Gravitational Separation in the Stratosphere

Total Page:16

File Type:pdf, Size:1020Kb

Gravitational Separation in the Stratosphere EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Open Access Atmos. Chem. Phys. Discuss., 13, 4839–4861,Atmospheric 2013 Atmospheric www.atmos-chem-phys-discuss.net/13/4839/2013/Chemistry Chemistry doi:10.5194/acpd-13-4839-2013 ACPD and Physics and Physics © Author(s) 2013. CC Attribution 3.0 License. 13, 4839–4861, 2013 Discussions Open Access Open Access Atmospheric Atmospheric This discussion paper is/hasMeasurement been under review for the journal AtmosphericMeasurement Chemistry Gravitational and Physics (ACP). Please referTechniques to the corresponding final paper in ACP ifTechniques available. separation in the Discussions stratosphere Open Access Open Access S. Ishidoya et al. GravitationalBiogeosciences separation in theBiogeosciences stratosphere – a new indicator of Discussions Open Access Open Access Title Page atmospheric circulationClimate Climate Abstract Introduction of the Past of the Past 1 2 3 4 4 Discussions 5 S. Ishidoya , S. Sugawara , S. Morimoto , S. Aoki , T. Nakazawa , H. Honda , Conclusions References 1 Open Access and S. Murayama Open Access Earth System Tables Figures 1 Earth System National Institute of Advanced Industrial Science and Technology (AIST),Dynamics Tsukuba 305–8569, Japan Dynamics Discussions J I 2Miyagi University of Education, Sendai 980–0845, Japan 3 Open Access National Institute of Polar Research,Geoscientific Tokyo 190-8518, Japan Geoscientific Open Access J I 4Center for Atmospheric andInstrumentation Oceanic Studies, Tohoku University, SendaiInstrumentation 980–8578, Japan Back Close 5Institute of Space and AstronauticalMethods Science and (ISAS), Japan AerospaceMethods Exploration and Agency (JAXA), Sagamihara 252-5210,Data Japan Systems Data Systems Full Screen / Esc Discussions Open Access Received: 30 December 2012 – Accepted: 12Open Access February 2013 – Published: 20 February 2013 Geoscientific Geoscientific Printer-friendly Version Correspondence to: S. Ishidoya ([email protected]) Model Development Model Development Published by Copernicus Publications on behalf of the European GeosciencesDiscussions Union. Interactive Discussion Open Access Open Access Hydrology and Hydrology and Earth System 4839 Earth System Sciences Sciences Discussions Open Access Open Access Ocean Science Ocean Science Discussions Open Access Open Access Solid Earth Solid Earth Discussions Open Access Open Access The Cryosphere The Cryosphere Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ACPD As a basic understanding of the dynamics of the atmospheric circulation, it has been believed that the gravitational separation of atmospheric components is observable 13, 4839–4861, 2013 only in the atmosphere above the turbopause. However, we found, from our high- 5 precision measurements of not only the isotopic ratios of N2,O2 and Ar but also the Gravitational concentration of Ar, that the gravitational separation occurs even in the stratosphere separation in the below the turbopause; their observed vertical profiles are in good agreement with stratosphere those expected theoretically from molecular mass differences. The O2/N2 ratio ob- served in the middle stratosphere, corrected for the gravitational separation, showed S. Ishidoya et al. 10 the same mean air age as estimated from the CO2 concentration. Simulations with a 2- dimensional model of the middle atmosphere indicated that a relationship between the gravitational separation and the air age in the stratosphere would be significantly af- Title Page fected if the Brewer-Dobson circulation is enhanced due to global warming. Therefore, Abstract Introduction the gravitational separation is usable as a new indicator of changes in the atmospheric 15 circulation in the stratosphere. Conclusions References Tables Figures 1 Introduction J I The gravity of the earth prevents the atmosphere from dissipating into space. It is also known that the gravity causes atmospheric molecules to separate depending on their J I molar masses, which is called “gravitational separation”. It is widely recognized that the Back Close 20 gravitational separation of atmospheric components occurs in the atmosphere above the turbopause (Lewis and Prinn, 1984; Jacobs, 1999). On the other hand, we have Full Screen / Esc suggested from our measurements of the stable isotopic ratios of major atmospheric 15 18 components (δ( N) of N2 and δ( O) of O2) (Ishidoya et al., 2006; Ishidoya et al., Printer-friendly Version 2008a, b) that the gravitational separation exists even in the stratosphere. However, in Interactive Discussion 25 our earlier studies, we were not able to exclude the possibility that some other factors affect our measurement results. 4840 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | In this paper, we present a new concrete evidence for the existence of the gravi- tational separation in the stratosphere. We also show a significant effect of the gravi- ACPD tational separation on the O concentration (δ(O /N )) value measured in the strato- 2 2 2 13, 4839–4861, 2013 sphere. Furthermore, we propose to use the gravitational separation as a new indica- 5 tor to detect a change in the Brewer-Dobson Circulation (BDC) (Brewer, 1949) in the stratosphere. Atmospheric general circulation models have shown that the mean age Gravitational of stratospheric air decreases as the BDC is enhanced under global warming (Austin separation in the and Li, 2006; Li et al., 2008), but a significant change of the air age has not been ob- stratosphere served so far (Engel et al., 2009). Since the gravitational separation occurs physically S. Ishidoya et al. 10 due to gravity, its effect is expected to become more pronounced as the stratospheric air is slowly transported poleward after its intrusion from the troposphere in the trop- ics. Therefore, in this conceptual framework, by measuring the gravitational separation, Title Page it would be possible to obtain information about changes in the stratospheric circula- tion. To confirm this supposition, we simulate the stratospheric gravitational separation Abstract Introduction 15 using a 2-dimensional model of the middle atmosphere (SOCRATES) (Huang et al., 1998), and then examine the relationship between the gravitational separation and the Conclusions References stratospheric circulation. Tables Figures 2 Stratospheric air collection and sample analyses J I The collection of stratospheric air has been carried out using a balloon-borne cryo- J I ◦ ◦ ◦ ◦ 20 genic air sampler over Sanriku (39 N, 142 E) and Taiki (43 N, 143 E), Japan since Back Close 1985 (e.g. Nakazawa et al., 1995; Aoki et al., 2003). Our air sampler consists mainly of 12 stainless-steel sample containers, a liquid helium dewar, a receiver, a transmitter, Full Screen / Esc a control unit and batteries; all these components are housed in a water- and pressure- proof aluminum chamber (Honda, 1990; Honda et al., 1996). The volume of each sam- Printer-friendly Version 25 ple container is about 760 mL, and its inner wall is electrically polished. A motor-driven Interactive Discussion metal-to-metal seal valve is attached to each sample container. The other end of the motor-driven valve is connected to a sample intake, located 3.5 m below the bottom of 4841 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | the aluminum chamber, through a manifold and a stainless-steel bellows tube with an inner diameter of 15 mm reinforced with mesh. Before sampling, all the sample con- ACPD tainers were evacuated with heating and then cooled by filling the dewar with liquid 13, 4839–4861, 2013 He. Then, the cryogenic air sampler was connected to a large balloon, launched from 5 the balloon center at Sanriku or Taiki early in the morning and recovered from the Pacific Ocean around noon. Air samples were collected in the containers at assigned Gravitational altitudes by opening and closing the motor-driven valves using a telecommand system. separation in the The flow rates of sample air at the respective altitudes were 50–100 Lmin−1 at ambient stratosphere pressures, and typical amounts of air samples collected were about 25 L at standard ◦ S. Ishidoya et al. 10 temperature (0 C) and pressure (1013.25 hPa). 15 To detect the gravitational separation in the stratosphere, we measured δ( N) of N2, δ(18O) of O and δ(O /N ) of the air samples collected over Sanriku on 31 May 1999, 2 2 2 Title Page 28 August 2000, 30 May 2001, 4 September 2002, 6 September 2004, 3 June 2006 and 4 June 2007, as well as of those over Taiki on 22 August 2010, using a mass spec- Abstract Introduction 15 18 15 trometer (Finnigan MAT-252) (Ishidoya et al., 2003). δ( N) of N2 and δ( O) of O2 were also measured for the samples collected over Sanriku on 8 June 1995. Furthermore, Conclusions References 15 18 the air samples over Sanriku on 4 June 2007 were analyzed for δ( N) of N2, δ( O) Tables Figures 40 of O2, δ(O2/N2), δ(Ar/N2) and δ( Ar) using a new mass spectrometer (Thermo Sci- 15 18 entific DELTA-V). In this study, δ( N) of N2, δ( O) of O2, δ(O2/N2), δ(Ar/N2) and J I 40 −6 20 δ( Ar) are reported in per meg (one per meg is equal to 1 × 10 ), J I h 15 14 14 14 i n( N N)/n( N N) Back Close sample δ 15 − ( N) = h i 1, (1a) n(15N14N)/n(14N14N) Full Screen / Esc reference h 18 16 16 16 i n( O O)/n( O O) Printer-friendly Version sample δ(18O) = − 1, (1b) h i Interactive Discussion n(18O16O)/n(16O16O) reference 4842 h i Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | n(16O16O)/n(15N14N) sample δ / − ACPD (O2 N2) = h i 1, (1c) n(16O16O)/n(15N14N) 13, 4839–4861, 2013 reference h i n(40Ar)/n(14N14N) sample δ / − Gravitational (Ar N2) = h i 1, (1d) n(40Ar)/n(14N14N) separation in the reference stratosphere and S.
Recommended publications
  • Downloaded 09/27/21 06:58 AM UTC 3328 JOURNAL of the ATMOSPHERIC SCIENCES VOLUME 76 Y 2
    NOVEMBER 2019 S C H L U T O W 3327 Modulational Stability of Nonlinear Saturated Gravity Waves MARK SCHLUTOW Institut fur€ Mathematik, Freie Universitat€ Berlin, Berlin, Germany (Manuscript received 15 March 2019, in final form 13 July 2019) ABSTRACT Stationary gravity waves, such as mountain lee waves, are effectively described by Grimshaw’s dissipative modulation equations even in high altitudes where they become nonlinear due to their large amplitudes. In this theoretical study, a wave-Reynolds number is introduced to characterize general solutions to these modulation equations. This nondimensional number relates the vertical linear group velocity with wave- number, pressure scale height, and kinematic molecular/eddy viscosity. It is demonstrated by analytic and numerical methods that Lindzen-type waves in the saturation region, that is, where the wave-Reynolds number is of order unity, destabilize by transient perturbations. It is proposed that this mechanism may be a generator for secondary waves due to direct wave–mean-flow interaction. By assumption, the primary waves are exactly such that altitudinal amplitude growth and viscous damping are balanced and by that the am- plitude is maximized. Implications of these results on the relation between mean-flow acceleration and wave breaking heights are discussed. 1. Introduction dynamic instabilities that act on the small scale comparable to the wavelength. For instance, Klostermeyer (1991) Atmospheric gravity waves generated in the lee of showed that all inviscid nonlinear Boussinesq waves are mountains extend over scales across which the back- prone to parametric instabilities. The waves do not im- ground may change significantly. The wave field can mediately disappear by the small-scale instabilities, rather persist throughout the layers from the troposphere to the perturbations grow comparably slowly such that the the deep atmosphere, the mesosphere and beyond waves persist in their overall structure over several more (Fritts et al.
    [Show full text]
  • Variability of Martian Turbopause Altitudes M
    Variability of Martian turbopause altitudes M. Slipski1, B. M. Jakosky2, M. Benna3,4, M. Elrod3,4, P. Mahaffy3, D. Kass5, S. Stone6, R. Yelle6 Marek Slipski; [email protected] 1Laboratory for Atmospheric and Space Physics, Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO, USA 2Laboratory for Atmospheric and Space Physics, Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA 3NASA Goddard Space Flight Center, Greenbelt, MD, USA 4CRESST, University of Maryland, College Park, Maryland,USA This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2018JE005704 c 2018 American Geophysical Union. All Rights Reserved. Abstract. The turbopause and homopause represent the transition from strong turbulence and mixing in the middle atmosphere to a molecular-diffusion dominated region in the upper atmosphere. We use neutral densities mea- sured by the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmospheric and Volatile EvolutioN (MAVEN) spacecraft from February 2015 to October 2016 to investigate the temperature structure and fluctuations of the Martian upper atmosphere. We compare those with temperature mea- surements of the lower atmosphere from the Mars Reconnaissance Orbiter's (MRO) Mars Climate Sounder (MCS). At the lowest MAVEN altitudes we often observe a statically stable region where waves propagate freely. In con- trast, regions from about 20 km up to at least 70 km are reduced in stabil- ity where waves are expected to dissipate readily due to breaking/saturation.
    [Show full text]
  • DEVELOPMENTS in UPPER ATMOSPHERIC SCIENCE The
    DEVELOPMENTS IN UPPER ATMOSPHERIC SCIENCE DURING THE IQSY BY FRANCIS S. JOHNSON SOUTHWEST CENTER FOR ADVANCED STUDIES, DALLAS, TEXAS During the IQSY, there were of course many advances in the area of upper atmo- spheric science, and it would take a great deal of time and space to describe them all adequately. It is therefore necessary to arbitrarily select just a few of the advances that were, in my view, among the more important. Neutral Upper Atmosphere.-The vertical structure of the atmosphere is in large degree controlled by its temperature distribution, and the largest variations in temperature occur above 200-km altitude. This is illustrated in Figure 1, which shows a typical temperature distribution up to 100 km, and three distributions at higher altitudes. The three distributions shown indicate near-extreme conditions and an in-between, or average, situation. The range of variation can be seen to be very great, far more than a factor of 2 at the highest altitudes. The biggest portion of the variation is governed by the solar cycle, with the highest temperatures oc- curring near sunspot maximum. The constant temperature above about 300 km is frequently referred to as the exospheric temperature. The total amount of atmosphere above any location on the earth's surface at sea level, as indicated by the barometric pressure, is nearly constant (within about 5 per cent of its mean value); this near constancy apparently results from the mete- orological circulation of the lower atmosphere. The vertical extension of the atmos- phere is governed by its temperature and molecular weight.
    [Show full text]
  • May 8-21, 1968 CHANGES in the LOWER EXOSPIDERE SINCE SOLAR Minm by Gerald M
    GES IN THE LOWER EXOSPHERE SINCE SOLAR MTm By Gerald M. Keating NASA Langley Research Center Langley Station, Hampton, Va e GPO PRICE $ CSFTl PRICEtS) $ Presented at 9th COSPAR International Space Science Sp-posiwn Tokyo, Japan May 8-21, 1968 CHANGES IN THE LOWER EXOSPIDERE SINCE SOLAR MINm By Gerald M. Keating Measurements of atmospheric densities between 500 km and 750 km and between BOo latitude have been made by means of the Explorer XIX (1963-53A)and Explorer XXIV (1964-76A)satellites during the period of increasing solar activity (1964-1967) During this period the atmosphere has expanded due to increased solar heating to such an extent that near TOO km recent measurements indicate densities 30 times greater than were measured at minimum solar activity. Latitudinal-seasonal variations have changed during this period of increased solar heating. It was found that peak densities near 650 km have shifted from high latitudes in the winter hemisphere to low latitudes in the summer hemisphere. This change in latitudinal-seasonal variations confirms the prediction of Keating and Phor that at these altitudes with an increase in solar activity, the winter helium bulge would be dwarfed by an expanding summer atomic oxygen bulge. Xt is apparent that atomic oxygen has now replaced helium as the principal constituent near 650 km, After accounting for latitudinal-seasonal variations, a global semiannual and annual variation of atmospheric densities nearly as large as has been observed in the past becomes evident throughout the period of increasing solar activity. Unexpectedly low densities were observed in September of 1964, 1965, and 1966.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) UNIVERSITY OF ILLINOIS URBANA AERONOMY REPfC".)IRT NO, 67 1 AN INVESTIGATION OF THE SOLAR ZENITH ANGLE VARIATION OF D-REGION IONIZATION (NASA-CF-143217) AN INVE'STIGATICN CF THE N75 -28597 SOIA; ZENITH ANGLE VAFIATICN CF C-FEGICN IONI2ATICN (I11incis Cniv.) 290 F HC iE.75 CSCL 044 U11C13s G3/4b 31113 by ^' x '^^ P. A. J. Ratnasiri o c n C. F. Scchrist, Jr. m y T April I, 1975 Library of Congress ISSN 0568-0581 Aeronomy Laboratory Supported by Department of Electrical Engineering National Science Foundation University of Illinois Grant GA 3691 IX Urbana, Illinois ii ABSTRACT A review of the D- region ionization measurements and its solar zenith angle variation reveals that a unified model of the D region, incorporating both thenetural chemistry and the ion chemistry, is required for a proper understanding of this region of the ionosphere.
    [Show full text]
  • Chapman Conferences
    ABSTRACTS listed by name of presenter Alexander, M. Joan (between one day and one week apart). The stratopause temperature and height vary between observation nights on Mountain Wave Momentum Fluxes in the Southern scales of several kilometres and tens of Kelvin as a result of Hemisphere from Satellite Measurements planetary wave activity. The stratopause is also affected by Alexander, M. Joan1; Grimsdell, Alison1; Teitelbaum, Hector2 gravity-wave activity during the night, with the regular passage of inertia-gravity waves changing the stratopause 1. Colorado Research Associates Division, NWRA, Boulder, altitude by up to ~10km over the course of 18 hours. Gravity CO, USA wave dissipation above 40 km occurs during winter, while 2. LMD, Paris, France significant dissipation is only noted below the stratopause Accurate representation of stratospheric winds in the during autumn. Temporally filtered data with ground based Southern Hemisphere in climate models depends on the periods of 2 – 6 hours are examined in addition to the non- parameterization of gravity wave drag. Parameterization of filtered data, with similar seasonal cycles and short-term orographic wave drag is widely considered to be insufficient variability noted. We compare the seasonality of gravity-wave in these models, and additional drag from non-orographic energy with other high latitude sites and suggest that the waves is very important. Previous work has shown the main contribution to wave energy above Davis is from non- stratospheric circulation affects both the seasonal orographic sources. development of the ozone hole, and predicted changes in 21st century Southern Hemisphere climate. Recent Alexander, Simon observational evidence suggests that small islands in the The effect of orographic waves on Antarctic Polar Southern Ocean may be important sources of orographic Stratospheric Cloud (PSC) occurrence and wave drag that is currently missing in existing parameterizations.
    [Show full text]
  • Interactions Between the Lower, Middle and Upper Atmosphere
    Space Sci Rev (2012) 168:1–21 DOI 10.1007/s11214-011-9791-y Interactions Between the Lower, Middle and Upper Atmosphere Anne K. Smith Received: 2 February 2011 / Accepted: 30 May 2011 / Published online: 19 June 2011 © Springer Science+Business Media B.V. 2011 Abstract This survey of atmospheric regions is based on a presentation given at the Work- shop on Coupling between Earth’s Atmosphere and its Plasma Environment. The workshop was sponsored by the International Space Science Institute (ISSI) during September 2010. This survey begins with descriptions of aspects of the troposphere, stratosphere, and meso- sphere that affect vertical coupling. Then the tropopause, stratopause, and mesopause are considered, with a discussion of how they inhibit or allow the transmission of atmospheric mass or perturbations. Two transition interfaces are emphasized: the tropopause, which sep- arates the troposphere from the middle atmosphere, and the mesopause, which separates the middle atmosphere from the thermosphere. The survey of coupling processes looks at ra- diative processes, wave propagation, and mass exchange. Each topic includes one or more specific examples drawn from recent literature. Keywords Coupling · Solar variability 1 Introduction This article introduces the vertical structure of the atmosphere and discusses the interfaces between regions or layers. The focus is on the interactions across regions and the impedi- ments to interaction. Brief descriptions of the lower and middle atmosphere are given and the regions are contrasted. Several examples of coupling across regions are presented. The additional articles in this volume include detailed discussions of aspects of these interactions and other processes not discussed here.
    [Show full text]
  • Change in Turbopause Altitude at 52 and 70◦ N
    Atmos. Chem. Phys., 16, 2299–2308, 2016 www.atmos-chem-phys.net/16/2299/2016/ doi:10.5194/acp-16-2299-2016 © Author(s) 2016. CC Attribution 3.0 License. Change in turbopause altitude at 52 and 70◦ N Chris M. Hall1, Silje E. Holmen1,2,5, Chris E. Meek3, Alan H. Manson3, and Satonori Nozawa4 1Tromsø Geophysical Observatory, UiT – The Arctic University of Norway, Tromsø, Norway 2The University Centre in Svalbard, Svalbard, Norway 3University of Saskatchewan, Saskatoon, Canada 4Nagoya University, Nagoya, Japan 5Birkeland Centre for Space Science, Bergen, Norway Correspondence to: Chris M. Hall ([email protected]) Received: 5 May 2015 – Published in Atmos. Chem. Phys. Discuss.: 24 July 2015 Revised: 22 January 2016 – Accepted: 10 February 2016 – Published: 26 February 2016 Abstract. The turbopause is the demarcation between atmo- 1 Introduction spheric mixing by turbulence (below) and molecular diffu- sion (above). When studying concentrations of trace species in the atmosphere, and particularly long-term change, it may The upper mesosphere and lower thermosphere (UMLT) be important to understand processes present, together with regime of the atmosphere exhibits a number of features, the their temporal evolution that may be responsible for redis- underlying physics of which are interlinked and, relative to tribution of atmospheric constituents. The general region of processes at other altitudes, little understood. At high lati- transition between turbulent and molecular mixing coincides tude, the summer mesopause, around 85 km is the coldest with the base of the ionosphere, the lower region in which region in the entire atmosphere. The UMLT is, inter alia, molecular oxygen is dissociated, and, at high latitude in sum- characterised by the base of the ionosphere, dissociation of mer, the coldest part of the whole atmosphere.
    [Show full text]
  • Gravitational Separation in the Stratosphere – a New Indicator of Open Access Atmospheric Circulation Biogeosciences Biogeosciences Discussions S
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmos. Chem. Phys., 13, 8787–8796, 2013 Atmospheric Atmospheric www.atmos-chem-phys.net/13/8787/2013/ doi:10.5194/acp-13-8787-2013 Chemistry Chemistry © Author(s) 2013. CC Attribution 3.0 License. and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Gravitational separation in the stratosphere – a new indicator of Open Access atmospheric circulation Biogeosciences Biogeosciences Discussions S. Ishidoya1, S. Sugawara2, S. Morimoto3, S. Aoki4, T. Nakazawa4, H. Honda5, and S. Murayama1 1National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan Open Access 2Miyagi University of Education, Sendai 980-0845, Japan Open Access 3National Institute of Polar Research, Tokyo 190-8518, Japan Climate 4 Climate Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578, Japan of the Past 5Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA),of the Past Sagamihara 252-5210, Japan Discussions Open Access Correspondence to: S. Ishidoya ([email protected]) Open Access Earth System Earth System Received: 30 December 2012 – Published in Atmos. Chem. Phys. Discuss.: 20 February 2013 Dynamics Revised: 23 July 2013 – Accepted: 23 July 2013 – Published: 3 September 2013 Dynamics Discussions Abstract. As a basic understanding of the dynamics of the at- spheric components occurs in the atmosphere above the tur- Open Access Open Access mospheric circulation, it has been believed that gravitational bopause (about 100 km) (LewisGeoscientific and Prinn, 1984; Jacobs, Geoscientific separation of atmospheric components is observable only in 1999).
    [Show full text]
  • Three-Dimensional Simulation of Stratospheric Gravitational
    Three-dimensional simulation of stratospheric gravitational separation using the NIES global atmospheric tracer transport model Dmitry Belikov1, Satoshi Sugawara2, Shigeyuki Ishidoya3, Fumio Hasebe1, Shamil Maksyutov4, Shuji Aoki5, Shinji Morimoto5, and Takakiyo Nakazawa5 1Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan 2Miyagi University of Education, Sendai 980-0845, Japan 3National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan 4National Institute for Environmental Studies, Tsukuba 305-8506, Japan 5Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578, Japan Correspondence: Dmitry Belikov ([email protected]) 1 Abstract. A three-dimensional simulation of gravitational separation, defined as the process of atmospheric molecule separa- tion under gravity according to their molar masses, is performed for the first time in the upper troposphere and lower strato- 13 16 12 16 sphere. We analyze distributions of two isotopes with a small difference in molecular mass ( C O2 (Mi = 45) and C O2 (Mi = 44)) simulated by the National Institute for Environmental Studies (NIES) chemical transport model (TM) with a pa- 5 rameterization of molecular diffusion. The NIES model employs global reanalysis and an isentropic vertical coordinate and uses optimized CO2 fluxes. The applicability of the NIES TM to the modeling of gravitational separation is demonstrated by a comparison with measurements recorded by high-precision cryogenic balloon-borne samplers in the lower stratosphere. We investigate the processes affecting the seasonality of gravitational separation and examine the age of air derived from the tracer distributions modeled by NIES TM. We find a strong relationship between age of air and gravitational separation for the main 10 climatic zones.
    [Show full text]
  • The High-Latitude Ionosphere and Its Effects on Radio Propagation
    The high-latitude ionosphere and its effects on radio propagation R. D. Hunsucker Geophysical Institute, University of Alaska, Fairbanks J. K. Hargreaves University of Lancaster The Pitt Building, Trumpington Street, Cambridge, United Kingdom The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 2003 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2003 Printed in the United Kingdom at the University Press, Cambridge Typeface Times NR MT 10.25/13.5pt System QuarkXPress™ [] A catalogue record for this book is available from the British Library ISBN 0 521 33083 1 hardback Contents From the Times of London xv Preface xvii Chapter 1 Basic principles of the ionosphere 1 1.1 Introduction 1 1.1.1 The ionosphere and radio-wave propagation 1 1.1.2 Why the ionosphere is so different at high latitude 2 1.2 The vertical structure of the atmosphere 4 1.2.1 Nomenclature 4 1.2.2 Hydrostatic equilibrium in the atmosphere 5 1.2.3 The exosphere 7 1.2.4 The temperature profile of the neutral atmosphere 8 1.2.5 Composition 10 1.3 Physical aeronomy 13 1.3.1 Introduction 13 1.3.2 The Chapman production function
    [Show full text]
  • 19 67 Ap J. . .150.1125M the Astrophystcal Journal, Vol. 150
    The Astrophystcal Journal, Vol. 150, December 1967 .150.1125M . J. Ap 67 19 THE UPPER ATMOSPHERE OF MARS* Michael B. McElroy Kitt Peak National Observatory,! Tucson, Arizona Received April 11, 1967 ABSTRACT A comprehensive model for the Martian upper atmosphere, consistent with results obtained in the recent Mariner IV occultation experiment, is developed. It is argued that the ionosphere detected in this experiment should not be interpreted as an F2 layer analogous to the terrestrial ionosphere. The possi- bility of an PI interpretation is explored, and attention is directed to important difficulties associated with this interpretation It cannot, however, be categorically excluded at this time. A detailed E region model is derived and shown to compare favorably with observation. The accuracy of thermal calculations is discussed. In particular it is argued that eddy transport does not provide an important mode of heat loss from the Martian thermosphere. It is concluded that 400° K represents a reasonable lower bound to the exospheric temperature on Mars. The photochemistry of CO2 is discussed briefly and attention is directed to the possible importance of reactions involving It is suggested that association of (X1/?) and CO may occur rapidly, and as a consequence the upper atmosphere may be deficient in dissociation products such as CO, O2, and 0. I. INTRODUCTION In the recent Mariner IV occultation experiment (Kliore, Cain, Levy, Eshleman, Fjeldbo, and Drake 1965), phase shifts of the telemetry carrier wave were measured on Earth as the spacecraft passed behind Mars. From the observed phase shifts it was pos- sible to infer densities and density gradients for the neutral atmosphere at low altitudes and, at high altitudes, similar information about ambient ionization.
    [Show full text]