Multi-spacecraft coordinated observations during the cruise phase of BepiColombo

L. Z. Hadid T. Alberti, S. Aizawa, N. André, J. Benkhoff, Z. Bebesi, F. Califano, A. P. Dimmock, M. Dosa, V. Génot, L. Griton, G. C. Ho, T. S. Horbury, K. Iwai, M. Janvier, E. Kilpua, B. Lavraud, A. Madar, A. Milillo, Y. Miyoshi, D. Mueller, G. Murukami, R. Pinto, A. P. Rouillard, J. M. Raines, N. Raouafi, F. Sahraoui, B. C. Sanchez, D. Shiota, R. Vainio, A. Walsh, J. Zender, Y. Zouganelis.

Laboratoire de Physique des Plasmas

Laboratory of Plasma Physics, École Polytechnique/CNRS, Palaiseau, France [email protected]

21 September - 9 October 2020

Context Cruise phase of BepiColombo: heliospheric observations

Laboratoire de Physique des Plasmas Parker Solar Probe SDO Stereo A

Solar Orbiter Maven MMX (launch in 2024)

Akatsuki (Venus Climate Orbiter) Cruise phase of BepiColombo SOHO JUNO Sept. 2020 – Nov. 2025 Ace Wind Great opportunity for multi-spacecraft BepiColombo Themis/Artemis observations in the inner heliosphere at MMS different heliospheric distances!

0.05 0.28 0.5 0.7 1 1.5 5 AU AU AU AU AU AU AU Main goal and tasks

Laboratoire de Physique des Plasmas

Identification of science opportunities during the cruise phase of BepiColombo (September 2020 – December 2025)

September 1st 2020: report to ESA and JAXA

● Task 1: Identification of the science cases.

● Task 2: Identification of the windows of opportunities related to BepiColombo, , Parker Solar Probe, Akatsuki (Venus Climate Orbiter), and other available spacecraft in the wind and other planets (Earth, Venus, Mars).

● Task 3: List of the operational instruments related to the different science cases and opportunities.

Task 1 Potential science cases

Laboratoire de Physique des Plasmas

1) Intrinsic solar wind properties: turbulence properties

2) Large and small scales structures: magnetic holes, transient events, CMEs, ICMEs, IP shocks, CIRs

3) Solar Energetic Particles: Acceleration and transport processes

4) Comets and dust: water production rates, particles in the cometary trails, interplanetary dust distribution

5) Solar corona: properties (density fluctuations and bulk speed of coronal plasma)

6) Background radiation and general relativity test: Gamma Ray Burst detection and localization Galactic cosmic rays, Gamma rays of solar flares

Task 2 Windows of opportunity: spacecraft geometries

Laboratoire de Physique des Plasmas 1. Radial alignment (cone)

→ function of latitude and longitude

2. Radial alignment with opposition

3. Parker field lines

→ function of the solar wind speed, source surface, latitude and the field line footprint longitude

4. Parker field lines + radial alignment

5. Quadrature geometry / 90°

Task 2 Windows of opportunity (~ 1000 cases): some examples

Laboratoire de Physique des Plasmas

Cone Opposition

Parker

Parker – Cone Quadrature Task 3 Operational instruments of BepiColombo during the cruise phase

Laboratoire de Physique des Plasmas

✔ MPO-MAG (magnetometer) MPO → 4 or 16 Hz, ~1 nT → Fully operative (outside SEPS)

✔ BERM (radiation monitor) → Fully operative (outside SEPS) MIO ✔ SERENA: MIPA & PICAM ✔ MGF (magnetometer): B-field (DC ~ 8Hz) (Ion analyser and Ion camera) → Limited FoV ✔ MPPE (Mercury Plasma Particles Experiment) → MEA , HEP-e: reduced FoV ✔ SIXS-X (Solar Intensity X-rays) → MIA, MSA: difficult, MPPE FoV perpendicular to SW → Limited FoV

✔ PWI (Plasma Wave Investigation) ✔ PHEBUS (UV spectroscopy) →LF/DB-SC: B-field: may be operating. → May be operating.

✔ MDM (dust measurements): reduced FoV ✔ MORE (Gravity field), MGNS (Gamma rays and neutron), ISA (accelometer), MERTIS Final ESA/JAXA report documents

Laboratoire de Physique des Plasmas

1) Windows of opportunities and catalogs

2) Science and instruments

3) Spacecraft constraints

4) Amda manuel