Accrual Failure Detector
    Sensors 2012, 12, 5815-5823; doi:10.3390/s120505815 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Low-Overhead Accrual Failure Detector Xiao Ren, Jian Dong *, Hongwei Liu, Yang Li and Xiaozong Yang School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-451-8640-3317; Fax: +86-451-8641-3309. Received: 6 March 2012; in revised form: 20 April 2012 / Accepted: 25 April 2012 / Published: 4 May 2012 Abstract: Failure detectors are one of the fundamental components for building a distributed system with high availability. In order to maintain the efficiency and scalability of failure detection in a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. In this paper, an new accrual failure detector—LA-FD with low system overhead has been proposed specifically for current mobile network equipment on the Internet whose processing power, memory space and power supply are all constrained. It does not rely on the probability distribution of message transmission time, or on the maintenance of a history message window. By simple calculation, LA-FD provides adaptive failure detection service with high accuracy to multiple upper applications. The related experiments and results have also been presented. Keywords: failure detection; accrual failure detector; adaptive 1. Introduction Failure detector is one of the fundamental components for building a distributed system with high availability [1]. By providing the processes’ failure information to the system, it supports the solution of many basic issues (such as consensus and atomic broadcasting, etc.) in an asynchronous system.
    [Show full text]
  • A Literature Review of Failure Detection Within the Context of Solving the Problem of Distributed Consensus
    A literature review of failure detection Within the context of solving the problem of distributed consensus by Michael Duy-Nam Phan-Ba B.S., The University of Washington, 2010 AN ESSAY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Computer Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2015 c Michael Duy-Nam Phan-Ba 2015 Abstract As modern data centers grow in both size and complexity, the probabil- ity that components fail becomes significant enough to affect user-facing services [3]. These failures have the apparent consequence of invoking the impossibility result for distributed consensus in the presence of even one failure [15]. One way to solve the impossibility result is to use failure de- tectors [8]. In this essay, we present the theoretical models that allow us to solve consensus. Then, we discuss practical refinements to the models for the purposes of implementing failure detectors in practice. Finally, we con- clude by surveying common design patterns for building distributed failure detectors. ii Table of Contents Abstract ................................. ii Table of Contents ............................ iii List of Tables .............................. v List of Figures .............................. vi List of Algorithms . vii Acknowledgements . viii Dedication ................................ ix 1 Introduction ............................. 1 2 The theory behind failure detection and consensus . 3 2.1 The impossibility result for consensus . 3 2.2 A model of failure detection . 4 2.3 The weakest failure detector . 7 3 Binary failure detection with partial synchrony . 13 3.1 Pull failure detection . 14 3.2 Push failure detection . 15 3.3 Push-pull failure detection .
    [Show full text]
  • Failure Detectors for Wireless Sensor-Actuator Systems Hamza A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cleveland-Marshall College of Law Cleveland State University EngagedScholarship@CSU Electrical Engineering & Computer Science Faculty Electrical Engineering & Computer Science Publications Department 7-2009 Failure Detectors for Wireless Sensor-Actuator Systems Hamza A. Zia Cleveland State University Nigamanth Sridhar Clevealand State University, [email protected] Shivakumar Sastry University of Akron Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub Part of the Digital Communications and Networking Commons How does access to this work benefit oy u? Let us know! Publisher's Statement NOTICE: this is the author’s version of a work that was accepted for publication in Ad Hoc Networks. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ad Hoc Networks, 7, 5, (07-01-2009); 10.1016/j.adhoc.2008.09.003 Original Citation Zia, H. A., Sridhar, N., , & Sastry, S. (2009). Failure detectors for wireless sensor-actuator systems. Ad Hoc Networks, 7(5), 1001-1013. doi:10.1016/j.adhoc.2008.09.003 Repository Citation Zia, Hamza A.; Sridhar, Nigamanth; and Sastry, Shivakumar, "Failure Detectors for Wireless Sensor-Actuator Systems" (2009). Electrical Engineering & Computer Science Faculty Publications. 64. https://engagedscholarship.csuohio.edu/enece_facpub/64 This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU.
    [Show full text]
  • INFORMATION to USERS This Manuscript Has Been Reproduced from the Microfilm Master. UMI Films the Text Directly from the Origina
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. Hie quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Ben & Howell information Company 300 North ZeebRoad Ann Arbor Mt 48106-1346 USA 313 761-4700 800 521-0600 Order Number 9605332 Fault-tolerant distributed algorithms for consensus and termination detection Wu, Li-Fen, Ph.D. The Ohio State University, 1994 UMI 300 N.
    [Show full text]
  • Self-Healing Distributed Systems
    ÃABCÊÇÅÍÆGËÀ¼ Self-healing distributed systems Dissertation for the degree of Doctor of Natural Sciences (Dr. rer. nat.) submitted to the Department of Computer Science of the University of Augsburg presented by Benjamin Satzger in 2008 Examiner: Prof. Dr. rer. nat. Theo Ungerer Co-examiner: Prof. Dr. rer. nat. Bernhard Bauer Date of oral examination: 2008-12-18 Abstract The growing complexity of distributed systems demands for new ways of control. This work addresses self-healing in distributed environments. The term self-healing represents a quite new area of research and is used in a fairly broad way, but can be seen as dynamic fault tolerance. This work proposes generic concepts and algorithms to build self-healing systems. The detection of node failures in distributed environments is a non-trivial problem. Failure detectors are an important component of many fault tol- erant distributed systems. In this work a new failure detection algorithm is proposed with noteworthy features like a high flexibility and good perfor- mance. Furthermore an approach is presented to save the message overhead of failure detectors. New grouping algorithms are introduced in this work to enable a scalable self-monitoring property. This allows an autonomous installation of moni- toring relations in complex large scale distributed systems. A failure recovery engine based on automated planning, which manages a distributed system according to user-defined objectives, is proposed. It is able to generate and execute plans to autonomously recover a system from unwanted states. Finally, ideas for a generic self-healing architecture for highly complex dis- tributed systems are presented. The design is based on psychological and sociological concepts.
    [Show full text]
  • A Self-Tuning Failure Detection Scheme for Cloud Computing Service
    2012 IEEE 26th International Parallel and Distributed Processing Symposium A Self-tuning Failure Detection Scheme for Cloud Computing Service Naixue Xiong Athanasios V. Vasilakos Jie Wu Dept. of Computer Science Dept. of Comp. and Tele. Engi. Dept. of Comp. and Info. Scie. Georgia State Univ., USA Univ. of Western Macedonia, Greece Temple Univ., USA. E-mail: {nxiong, wsong, pan}@gsu.edu E-mail: [email protected] E-mail: [email protected] Y. Richard Yang Andy Rindos Yuezhi Zhou1,Wen-Zhan Song2,Yi Pan2 Dept. of Computer Science IBM Corp., Dept. W4DA/Bldg 503 1Dept. of Comp. Scie. & Tech. Yale Univ. Research Triangle Park, Tsinghua Univ., China New Haven, USA Durham, NC, USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] 2Dept. of Computer Science Georgia State Univ., USA E-mail: {wsong, pan}@cs.gsu.edu Abstract—Cloud computing is an increasingly important so- maintain high levels of Quality of Service (QoS) in accessing lution for providing services deployed in dynamically scalable information remotely in network environments, and should cloud networks. Services in the cloud computing networks may ensure users’ application security and dependability. be virtualized with specific servers which host abstracted details. In the cloud computing networks, some of the servers Some of the servers are active and available, while others are busy or heavy loaded, and the remaining are offline for various may be active and available, while others are busy or heavy reasons. Users would expect the right and available servers to loaded, and the remaining may be offline or even crashed complete their application requirements.
    [Show full text]
  • The Failure Detector Abstraction
    The Failure Detector Abstraction Felix C. Freiling, University of Mannheim and Rachid Guerraoui, EPFL and MIT CSAIL and Petr Kuznetsov, TU Berlin/Deutsche Telekom Laboratories A failure detector is a fundamental abstraction in distributed computing. This paper surveys this abstraction through two dimensions. First we study failure detectors as building blocks to simplify the design of reliable distributed algorithms. In particular, we illustrate how failure detectors can factor out timing assumptions to detect failures in distributed agreement algorithms. Second, we study failure detectors as computability benchmarks. That is, we survey the weakest failure detector question and illustrate how failure detectors can be used to classify problems. We also highlight some limitations of the failure detector abstraction along each of the dimensions. Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.4 [Computer Systems Organization]: Performance of Systems|fault tolerance; modeling tech- niques; reliability, availability, and serviceability General Terms: Algorithms, Design, Reliability, Theory Additional Key Words and Phrases: distributed system, agreement problem, consensus, atomic commit, fault tolerance, liveness, message passing, safety, synchrony The first author's work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Emmy Noether programme. Contact author's address: University of Mannheim, Department of Computer Science, D-68131 Mannheim, Germany, contact author email: [email protected] Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc.
    [Show full text]
  • AVR1003: Using the XMEGA Clock System
    AVR 8-bit Microcontrollers AVR1003: Using the XMEGA Clock System APPLICATION NOTE Features • Internal 32kHz, 2MHz, and 32MHz oscillators • External crystal oscillator or clock input • Internal PLL with multiplication factor 1x to 31x • Safe clock source switching • External oscillator failure detection • 1x to 2048x system clock prescaler option • Automatic runtime calibration of internal oscillators • Driver source code included Atmel-8072F-Using-the-XMEGA-Clock-System_AVR1003_Application Note-07/2016 Table of Contents Features.......................................................................................................................... 1 1. Introduction................................................................................................................3 2. Clock System Overview.............................................................................................4 2.1. Internal Clock Sources................................................................................................................. 4 2.2. External Clock Sources................................................................................................................ 5 2.3. High-frequency PLL Option.......................................................................................................... 7 2.4. System Clock Selection and Prescalers.......................................................................................7 2.5. Clock Configuration Locking.........................................................................................................8
    [Show full text]
  • Distributed Algorithms
    Master 2 IFI, CSSR Distributed Algorithms Francesco Bongiovanni INRIA Sophia Antipolis Research Center OASIS Team [email protected] Course web site : deptinfo.unice.fr/~baude/AlgoDist Nov. 2009 Chapter 7 : Failure Detectors, Consensus, Self-Stabilization 1 Acknowledgement . The slides for this lecture are based on ideas and materials from the following sources: . Introduction to Reliable Distributed Programming Guerraoui, Rachid, Rodrigues, Luís, 2006, 300 p., ISBN: 3-540-28845-7 (+ teaching material) . ID2203 Distributed Systems Advanced Course by Prof. Seif Haridi from KTH – Royal Institute of Technology (Sweden) . CS5410/514: Fault-tolerant Distributed Computer Systems Course by Prof. Ken Birman from Cornell University . Distributed Systems : An Algorithmic Approach by Sukumar, Ghosh, 2006, 424 p.,ISBN:1-584-88564-5 (+teaching material) . Various research papers 2 Outline 1. Failure Detectors . Definition . Properties – completeness and accuracy . Classes of FDs . Two algorithms : PFD and EPFD . Leader Election vs Failure Detector 2. Consensus . Definition . Properties . Types of Consensus : regular and uniform . Algorithm: hierarchical consensus 3. Self-stabilization . Principle . Example: Dijkstra's Token ring 3 Failure detectors 4 System models . synchronous distributed system . each message is received within bounded time . each step in a process takes lb < time < ub . each local clock’s drift has a known bound . asynchronous distributed system . no bounds on process execution . no bounds on message transmission delays . arbitrary clock drifts the Internet is an asynchronous distributed system 5 Failure model . First we must decide what do we mean by failure? . Different types of failures . Crash-stop (fail-stop) . A process halts and Crashes does not execute any further operations Omissions .
    [Show full text]
  • Failure Detectors Outline
    Department of Computer Science CS505: Distributed Systems Lecture 7: Failure Detectors Outline Definitions Failure detector classification and comparison An alternative definition Implementation Concept A failure detector is a distributed module that provides processes with suspicions about crashed processes – Outputs a list of suspected processes It is a module implemented using (i.e., it encapsulates) timing assumptions – Assumptions are confined within single module – Decisions throughout algorithm are based on same module . E.g., point-to-point channels, broadcast According to the timing assumptions, the suspicions can be accurate or not Example Applications indication request (deliver) indicationReliable broadcasts (deliver) (deliver) Failure detectorindication indication request(deliver) Channels request (deliver) Properties Traditionally [Chandra&Toueg’96] define two properties for failure detectors 1. Completeness . The degree to which failures (crashes) are indeed detected . Reflects liveness 2. Accuracy . The degree to which false suspicions are limited . Reflects safety Focus on process failures – No information on communication channels Formally Processes ∏ = {p1, p2, …} – Processes fail by halting Clock ticks range over Τ Failure pattern F is function Τ → 2∏ – Represents set of processes failed by time t – No recovery: F(t) ⊆ F(t+1) – crashed(F) = U t∈T F(t) – correct(F) = ∏ - crashed(F) Failure Detector D Failure detector history H is function ∏ x T → 2∏ – Outputs for each process a set of suspected processes – H(p, t)
    [Show full text]