ENERGY< EV> VIPER

1 0 ' 1.OE+OO 1•4E + 00 0. 2.8E+00 0. 4.9E+00 0. 6.9E*C9 1 0 ~ 8.9E+00 0. 1.4E+01 0. 2•8E + 01 0. _ 4.9E+01 0 • yj 6.9E+01 o.- ,0- 8.9E+01 UJ 1.4E+02 o. 2•4E + 02 o. 3.2E+02 o. 4. 0E + 02 o. 10 " S.3E+02 o. 6.9E»02 0. 8.9E+02 2.80E-02 1.1E+03 4.26E-02 1.7E»03 6.48E-0&) 2 .6E + 03 3.S6E-02 3.2E+03 4.18E-02 3.7E+03 5.51E-02 4.3E+03 C•30E-02 . «.9E+03 7.5E+03 7.29E-oy 7.9E+03 9.40E-02 9.0E + 03 1 . 04E-01 1.2E+04 1.10E-01 S.63E-02

ENERGY eV

TECHNICAL REPORTS SERIES No. 180

Compendium of Spectra in Accident

m\ INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1978

NOTE AND CORRIGENDA

COMPENDIUM OF NEUTRON SPECTRA IN DOSIMETRY Technical Reports Series No. 180

Note

Although d is the normal symbol for slab thickness, the symbol D is used for this in certain tables on left-hand pages where the data have been produced by computer.

Corrigenda

Pages 9,22,37,50 (For pages 22,37,50, the decimal sign should be read as a comma)

For 3lP(n,p)3lSi the last two lines of the a(E) equation should read

+ 0.26e-KE-3-°5>/°-26]J + 0.08e-(E-9-5)2

+ 0.05 e~ [(E-3-7)/0'24]2 + 0.052 e" [(E"4.55)/0.45]2

Pages 10, 22, 37, 50

For the side heading 233U(n,f) read 238U(n,f)

Page 10, second line from end of page

For nanoseconds/(n • cm-2) read nrad/n • cm-2

Page 12, line 10, page 52, line 16

For AN/AE read E AN/AE

Page 105, Table, right-hand column value for In

For 0.213 read 0.0213

Page 116

Table 5.4 column headings are erroneous. For the second, third and fourth columns the headings should be

R0 = 2, R0 = 20, R0 = 50, respectively. Page 121, Table, right-hand column value for In

For 0.113 read 0.0113

Page 147, Table, right-hand column value for U

For 0.0111 read 0.111

Page 157, Table, left-hand column value for U

For 1.149 read 0.149

Page 164, Table 8.1, fourth column, values for R0 = 15

All these figures must be multiplied by 3.2 X 104

Page 165, Table, second column, value for P

For 0.804 read 0.0804

Page 172, Table 8.5, caption

For Cu read Fe

Page 175, Table, third and fourth columns, values for Th

For 0.320 read 0.0320; for 0.107 read 0.0107

Page 178, Table 8.8, bottom line of table, 4th column

The figure should be 8.45E-01

Page 188, Table 9.4

The column headings should be identical to those on page 186, Table 9.3 COMPENDIUM OF NEUTRON SPECTRA IN CRITICALITY ACCIDENT DOSIMETRY The following States are Members of the International Atomic Energy Agency:

AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".

(C) IAEA, 1978

Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, KSrntner Ring 11, P.O. Box 590, A-1011 Vienna, Austria.

Printed by the IAEA in Austria February 1978 TECHNICAL REPORTS SERIES No. 180

COMPENDIUM OF NEUTRON SPECTRA IN CRITICALITY ACCIDENT DOSIMETRY

H. ING Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada

S. MAKRA Central Research Institute for Physics, Hungarian Academy of Sciences, Budapest, Hungary

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1978 EDITORIAL NOTE

This book has been edited by the staff of the International Atomic Energy Agency to the extent considered necessary for the reader's assistance. The general style adopted and the data given remain, however, the responsibility of the authors.

COMPENDIUM OF NEUTRON SPECTRA IN CRITICALITY ACCIDENT DOSIMETRY IAEA, VIENNA, 1978 STI/DOC/10/180 ISBN 92-0-125178-5 FOREWORD

In a criticality accident,dose estimates can only be obtained to the required accuracy with existing dosimetric systems if a reasonable approximation to the actual neutron spectrum is readily available. Following the recommendation of the participants in the Agency's International Co-ordinated Research Programme on Nuclear Accident Dosimetry, H. Ing of Chalk River Nuclear Laboratories, Canada, and S. Makra of the Hungarian Academy of Sciences, were engaged as consultants to compile this compendium of neutron spectra. Although the spectra listed here are primarily for application in criticality accident dosimetry and encompass the most likely neutron spectra encountered in such accidents, several 14-MeV neutron leakage spectra have been included in addition. 14-MeV are commonly used and are of particular interest riot only in neutron dosimetry but also in radiobiology and in fusion research. It is hoped that this compendium will facilitate the determination of dose from readings of detectors exposed to various neutron fields. Many participants in the Co-ordinated Research Programme have contri- buted to this work by suggesting the type and extent of information to be included and discussing this compilation at research co-ordination meetings in Valduc (France) in 1970, in Oak Ridge (USA) in 1971, in VinCa (Yugoslavia) in 1973, and in Harwell (UK) in 1975. Special thanks for helpful comments are due to M. Bricka (France), H.J. Delafield (UK), J.A.B. Gibson (UK), F.F. Haywood (USA), G.I. Pavlov (USSR), U. Madvanath (India), R. Medioni (France) and E.K.A. Piesch (Fed. Rep. of Germany). The author from Chalk River Nuclear Laboratories is especially grateful to a close colleague, W.G. Cross, who contributed directly to the compendium in many ways and provided valuable advice while the manuscript was in preparation. He also thanks G. Cowper and R. V. Osborne for helpful suggestions and P.J. Bunge and B.C. Greiner for capable technical assistance. Much of the credit for the contributions to the compendium by the Hungarian Academy of Sciences is due to J. Palfalvi who performed most of the spectral calculations and prepared the data in final form. Thanks are also due to L. Kolbinger of the Central Research Institute for Physics, Budapest, who helped in the spectral calculations and to M. Berces for technical assistance. The authors wish to express their appreciation to F.N. Flakus of the IAEA's Division of Nuclear Safety and Environmental Protection, for the co-ordination of this work.

AVANT PROPOS

En cas d'accident de criticite, le materiel dosimetrique existant ne permet d'evaluer la dose avec assez de precision que si Ton peut facilement connaitre, avec une approximation suffisante, le spectre de neutrons effectif. Sur la recom- mandation des participants au programme international de recherches coordon- nees de l'AIEA sur la dosimetric des accidents nucleaires, MM. H. Ing, des Labora- toires nucleaires de Chalk River (Canada), et S. Makra, de l'Academie des sciences de Hongrie, ont ete engages en qualite de consultants pour rediger le present repertoire des spectres de neutrons. Bien que les spectres recenses dans cet ouvrage trouvent leur application essentielle en dosimetrie des accidents de criti- cite et comprennent les spectres de neutrons les plus courants dans ces sortes d'accidents, on trouvera en outre plusieurs spectres de fuite de neutrons de 14 MeV. Les neutrons de 14 MeV sont frequemment utilises et particulierement interessants en dosimetrie neutronique, mais aussi en radiobiologie et en matiere de recherches sur la fusion. Le present repertoire devrait faciliter la determina- tion de la dose a partir des indications fournies par les detecteurs exposes a divers champs neutroniques. De nombreux participants au programme de recherches coordonnees ont collabore a cet ouvrage en aidant les auteurs a definir la nature et la portee des donnees a y faire figurer et en discutant de cette compilation au cours de reunions de coordination des recherches a Valduc (France), en 1970, a Oak Ridge (Etats- Unis d'Amerique), en 1971, a Vinca (Yougoslavie), en 1973 et a Harwell (Royaume-Uni), en 1975. II convient de remercier specialement, pour leurs precieux commentaires, MM. M. Bricka (France), H.J. Delafield (Royaume-Uni), J.A.B.Gibson (Royaume-Uni),F.F. Haywood (Etats-Unis d'Amerique),G.I. Pavlov (URSS), U. Madvanath (Inde), R. Medioni (France) et E.K.A. Piesch (Republique federate d'Allemagne). L'auteur attache aux Laboratoires de Chalk River est particulierement oblige a son proche collegue, M. W.G. Cross, qui, a de nombreux egards, a contribue directement a la redaction de l'inventaire et dont les conseils judicieux ont aide a etablir le manuscrit. II remercie en outre MM. G. Cowper et R.V. Osborne de leurs heureuses suggestions, ainsi que MM. P.J. Bunge et B.C. Creiner pour l'assistance technique competente qu'ils lui ont apportee. Pour le role qu'a joue l'Academie des sciences de Hongrie dans l'etablisse- ment du repertoire, nous sommes en grande partie redevables a M. J. Palfalvi qui a effectue l'essentiel des calculs de spectres et mis au point les donnees dans leur forme definitive. II convient aussi de remercier M. L. Koblinger de l'lnstitut central de recherches en physique, de Budapest, pour sa participation aux calculs de spectres, et Mile M. Berces pour son assistance technique. Les auteurs tiennent a exprimer leur reconnaissance a M. F.N. Flakus, de la Division de la surete nucleaire et de la protection de l'environnement de l'AIEA, qui a coordonne les elements de cet ouvrage. riPEJIHCJIOB HE

ypOBeHb fl03bl HeHTpOHHOrO H3JiyH6HHH npH aBapHHX B yc- JIOBHHX KPHTHHHOCTH MOKHO onpefle^HTb c Tpe6yeMOH TOHHOC- TBIO c noMombio cymecTByiomHx ,zi03 HMeTpHMecKHX cncTeM, ec^H HMeeTCH 060CH0BaHH0e npw6^H»eHHe .geftcTBHTe^bHoro cneKTpa HeHTpOHOB . B COOTBeTCTBHH C npeflJIOJKeHHSMH y^aCTHHKOB Meac^yHapo^HOH nporpaMMbi MAFAT3 no KOopflHHaqHH ncc^e- ^OBaHHH B 06jiaCTH fl03HMeTpHH HJiepHblX aBapHH, fl-p r.HHr, ^aepHbie ^a6opaTopHH B ^OK-PHBep (KaHaaa), h j-p C.MaKpa, AKa^eMHH HayK BHP, pa6oTa;iH B KanecTBe KOHcy;ibTaHTOB Hafl cocTaB^eHHeM KpaTKoro cSopHHKa no cneKTpaM HeHTpOHOB. CneKTpbi HeHTpOHOB, nepe^HcneHHbie B STOM C6opHHKe, npefl- Ha3HaHeHH B nepByio onepeflb rjih npHMeHeHHa B o6;iacTH ao3H- MeTpHH HflepHBIX aBapHH B yCJIOBHHX KpHTH^HOCTH h npe/icTaB- JIHIOT co6oft Han6o^ee B03M0»Hbie cneKTpbi, BCTpenaiomHecfl npH T3KHX aBapHHX. B flOnOJIHeHHe K HHM BKJItO^eHbl HeCKO^b- KO cneKTpoB HeHTpOHOB yTeHKH c 3HeprneH 14 MsB . HefiTpo- HH c TaKOH SHeprneH HAXOAST mnpoKoe npHMeHeHne H npegcTa- BJIHIOT OCO6HH HHTepec He TOjibKO ANA HCC/ie£OBaHHH B o6;iacTH 303 HMeTpHH HeHTpOHHOrO H3 JiyHeH Hfl, HO T3KJKe H B o6/iaCTH PAFLH06H0^0RHH H H^EPHORO CHHTE3A. ABTOPH BBIPA^AIOT Hajiex- ny, hto FLAHHBIII C6OPHHK O6^ERMHT onpeae^eHHe YPOBHH £03BI HeHTpOHHOrO H3jiyneHHH no noKa3aHHHM .neTeKTopoB, <|)HKCHpyio- MHX PA3NHHHBIE HENTPOHHBIE nOM.

Mnorne yqacTHHKH nporpaMMbi no K00p,ziHHaqHH HccjieflO- BAHHH OKa3a/IH N0M0HB B 3TOH pa6oTe, NPEFLJIOXHB xapaKTep H o6i>eM HH$opMaqHH rjih BKjnoneHHH B C6OPHHK, a TAKXE npHHHB ynacTHe B ero o6cy>KfleHHH Ha PA3;iHHHbix cOBemaHHHX, COCTO- HBHIHXCH B BA^B^IOKE (PAHQHH) B 1970 r., OKPHFLJKE (CIHA) B 1971 r., BHHHS (lOroc^aBHa) B 1973 r. H B Xapyajuie (CoeflH- HeHHOe Kopo^eBCTBo) B 1975 r. ABTOPW oco6o 6/iaro.ziapHbi r-flaM M.EpHKa (<3?paHqHn), T. .^e^a^H^b^y (CoeflHHeHHoe Kopo;ie BCTBO) J ,Hx.. A . B . Pn6coHy (CoeflHHeHHoe Kopo/ieBCTBo), $ .XeflByfly (CIHA), r.H.IIaBjiOBy (CCCP), y. Ma^BaHaTy (HH^HH), P.Me^HOHH ($paHqHH) H E .K . A . IlHiiiy (E,ziepaTHBHaH PecnyS^HKa PepMaHHH) 3a HX no;ie3Hbie 3aMeMaHM. ABTOP, NPEACTABJIHIOMHH #FLEPHBIE ;IA6OPATOPNH B ^OK-PH- Bep, 0C06EHH0 6/iaro,napeH cBoeMy KO;uiere B . T.Kpoccy, BHecmeMy HenocpeflCTBeHHbiii BKJia,n B cocTaB/ieHHe C6opHHKa, npuweM no pa3HbiM BonpocaM, H ^aBinero MHoro qeHHbix coBe- TOB npH ri0.nr0T0BKe pyKonwcH. OH TaKxe 6jiaro,ziapeH r-flaM r.Koynepy H P.B.Oc6opHy 3a HX no;ie3Hbie npefl^o»eHH5i, a TaK»e N.JI».ByHre h B.C.FpaHHepy 3a TexHHMecKyio noMomb. Bojibinajj 3acjiyra B no^ROTOBKE C6opHHKa co CTOPOHBI AKa^eMHH HayK BHP npHHa/iJie>KHT r-Hy SJ. Tlan^ajiBH, KOTOPWH c^ejiaji MHorne pacneTbi ajw cneKTpoB HeflTpoHOB h n0flr0T0BH;i flaHHbie B OKOHHaTejibHoii $opMe. Bbipa>KaeTCH Taxxe 6;iaro- flapHOCTb r-Hy JI.Ko;i6HHrepy (U;eHTpa;ibHbiH HccjieaoBaTenb- CKHH HHCTHTyT $H3HKH, ByflanefflT) , KOTOPLIH nOMOT paCCHH" TaTt cneKTpbi HeiiTpoHOB, H r-ace M.Bepcec 3a ee TexmroecKyio nOMODlb . ABTOPH BbipajKaioT CBOK) npH3HaTe;ibHOCTb FL-py $ . H . jia- Kycy (OT^e/i HflepHOH 6e30nacH0CTH h 3amHTbi OKpyacaiomeH CPE^BI MATAT3) 3a KOOPFLHHAQMO pa6oTbi HA^ STUM C6OPHHKOM. PREFACIO

En caso de accidente de criticidad, los actuales sistemas dosimetricos solo permiten estimar la dosis con la exactitud requerida si se dispone facilmente de un espectro que tenga semejanza razonable con el espectro neutronico real. Siguiendo las recomendacionesde los participantes en el Programa internacional de investigaciones coordinadas sobre dosimetrfa en caso de accidente nuclear, que ejecuta el Organismo, el Dr. H. Ing, de los Laboratorios Nucleares de Chalk River (Canada), y el Dr. S. Makra, de la Academia Hungara de Ciencias, fueron contratados como consultores para compilar este compendio de espectros neutronicos. Aunque los espectros aquf contenidos son sobre todo aplicables a la dosimetri'a en caso de accidente de criticidad y abarcan los que mas suelen presentarse en tales accidentes, se incluyen tambien varios espectros de fugas de neutrones de 14 MeV. Los neutrones de 14 MeV se utilizan a menudo y presentan particular interes no solo en dosimetri'a sino ademas en radiobiologfa y en las investigaciones sobre la fusion. Este compendio se publica con la esperanza de que facilite la determination de dosis a partir de las indicaciones de detectores expuestos a varios campos neutronicos. Muchos participantes en el Programa de investigaciones coordinadas han contribuido a este trabajo sugiriendo el tipo y el alcance de la information que debi'a insertarse y examinando esta compilation en las reuniones para coordinar las investigaciones, celebradas en Valduc (Francia) en 1970, en Oak Ridge (Estados Unidos de America) en 1971, en Vinca (Yugoslavia) en 1973, y en Harwell (Reino Unido) en 1975. Hay que agradecer en particular los utiles comentarios formulados por los Sres. M. Bricka (Francia), H.J. Delafield (Reino Unido), J.A.B. Gibson (Reino Unido), F.F. Haywood (Estados Unidos de America), G.I. Pavlov (Union Sovietica), U. Madvanath (India), R. Medioni (Francia) y E.K.A. Piesch (Republica Federal de Alemania). El Dr. H. Ing, autor procedente de los Laboratorios Nucleares de Chalk River, expresa su profundo agradecimiento a su fiel colaborador W.G. Cross, que ha participado directamente de muchas maneras en la redaction del compendio y ha prestado valioso asesoramiento al prepararse el manuscrito. Da igualmente las gracias a los Sres. G. Cowper y R.V. Osborne por sus sugerencias utiles, y a los Sres. P.J. Bunge y B.C. Greiner por su eficaz asistencia tecnica. Las contribuciones al compendio aportadas por la Academia Hungara de Ciencias se deben en gran parte al Sr. J. Palfalvi, que ha realizado la mayori'a de los calculos de espectros y preparado los datos en su forma final. Igualmente son merecedores de reconocimiento el Sr. L. Koblinger, del Instituto Central de Investigaciones Fi'sicas (Budapest), que ha ayudado a hacer los calculos espec- trales, y la Srta. M. Berces, por su asistencia tecnica. Los autores desean manifestar su gratitud al Dr. F.N. Flakus, de la Division de Seguridad Nuclear y Protection del Medio Ambiente del OIEA, por la coordination de estos trabajos. CONTENTS

INTRODUCTION 3

1.1. Scope of the compendium 4 1.2. Spectral computations 6 1.3. Dosimetric quantities derived from spectral data 7 1.4. Conventions and units 12

INTRODUCTION 14

1.1. Champ d'application du repertoire 17 1.2. Calculs de spectres 18 1.3. Quantites dosimetriques deduites des donnees des spectres 19 1.4. Conventions et unites 24

BBEJIEHHE 27

1.1. Lte^b C6opHHKa 29 1.2. PacHeTH cneKTpoB 32 1.3. ,H03HMeTpHMeCKHe BejIHHHHM, BblBOflHMbie H3 cneKTpanbHbix aaHHbix 33 1.4. YcnoBHwe o6o3HaneHHH H e^HHHUbi H3MepeHHH 39

INTRODUCCION 42

1.1. Alcance del compendio 43 1.2. Calculo de los espectros 46 1.3. Magnitudes de interes dosim6trico determinadas a partir de los datos espectrales 47 1.4. Convenciones y unidades 52 2. SPECTRA FROM SELECTED CRITICAL ASSEMBLIES 55

2.1. Uncollided fission, Jezebel, Godiva IV and Flattop spectra 56 2.2. Spectra from Health Physics Research Reactor (HPRR) 58 2.3. Spectra from Viper and IBR reactor 60

3. SPECTRA FROM CRITICAL SOLUTIONS 63

3.1. Fissile H20 solution 64

3.2. Fissile D20 solution 66

4. SPECTRA OF FISSION NEUTRONS THROUGH SHIELDING 69

4.1. Fission neutrons through H20 (spectrum far from shielding) 70

4.2. Fission neutrons through H20 (spectrum on surface of shielding) 72

4.3. Fission neutrons through D20 (spectrum far from shielding) 74

4.4. Fission neutrons through D20 (spectrum on surface of shielding) 76 4.5. Fission neutrons through graphite 78

4.6. Fission neutrons through polyethylene (CH2)n 80 4.7. Fission neutrons through polyethylene + 1% boron 82 4.8. Fission neutrons through Be 84 4.9. Fission neutrons through Al 86 4.10. Fission neutrons through concrete 88 4.11. Fission neutrons through concrete + 1 % Fe 90 4.12. Fission neutrons through concrete + 10% Fe 92 4.13. Fission neutrons through concrete + 30% Fe 94 4.14. Fission neutrons through concrete + 50% Fe 96 4.15. Comparison of spectra of fission neutrons through concrete with different concentrations of Fe (100 cm slab) 98 4.16. Fission neutrons through Fe 100 4.17. Fission neutrons through Cu 102 4.18. Fission neutrons through Pb 104 4.19. Fission neutrons through 238U 106

5. SPECTRA OF H20-M0DERATED FISSION NEUTRONS THROUGH SHIELDING 109

5.1. H20-moderated fission neutrons through Be 110

5.2. H20-moderated fission neutrons through Al 112 5.3. H20-moderated fission neutrons through concrete 114 5.4. HjO-moderated fission neutrons through Fe 116

5.5. H20-moderated fission neutrons through Cu i 118

5.6. H20-moderated fission neutrons through Pb 120

6. SPECTRA OF D2O-MODERATED FISSION NEUTRONS THROUGH SHIELDING 123

6.1. D20-moderated fission neutrons through concrete 124

6.2. D20-moderated fission neutrons through Fe 126

6.3. D20-moderated fission neutrons through Cu 128

6.4. D20-moderated fission neutrons through Pb 130

7. REFLECTED SPECTRA FROM VARIOUS MATERIALS 133

7.1. Fission neutrons reflected from H20 134 7.2. Fission neutrons reflected from graphite 136 7.3. Fission neutrons reflected from polyethylene 138 7.4. Fission neutrons reflected from polyethylene + 1% boron 140 7.5. Fission neutrons reflected from Be 142 7.6. Fission neutrons reflected from Al 144 7.7. Fission neutrons reflected from concrete 146 7.8. Fission neutrons reflected from concrete + 1% Fe 148 7.9. Fission neutrons reflected from concrete + 10% Fe 150 7.10. Fission neutrons reflected from concrete + 30% Fe 152 7.11. Fission neutrons reflected from concrete + 50% Fe 154 7.12. Fission neutrons reflected from Fe 156

7.13. H20-moderated fission neutrons reflected from Be 158

7.14. H20-moderated fission neutrons reflected from Al 160

8. NEUTRONS FROM THE D(T, 4He)n REACTION ("14-MeV" NEUTRONS) THROUGH SHIELDING 163

8.1. 14.6-MeV neutrons through H20 164 8.2. 14.5-MeV neutrons through polyethylene (perpendicular incidence) 166 8.3. 14.5-MeV neutrons through polyethylene (cosine incidence) 168 8.4. 14.7-MeV neutrons through concrete 170 8.5. 14.6-MeV neutrons through Fe 172 8.6. 14.6-MeV neutrons through Cu 174 8.7. 14.6-MeV neutrons through Pb 176 8.8. 14.6-MeV neutrons through 238U 178

9. NEUTRONS FROM THE D(T, 4He)n REACTION ("14-MeV" NEUTRONS) REFLECTED FROM VARIOUS MATERIALS 181

9.1. 14.5-MeV neutrons reflected from H20 (perpendicular incidence) 182

9.2. 14.5-MeV neutrons reflected from H20 (cosine incidence) 184 9.3. 14.5-MeV neutrons reflected from polyethylene (perpendicular incidence) 186 9.4. 14.5-MeV neutrons reflected from polyethylene (cosine incidence) 188

REFERENCES 191 1

INTRODUCTION

1.1. Scope of the compendium 1.2. Spectral computations 1.3. Dosimetric quantities derived from spectral data 1.4. Conventions and units

INTRODUCTION

1.1. Champ d'application du repertoire 1.2. Calculs de spectres 1.3. Quantites dosimetriques deduites des donnees des spectres 1.4. Conventions et unites

BBEflEHHE

1.1. Uenb C6opHHKa 1.2. PacMeTbi cneKTpoB 1.3. J(03HMeTpH1eCKHe BeJIHMHHbl, BblBOflHMbie H3 cneKTpa^BHbix aaHHbix 1.4. Yc/IOBHbie o6o3HaMeHHH H eflHHHUbl H3MepeHHH

INTRODUCCION

1.1. Alcance del compendio 1.2. Calculo de los espectros 1.3. Magnitudes de in teres dosimetrico determinadas a partir de los datos espectrales 1.4. Convenciones y unidades

1. INTRODUCTION

Determinations of neutron dose received by those exposed in criticality accidents generally require a knowledge of the neutron energy spectrum incident on the body. Such a spectrum can have a variety of shapes, depending on both the characteristics of the critical assembly and the environment of the accident. If the spectral shape is known, the reading of a single detector is sufficient for calculating the neutron dose from the detector response. The detector may be, for example, a threshold detector of the activation or damage track type, a chemical dose meter or a solid state dose meter. It may be based on neutron moderation such as albedo methods or activation of blood- in the body. Knowledge of the incident neutron spectrum also allows the calculation of dose distributions in the body in order to determine locations of maximum dose or the dose received by particular critical organs. In the intense radiation field of a critical excursion, it is generally impossible to measure the neutron spectrum with "active" detectors such as proportional counters or scintillators because of detector saturation. Also, it is difficult to reconstruct the accident under controlled (steady-state) conditions for making such measurements. Thus spectral information must generally be obtained from "passive" detectors which are in place prior to the accident. A set of passive detectors responding to different ranges of neutron energies was proposed by Hurst et al. (1956). This system contains several activation and fission detectors shielded by 10B from which an estimate of the general shape of the neutron spectrum can be obtained (see Hurst and Ritchie, 1959). However, this unit, which is rather bulky and expensive, has only been practical for area monitoring and is not suitable as a personal dose meter. Furthermore, it only provides neutron spectra above 1 keV in 4 energy groups. To obtain doses to a desired accuracy, it may be necessary to have more detailed data for certain types of spectra. Another approach to obtaining spectral information is by calculation. With modern computers, detailed calculations of leakage spectra from various critical assemblies can be performed. Using currently available data, such calculated spectra are often superior to those obtainable from experimental measurements. In several of the nuclear accidents in the past (Hurst et al., 1959; Ritchie and Eldridge, 1961; Hanford Laboratories, 1962), calculated spectra have com- plemented various dosimetric measurements made under simulated criticality conditions for determining final dose values. However, a dosimetry system which relies on an elaborate computational and experimental programme, after an acci- dent, is obviously unsatisfactory. It would not satisfy the suggested requirements (IAEA 1970) of an accident dosimetry system where dose estimates have to be obtained within an accuracy of 50% in 24 hours and 25% in 4 days. These requirements can be met by existing dosimetry systems if a reasonable approximation to the actual spectrum is readily available. A collection of neutron

3 spectra, relevant to critical excursions, is therefore of vital interest for accident dosimetry. To fulfil this need, an IAEA panel recommended the preparation of this compendium (Haywood and Poston, 1972). It is clear that a collection of spectra such as this cannot contain information appropriate for every conceivable accident. Under certain circumstances, spectral calculations or measurements may still be necessary to obtain accurate enough dose values. Nevertheless the spectra in this compendium encompass those most likely to be encountered in nuclear accidents and it is hoped that, on the basis of these data, spectra for other environ- ments can be estimated with reasonable accuracy.

1.1. Scope of the compendium

In a nuclear accident, the geometry and material composition of the critical assembly and its environment can be very complex. Neutron spectra which include multiple scattering from the room or surrounding objects would vary, not only from one assembly to the next, but also with location of various individuals for the same excursion. Fortunately, the scattered components often contribute little to the total dose (Hurst et al., 1949; Ritchie and Eldridge; 1961, Delafield and Boot, 1973). Thus, in many cases, the approximation of the actual spectrum by the leakage spectrum from the critical assembly — direct or filtered by various materials — is adequate for accident dosimetry purposes when appropriate neutron detectors are used. Although a large number of measured and calculated spectra for critical and sub-critical assemblies exist in the literature (see for instance IAEA, 1965; IAEA, 1968a; IAEA, 1968b; ENEA/IAEA, 1970; Schaeffer, 1973) few are relevant to applications in criticality dosimetry. Many have been carried out for the design of reactors or thick shielding or for checking nuclear data with specially designed source assemblies. Some are too specific in the sense that the leakage spectrum from a particular assembly is presented rather than a variety of spectra from similar assemblies — which would be more suitable for dosimetric requirements. Veselkin et al. (1970) did publish a collection of spectra of neutrons from a reactor transmitted through numerous shielding materials, but their data were also intended for reactor shielding purposes and involve only high-energy neutrons (>0.7 MeV). These results, which are not primarily for dosimetry applications, are not included in this compilation. Spectra from critical assemblies measured only with threshold detectors (e.g. Bricka et al., 1973) are also omitted because the spectral definition is too coarse. With the exception of a few spectra from selected critical assemblies, leakage spectra in this compendium have been obtained by calculation. Simple assemblies such as spheres or slabs were used in the computations. For spherical assemblies,

4 a source of fission neutrons or moderated fission neutrons was located at the centre of spheres of various materials and the leakage spectrum was determined for different sphere sizes. Sometimes, fission neutrons were distributed uniformly throughout aqueous spheres to simulate fissile solutions. For slabs, a broad beam of neutrons was allowed to impinge on one face of the slab and the spectrum of transmitted or reflected neutrons was examined. The relevance of these spectra from simple assemblies to criticality dosimetry is based on the observations (Ing and Cross 1975a, 1975b) that composition and thickness of the shielding material are much more important in determining the shape of the leakage spectrum than geometry. In fact, experience has indicated that even'for complex assemblies, such as the Viper reactor (Weale et al., 1968), the leakage spectrum can be adequately approximated by that of fission neutrons transmitted through an "effective thickness" of the moderator (Ing and Cross, 1976). Thus it is useful to have spectra for successive thicknesses of materials because one can determine dosimetric quantities (see subsection 1.3) for a par- ticular thickness by the use of interpolation and can have an indication of the uncertainty in the estimated dose arising from spectral variations. Mainly relatively thin layers of common materials are considered in this compendium because it is unlikely that large "accident" doses (> 25 rads (IAEA, 1970)) would be deceived by personnel when a critical assembly is heavily shielded. Spectra have been grouped according to accident configurations. Section 2 gives measured and calculated leakage spectra from a few selected critical assemblies in order to show the effect of composition and size of critical sources. Section 3 shows leakage spectra from fissile solutions. Sections 4 to 6 show the effect of various types of shielding on different source spectra. Section 7 presents reflected spectra from various materials. Even though reflected neutrons generally contribute only a negligible fraction of the dose in criticality accidents, spectral information on such neutrons may still be required for interpreting dose meters shielded from the direct beam (e.g. by the body or localized shielding) or for estimating spectral perturbations introduced by reflection from the body. For the latter application, the body may be replaced by a water slab 20 cm thick (Makra 1973; Palfalvi and Makra 1974, 1975). Reflected spectra from very thick slabs are not given in Section 7 because after the saturation thick- ness (~ 20 cm for hydrogenous materials and 40 cm for others), the spectral shapes do not change significantly. In Sections 8 and 9, spectra of leakage and reflected neutrons from the D(T, 4He)n reaction ("14-MeV" neutrons) through various materials are presented. Although these results are not directly relevant to criticality accidents, they were included because of their usefulness for calibrating accident (and other) dose meters. The lowest energy of many spectra in this compendium is 1 eV. This termina- tion was used because:

5 (1) Doses from neutrons below 1 eV are generally measured in accident dosimetry by Au and Au-Cd activation techniques which are well established (see e.g. ICRU Report 13, 1969). (2) Thermal fluences (as well as epithermal fluences to a lesser degree) are so dependent on neutron scattering in the immediate environment that cal- culated values, based on the leakage fluence from the critical assembly, may be grossly in error (see e.g. Hurst et al., 1959). (3) Detailed calculations of thermal neutron distributions are time-consuming using certain techniques such as Monte Carlo, and simpler treatments such as single-group approximations may be inadequate. Although thermal fluences are included when available, these values should be regarded as merely giving a rough order-of-magnitude estimate. Measured values obtained by most accident dosimetry systems should always be adopted in pre- ference to values given.

1.2. Spectral computations

All spectra (except those in Section 2) were computed using either the 05R Monte Carlo code (Coveyou et al., 1965, or as modified by Koblinger (1974)) or the MUSPALB code (Vertes, 1970) which uses the albedo matrix method. Neutron interaction data for the Monte Carlo calculations were taken from the ENDF/B III or ENDF/B IV neutron cross-section library (Drake 1970). Neutron cross-section data for the MUSPALB calculations were taken from KEDAK (Woll, 1968) and AWRE data files (Parker, 1963) compiled by the IAEA. In the Monte Carlo code, the tracing of neutron histories was performed using neutron "statistical weights" (Cashwell and Everett, 1959) to account for absorp- tion processes but "importance sampling" (Kalos, 1963) was not used. Neutrons "born" in an assembly or incident on a slab were tracked, collision by collision, until their energy was less than a chosen value (at which point they were dis- regarded) or they escaped from the assembly. The spectra of the escaping neutrons were then obtained at particular locations relative to the assembly. In the albedo matrix methods, the shield in the form of a slab — infinite in two dimensions — is divided into thin layers whose interfaces are characterized by reflection and transmission operators in matrix form. The source is planar, emitting neutrons into one surface of the slab with a cosine distribution. The equations governing the transport of the neutrons in'the medium are derived by applying the conservation principles of radiation transport to each of the thin layers. The solution of these equations by numerical technique yields leakage spectra of interest.

6 1.3. Dosimetric quantities derived from spectral data

To facilitate the application of spectral data to dosimetry, quantities of dosi- metric interest have been evaluated and included in this compendium. Associated .with each set of spectral information are the average cross-sections (a) for a number of common detectors. Not all detectors used in existing dosimetry systems are given in the list. Conspicuously absent are those which are sensitive to thermal or epithermal neutrons. These were omitted because of the uncertainty in the spectral information in this region of neutron energy and because low-energy neutrons are less important. Also included for each spectrum are the average values per unit fluence for tissue kerma (K), charged-particle dose (D), dose equivalent (D.E.) and gamma-ray dose (D7). The last three quantities are for volume element 57 of the tissue equi- valent phantom shown in Fig. 1. Doses to various locations in this phantom have been calculated by Auxier et al. (1968) for irradiations with monoenergetic neutrons. These calculations provided doses from recoiling charged-particles, doses from gamma-rays produced by the 'H(n,7)2H reaction and dose equivalents using the quality factor based on the linear energy transfer of the . The results showed that the largest doses were usually received by volume element 57. Therefore, doses to this site are relevant to accident dosimetry. In several inter- national intercomparisons of nuclear accident dosimetry systems (see, for instance, Haywood and Poston, 1972; Miric and Ubovic, 1974), kerma and doses to volume element 57 were both used in the quoting of results. The concept of dose-equivalent is of limited use in accidents when doses in excess of 25 rads have been received. The quality factor in such situations is not uniquely defined, although it is generally assumed (RBE Committee, 1963) to be between one and two. The dose-equivalent in the present compendium has been calculated using the quality factors normally adopted for . It is included in this work for the convenience of determining the dose-equivalent for those exposed to doses less than 25 rem and for whom the dose equivalent received in a criticality incident must be added to the already accumulated record. The average cross-sections (a) and dosimetric quantities were obtained by averaging excitation curves or dose curves over the various spectra (normalized to unit fluence) from 1 eV to 15 MeV. This procedure has the disadvantage that o is dependent on the fraction of neutrons below its reaction threshold. Furthermore, because the spectral shape in the low-energy region is less firmly established, a may display larger variations when this method of averaging is used (rather than averaging above the reaction threshold) for spectra obtained by experiment and calculation or by calculations of different authors. The important realization is that this variation does not imply a similar variation in the interpretation of dose measurements since the quantities of relevance to dosimetry are a/K or a/D etc., which are much less sensitive to the low-energy part of the spectrum than either

7 FIG.l. Anthropomorphic phantom of Auxier et al. (1968). Volume element 57 is in layer 3 on the surface facing the neutron beam.

o or K separately (see, for instance, Ing and Cross, 1975a or 1975b). Since it is most reasonable to average the dosimetric quantities over the entire spectrum, it is more convenient to have the cross-sections similarly treated. Values of reaction cross-sections vary somewhat with the source of the informa- tion. For calculations done at Chalk River Nuclear Laboratories (CRNL), the excitation curves for all except the 31P(n,p)31Si reaction, were taken from the work of Cross and Ing (1975). The data for 31P(n,p)31Si were taken from the compilation of Zijp et al. (1973) and fitted using the same type of functions as

8 for the other reactions. At the Central Research Institute for Physics (CRIP), the excitation curves were taken from the EANDC 95 "U" compilation (Liskien and Paulsen, 1974). These curves give average cross-sections which differ from CRNL values by less than 2%. Because the analytical expressions used by CRNL are convenient, they are given below. In these expressions, a is the cross-section in barns and E is neutron energy in MeV.

103Rh(n,n')103mRh

0.14 0.53 0.36 o(E) = 0.25 - 1 + (4E)3-5 1 + (E/0.7)10 1 + (E/1.9)8

0.39 1.17 + 1 + (E/5.4)10 1 +(E/11.5)13 n5In(n,n')USmIn

0.33 0.285 a(E) = 0.045 - ————7! + ' 1+(E/1.45)4-3 1 + (E/l 1.2)10

32S(n, p)32P

0.30 0.09 0.25 CT(E) = 0.04 + 1 + (E/15.4)8 1 + (E/5.65)25 1 + (E/3.6)7

2 2 + 0.075 e-(3.1E-7.4) + o 15e-(3.3E-14)

8E 22 4 2 8E 24 2 + 0.06 e-( - - ) + o.l 1 e-( " -5)

4E 14 2 2 + 0.12 e-( " ) + 0.08 e-(°-6E-6.6)

31P(n, p)31Si

105 a(E) = 0.030 + °- 0.065 0.070 1 + (E/14.3)9 1 + (E/5.1)18 1 + (E/2.25)14

E 3 05 26 2 9 5 2 + 0.26 e-( - - /°- ) + 0.08 e"®" - )

+ 0.05 e-(E"3-7/0-24)2 + 0.052 e"®"4-55^)2

9 211 Np( n, f)

1-43 0.82 0.43 a(E) = 2.7 1 + (E/0.57)5-3 1 + (E/7)15 1 + (E/15)40

E 2 2 2 20E 2 + 0.3 e-( " - ) +0.007 e-( -4)

233 U(n, f)

0.51 0.45 0.37 a(E) = 1.33 1 + (E/l ,5)n 1 + (E/6.4)20 1 + (E/14.1)20

-(3E-6)2 + 0.03 e

232 Th(n,f)

0.14 0.14 0.24 a(E) = 0.52 - 1 + (E/2.1)7 1 + (E/6.7)30 1 + (E/14.8)15

+ 0.1 e"(E"7-3>2 + 0.095 e"(5E"8)2

5E 10 3 2 + 0.055 e-< - - )

Although the above expressions fit selected experimental and evaluated data within specified errors at the time of publication, modifications may be necessary as better information becomes available. Because these expressions use "smoothed n step functions" of the form 1/(1 + (E/E0) ) and Gaussian functions, such modi- fications can be easily performed. Properties and advantages of smoothed step functions are discussed in the original work (Cross and Ing, 1975). Analytical expressions for kerma (K), dose to element 57 (D), dose equivalent (D.E.) and ^(n, 7)2H dose (D7) were obtained by fitting the data of Snyder (1971) and Auxier et al. (1968). These expressions for K, D, D.E. and D7 are less compact because the energy range from 1 eV to 15 MeV is divided into several intervals and analytical functions are given for each interval. In the expressions below, units of K, D, and D-y are nanoseconds/(n-cnT2) while D.E. is in nanorems/(n"cm"2). E is in MeV.

10 KERMA

4 4 X 1CT6 K = —— + 10E-45E2 10"6

0 83 2 = 2 3E0.466-0.042InE + ' 5.0 X 10" < E < 15 e(E/8 - 2.5)

Charged particle dose to element 57

D = 0.033/E0"06 10~6

= 2.8 E0-75 4 X 10~3 < E < 1.0

= 2.8 E0-4 1.0 < E < 15

Dose equivalent

D.E. = 1.15 10"6 < E < 0.01

= 39 E0-77 0.01

20 6 ~61 1 +(E/13)20 1 + (E/4)10

7 1.0

Dose to element 57 from 1H(n, y)2H

-0 0607 6 4 D7 = 0.2223 E - 10~ < E < 10~

= 0.3136 E-0,02334 1 0-4 < E < 0.25

= 0.231 E~0-277 0.25

0.685 = 0.83 1 + (E/l 1) 5

Although this mode of representation appears awkward, it is often much easier to use than the original tabulated data, especially when computers'or

11 programmable calculators are available and elaborate "fitting sub-routines" are not.

1.4. Conventions and units

All the spectra are presented in the form of fluence per unit lethargy (i.e. per unit logarithmic energy) versus neutron energy in eV. The lethargy unit is preferred because neutron spectra, when plotted as fluence per unit energy, often display a steep negative slope at lower energies on account of a roughly inverse- energy type of dependence and require many decades on the fluence axis for complete presentation. Since the lethargy unit essentially weights the fluence by the corresponding neutron energy (i.e. AN/AlnE = AN/AE), the negative slope is changed to an approximately horizontal line which is much simpler to present graphically. Spectra of fluence per unit lethargy have the further advantage that if the flux axis is linear in scale and the energy is logarithmic, then the observed area below the curve between any two energies is proportional to the total fluence for that energy interval. Under the main heading in the tabulated spectra are often found the terms "Spherical Geometry" or "Slab Geometry". These refer to the configuration for which the spectra have been obtained. (Typical spectral differences arising from geometric configurations are discussed by Ing and Cross (1975a, 1975b)). For

spherical geometry, the radius of the sphere is denoted by R0 and the fluences are generally those at a large distance (>3 R0) from various assemblies. Since the spectral shape changes appreciably with distance (R) when distances are small (see Ing and Cross, 1975a), spectra, as observed on contact with the assembly,

are also presented for certain cases. These spectra have the notation R = R0 besides the geometry information (see for instance subsection 4.2). For slab geometry, the thickness of the slab is denoted by d. The fluences given are those integrated over one surface of the slabs which are irradiated on the other side (same side for reflected spectra) by neutrons having a cosine angular distribution unless specified otherwise. All the spectra are normalized in one of three ways. If the fluence distribution is labelled as E0(E), the total area under the spectrum above 1 eV is normalized to unit fluence. If the fluence axis is labelled 4TTR2 E0(E), the spectrum is normalized to one neutron generated within a spherical critical assembly. The factor 47rR2 accounts for all neutrons escaping from the assembly surface (i.e. the detector is a spherical shell concentric with the assembly). Since neutron emission from the

sphere is symmetric, the fluence distribution at distance R (when R > R0) is obtained by dividing the values by 47rR2. If the fluence distribution is labelled as PHI(u), the spectrum is normalized to one neutron emitted from a planar source.

12 Radius (R0) of the sphere in cm

l03Rh(n, n'),03m Rh - "5ln(n, n')"Sm In • 32S(n, p)32P • Average cross- 31 31 P(n, p> Si - section in barns 237Np(n,f) • 232Th(n, f) - 238U(n, f) •

Average kerma in nanorads/(n/cm2))

Average recoil-particle dose to phantom element 57 (in nanorads/(n/cm2))

Average dose-equivalent to phantom element 57 in nanorems/(n/cm2))

Average gamma dose to phantom element 57 from neutrons greater than 1 eV incident on the body (in nanorads/(n/cm2))

FIG.2. An example showing the dosimetric quantities for the leakage spectrum from the

R0- 2 cm H^O sphere containing a fission source at the centre (data from section 4.1) The quantities were derived by averaging over the energy interval 1 eV to 15 Me V. (For slab geometry, the radius (R0) of the sphere is replaced by the slab thickness (dj. For spectra from selected critical assemblies, the names of the assemblies are given above the dosimetric quantities.)

Graphical and tabulated spectra are presented in histogram form. In the tabulations, the energy associated with a fluence value corresponds to the upper limit of the histogram interval. This energy also serves as the lower boundary of the next (higher) energy interval and so on. In the graphical presentation, spectra have been shifted vertically by indicated factors wherever necessary to avoid overlapping of lines. All distances and the dimensions of assemblies are given in cm.

13 Average cross-sections for the various reactions have been evaluated using

15 MeV 15 MeV

J a'(E) E0(E) d(ln E) J a(E)0(E)dE

_ 1eV 1eV a = 15 MeV 15 MeV

J E0(E) d(ln E) J 0(E)dE 1eV 1 eV where a(E) is given by the expression in subsection 1.2 and E0(E) is the spectrum of interest. (Note that E is in MeV units in the expressions and is in eV for the spectral information.) Similarly, average kerma (K), maximum recoil dose (D), dose equivalent (D.E.) and gamma dose produced by neutrons above 1 eV (D7) are calculated with a(E) replaced by the corresponding function. Average cross- sections (a) are given in barns. K, D and D7are in nanorads/(n cnT2) while D.E. is expressed in nanorems/(ncm~2). For ease of reference, the dosimetric quantities and units are summarized in Fig.2, which shows a typical listing taken from data for fission neutron escaping from H20 spheres (subsection 4.1).

1. INTRODUCTION

Pour determiner la dose de neutrons re?ue par les individus irradies en cas d'accident de criticite, il faut connaitre le spectre de l'energie des neutrons ayant atteint l'organisme. Ce spectre peut prendre differentes formes selon les caracte- ristiques de l'assemblage critique et le milieu dans lequel l'accident s'est produit. Si l'on connait la forme du spectre, la lecture d'un simple detecteur suffit pour calculer la dose de neutrons a partir de l'indication fournie par ce detecteur. Le detecteur peut etre, par exemple, un detecteur a seuil, qu'il s'agisse d'un detecteur par activation ou d'un detecteur de traces, un dosimetre chimique ou un dosimetre a transistors. II peut reposer sur le principe de la moderation des neutrons, comme c'est le cas pour les methodes de l'albedo, ou de l'activation du sodium present dans le sang de l'organisme. La connaissance du spectre des neutrons incidents permet aussi de calculer la distribution de la dose dans l'organisme afin de situer la dose maximale ou la dose re5ue par tel ou tel organe vital.

14 En regie generale, le phenomene de saturation du detecteur interdit l'emploi de detecteurs «actifs», comme les compteurs ou les scintillateurs proportionnels, dans le champ de rayonnements intense d'une excursion critique. II est de meme difficile de reconstituer l'accident dans des circonstances controlees (stabilisees) pour operer de'telles mesures. Aussi bien doit-on le plus souvent recueillir l'infor- mation sur les spectres a l'aide de detecteurs «passifs» en place avant que ne sur- vienne l'accident. Hurst et son equipe ont propose en 1956 un ensemble de detec- teurs passifs sensibles a diverses gammes d'energies des neutrons. Ce systeme comporte plusieurs detecteurs par activation et par fission blindes au 10B qui permettent d'evaluer la forme generale du spectre de neutrons (voir Hurst et Ritchie, 1959). Cependant, ce materiel, relativement encombrant et couteux, n'est pratiquement utilisable que pour le controle d'une zone et ne peut convenir comme dosimetre individuel. De plus, il ne fournit de spectres de neutrons qu'au dela de 1 keV dans quatre groupes d'energie. Pour mesurer des doses avec une precision suffisante, il est parfois necessaire de disposer d'informations plus detaillees pour certains types de spectres. Le calcul offre un autre moyen de connaitre les spectres. A l'aide d'ordina- teurs modernes, il est possible de calculer avec precision les spectres de fuite de divers assemblages critiques. Grace aux donnees actuellement disponibles,' ces spectres calcules sont souvent superieurs a ceux que Ton peut obtenir a l'aide de mesures experimentales. Pour plusieurs des accidents nucleaires survenus dans le passe, les spectres calcules (Hurst, 1959; Ritchie et Eldridge, 1961; Hanford Laboratories, 1962) ont permis de completer diverses mesures dosimetriques effectuees dans des conditions de criticite simulee pour determiner les valeurs de la dose finale. Cependant, un systeme dosimetrique fonde sur un programme complexe de calculs et d'expe- riences effectues apres un accident ne convient manifestement pas. II ne saurait satisfaire aux conditions que l'AIEA a propose de prescrire en 1970, selon lesquelles un systeme de dosimetrie en cas d'accident doit pouvoir fournir des evaluations de la dose avec une precision de 50% en 24 heures et de 25% en quatre jours. II est neanmoins possible de repondre a ces exigences avec les systemes dosimetriques existants dans la mesure oil Ton peut facilement connaitre le spectre effectif avec une approximation raisonnable. Des lors, l'etablissement d'une collection de spectres de neutrons se rapportant a des excursions critiques pre- sente un interet vital pour la dosimetrie des accidents. Pour repondre a ce besoin, un groupe de l'AIEA a recommande l'etablissement du present repertoire (voir Haywood et Poston, 1972). De toute evidence, la collection de spectres presentee ici ne peut contenir les renseignements necessaires pour chaque accident concevable. Dans certaines circonstances, des calculs ou des mesures de spectres peuvent demeurer necessaires si Ton veut connaitre avec assez de precision les valeurs de la dose. Neanmoins, les spectres qui font l'objet du present ouvrage sont ceux qu'il est le plus vraisemblable de rencontrer en cas d?accident nucleaire, et les auteurs

15 esperent qu'a partir de ces donnees il sera possible d'evaluer avec une precision" raisonnable les spectres pour d'autres milieux.

1.1. Champ d'application du repertoire

Dans un accident nucleaire, la geometrie et la composition materielle de l'assemblage critique et de son milieu peuvent etre tres complexes. Les spectres de neutrons qui rendent compte de la diffusion multiple provoquee par la piece ou par les objets environnants varient pour la meme excursion, non seulement d'un assemblage a l'autre mais aussi selon l'emplacement des differentes personnes presentes. Heureusement, les elements diffuses n'ajoutent souvent que peu a la dose totale (Hurst et al., 1949; Ritchie et Eldridge, 1961; Delafield et Boot, 1973). Des lors l'approximation du spectre effectif obtenue a l'aide du spectre de fuite de l'assemblage critique — direct ou filtre par divers materiaux — est souvent suffisante pour la dosimetrie des accidents si l'on emploie des detecteurs de neutrons appropries. Bien que les divers travaux publies sur cette question (AIEA, 1965; AIEA, 1968a; AIEA, 1968b; AEN/AIEA, 1970; Schaeffer, 1973, par exemple), presentent un grand nombre de spectres mesures et calcules, peu d'entre eux sont susceptibles d'etre appliques a la dosimetrie de la criticite. En effet, la plupart ont ete etablis pour la conception de reacteurs ou de blindages epais. ou pour verifier des constantes nucleaires a l'aide de sources consistant en assemblages specialement COIKJUS. Certains de ces spectres sont trop particuliers en ce sens que la presentation porte sur le spectre de fuite correspondant a un assemblage donne et non sur une variete de spectres d'assemblages similaires — ce qui repondrait mieux aux exigences de la dosimetrie. Veselkin et al. ont publie, en 1970, une collection de spectres de neutrons emis par un reacteur et transmis a travers plusieurs materiaux de blindage mais il s'agissait la aussi de travaux concernant les blindages de reacteur et les resultats ne portent que sur des neutrons de haute energie (>0,7 MeV). N'etant pas directement applicables a la dosi- metric, ils ne sont d'ailleurs pas repris dans la presente compilation. De meme, ont ete omis les spectres d'assemblages critiques mesures a l'aide d'un detecteur a seuil (Bricka et al., 1973, par exemple) car la definition des spectres est trop grossiere. A l'exception de quelques spectres d'assemblages critiques selectionnes, les spectres de fuite reunis ici ont ete obtenus par calcul. Des assemblages simples — spheres ou plaques — ont ete utilises pour les calculs. Pour les assemblages spheriques, une source de neutrons de fission ou de neutrons de fission moderes a ete placee au centre de spheres en materiaux divers et l'on a deter- mine le spectre de fuite pour des spheres de differentes dimensions. Dans certains cas, des neutrons de fission ont ete distribues uniformement dans des spheres aqueuses pour simuler des solutions fissiles. Pour les plaques, on a laisse rebondir un large

16 faisceau de neutrons sur l'une des faces de la plaque et Ton a examine le spectre des neutrons transmis ou reflechis. L'interet de ces spectres d'assemblages simples pour la dosimetric de la . criticite se fonde sur les observations (Ing et Cross, 1975a, 1975b) qui ont con- duit a constater que la composition et l'epaisseur du materiau de blindage sont beaucoup plus importantes que la geometrie pour determiner la forme du spectre de fuite. En realite l'experience prouve que, meme dans le cas d'assemblages complexes tels que le reacteur Viper (Weale et al., 1968), on obtient une approxi- mation satisfaisante du spectre de fuite a partir de celui des neutrons de Fission transmis a travers une «epaisseur efficace» du moderateur (Ing et Cross, 1976). II est des lors utile de disposer de spectres pour les differentes epaisseurs successives des materiaux puisque Ton peut determiner, par interpolation, les quantites dosi- metriques (voir 1.3) pour une epaisseur donnee et que l'on peut avoir une indica- tion de l'incertitude quant a la dose estimee, resultant des variations du spectre. Dans le present ouvrage, on s'est essentiellement interesse a des couches relativement minces de materiaux courants, attendu qu'il est peu probable que le personnel revive de fortes doses «accidentelles» (>25 rads (AIEA, 1970)) lorsqu'un assemblage critique est fortement blinde. Les spectres ont ete regroupes selon les caracteristiques de l'accident. A la section 2 sont donnes les spectres de fuite mesures et calcules de quelques assem- blages critiques choisis dans le but de mettre en evidence l'influence de la com- position et de la taille des sources critiques. La section 3 concerne les spectres de fuite de solutions fissiles. Les sections 4 a 6 sont consacrees a l'effet des divers types de blindage sur les spectres de differentes sources. < La section 7 presente les spectres de neutrons reflechis par divers materiaux. Bien qu'en cas d'accident de criticite les neutrons reflechis n'aggravent qu'a peine la dose, il peut etre neanmoins necessaire de connaitre les spectres de ces neutrons pour interpreter les indications des dosimetres que le faisceau n'atteint pas directe- ment, en raison d'un ecran (qui peut etre le corps humain ou un blindage local, par exemple) ou pour evaluer les perturbations de spectres resultant de la reflexion causee par la presence humaine. Pour cette derniere application, la personne peut etre remplacee par une plaque d'eau d'une epaisseur de 20 cm (Makra, 1973; Palfalvi et Makra, 1974, 1975). II n'est pas tenu compte, a la section 7, des spectres reflechis par des plaques tres epaisses car, au-dela de l'epaisseur de saturation (20 cm environ pour les materiaux hydrogenes, et 40 cm pour les autres, la forme des spectres ne se modifie pas notablement. Les sections 8 et 9 sont consacrees aux spectres de fuite et aux spectres de neutrons reflechis (neutrons de 14 MeV) provenant de la reaction D(T, 4He)n, a travers divers materiaux. Bien que ces resultats ne concernent pas directement les accidents de criticite, on a juge bon de les faire figurer en raison de leur utilite pour l'etalonnage des dosimetres d'accident (et des autres dosimetres). L'energie la plus basse de nombreux spectres analyses dans le present repertoire est de 1 eV. Cette limite a ete choisie pour les motifs suivants:

17 1) Les doses dues aux neutrons d'une energie inferieure a 1 eV sont generale- ment mesurees en dosimetrie des accidents au moyen des techniques d'activation de Au et de Au-Cd, qui ont fait leurs preuves (voir, par exemple, le rapport 13 de la Commission internationale des unites et mesures radiologiques (CIUMR) 1969). 2) Les fluences thermiques (et a un moindre degre les fluences epithermiques) sont si etroitement liees a la diffusion neutronique dans l'environnement immediat que les valeurs calculees, fondees sur la fluence de fuite de l'assemblage critique, peuvent comporter une forte marge d'erreur (voir, par exemple, Hurst et al., 1959). 3) Les calculs detailles des distributions de neutrons thermiques prennent beaucoup de temps avec des techniques comme celle de Monte Carlo, et des methodes plus simples, comme celles des approximations a un groupe, peuvent n'etre pas suffisantes.

Bien que les fluences thermiques aient ete indiquees lorsqu'elles etaient connues, on ne les considere que comme des valeurs donnant un ordre de grandeur tres approximatif. Les valeurs mesurees obtenues par la plupart des systemes de dosi- metrie des accidents doivent toujours etre adoptees de preference a des valeurs qui sont donnees.

1.2. Calculs de spectres

Tous les spectres (a l'exception de ceux de la section 2) ont ete calcules par application, soit du code 05R de Monte Carlo (Coveyou et al., 1965), ou de la version modifiee de Koblinger (1974), soit du code MUSPALB (Vertes, 1970), fonde sur la methode de la matrice albedo. Les donnees concernant l'interaction des neutrons pour les calculs empruntant la methode de Monte Carlo ont ete extraites de la documentation ENDF/B III ou ENDF/B IV (Drake, 1970), sur la section neutronique efficace. Les donnees sur la section neutronique efficace pour les calculs selon la methode MUSPALB ont ete extraites des dossiers KEDAK (Woll, 1968) et AWRE (Parker, 1963) constitues par l'AIEA. Dans le code de Monte Carlo, on a suivi la vie des neutrons a l'aide des «poids statistiques» des neutrons (Cashwell et Everett, 1959) pour rendre compte des processus d'absorption, mais sans recourir a d'echantillonnage par importance relative» (Kalos, 1963). Les neutrons «nes» dans un assemblage ou rencontrant une plaque ont ete suivis, collision apres collision, jusqu'a ce que leur energie tombe au-dessous d'une valeur determinee.(stade auquel ils ont cesse d'etre observes) ou jusqu'a ce qu'ils s'echappent de l'assemblage. Les spectres des neutrons de fuite ont ete obtenus a certains emplacements particuliers par rapport a l'assemblage. Dans la methode de la matrice albedo, l'ecran en forme de plaque — infinie dans deux dimensions — est divise en couches minces dont les interfaces sont caracterisees par des operateurs de reflexion et de transmission sous forme de matrice. La source est plane et emet des neutrons qui penetrent l'une des faces de la plaque

18 suivant une distribution sinusoi'dale. Les equations definissant le transport des neutrons dans le milieu s'obtiennent en appliquant les principes de conservation du transport des rayonnements a chacune des couches minces. La solution de ces equations par la technique numerique donne des spectres de fuite interessants.

1.3. Quantites dosimetriques deduites des donnees des spectres

Pour faciliter l'application a la dosimetrie des donnees fournies par les spectres, nous avons evalue et fait figurer dans le present repertoire des quantites presentant un interet dosimetrique. Les sections efficaces moyennes (a) pour un certain nombre de detecteurs courants sont indiquees en regard de chaque serie d'informa- tion sur les spectres. La liste ne contient pas tous les detecteurs utilises dans les systemes de dosimetrie existants. L'omission la plus remarquable est celle des detecteurs sensibles aux neutrons thermiques ou epithermiques. II n'en a pas ete tenu compte en raison de l'incertitude des indications fournies par les spectres dans cette region de l'energie des neutrons et parce que les neutrons de basse energie sont moins importants. Pour chaque spectre, figurent egalement les valeurs moyennes par unite de fluence du kerma (K) du tissu, de la dose due aux particules chargees (D), de la dose equivalente (DE) et de la-dose due aux rayons gamma (D7). Ces trois der- nieres quantites concernent l'element de volume 57 du fantome equivalent au tissu decrit a la figure 1. Les doses aux divers emplacements de ce fantome ont ete calculees par Auxier et al. (1968) pour des irradiations par des neutrons mono- energetiques. Ces calculs ont fait connaitre les doses provenant de particules de recul chargees, les doses provenant de rayons gamma produits par la reaction 'H(n, 7)2H et les doses equivalentes en utilisant le facteur de qualite fonde sur le transfert lineique d'energie du rayonnement ionisant. Les resultats ont montre que c'est l'element de volume 57 qui habituellement re?oit la plus forte dose. Les doses a cet emplacement interessent done la dosimetrie des accidents. Dans plusieurs comparaisons internationales de systemes de dosimetrie des accidents nucleaires (voir, par exemple, Haywood et Poston, 1972; Miric et Ubovic, 1974), le kerma et les doses a l'element de volume 57 ont ete utilises l'un et l'autre dans l'enonce des resultats. La notion de dose equivalente n'est guere utile dans les cas d'accidents ou des doses superieures a 25 rads ont ete re§ues. Le facteur de qualite dans de telles situations n'est pas uniquement defini comme etant compris entre un et deux, bien qu'il soit cense l'etre en general (Comite RBE, 1963). Dans la pre- sente etude, la dose equivalente a ete calculee en utilisant les facteurs de qualite normalement adoptes pour la radioprotection. II en est fait mention a l'effet de permettre de determiner la dose equivalente pour des sujets exposes a des doses inferieures a 25 rems et pour lesquels il faut ajouter la dose equivalente re$ue en cas d'incident de criticite aux doses deja re?ues precedemment.

19 FIG.l. Fantdme anthropomorphique de Auxier et al. (1968). L'element de volume 57 se trouve dans la couche 3 sur la surface orientee vers le faisceau de neutrons.

Les sections efficaces moyennes (a) et les quantites dosimetriques ont ete obtenues en etablissant la moyenne des courbes d'excitation ou des courbes de dose pour les divers spectres (normalises a l'unite de fluence) de 1 eV a 15 MeV. L'inconvenient de cette methode est que 0 depend de la fraction de neutrons inferieure a son seuil de reaction. En outre, attendu que la forme du spectre dans la region de basse energie est plus imprecise, a peut presenter des variations plus importantes lorsque Ton utilise ce mode de calcul des moyennes (au lieu de cal- culer les moyerines au-dessus du seuil de reaction) pour des spectres obtenus par

20 l'experimentation et le calcul ou par des calculs effectues par des auteurs diffe- rents. Le point essentiel a retenir est que cette variation n'implique pas une varia- tion analogue dans Interpretation des mesures de la dose puisque les quantites interessantes pour la dosimetrie sont CT/K OU A/D, etc., qui sont beaucoup moins sensibles a la partie du spectre concernant la basse energie que a ou K consideres separement (voir, par exemple, Ing et Cross, 1975a ou 1975b). Etant donne que le plus raisonnable est d'effectuer la moyenne des quantites dosimetriques sur l'ensemble du spectre, il est plus pratique de proceder de meme pour les sections efficaces. Les valeurs des sections efficaces de reaction varient sensiblement selon la source d'information. Pour les calculs operes aux Laboratoires nucleaires de Chalk River (LNCR), les courbes d'excitation ont ete etablies pour toutes les reactions, a l'exception de la reaction 31P(n, p)31Si, a partir des travaux de Cross et Ing (1975). Les donnees relatives a 31P(n, p)31Si ont ete tirees de la compilation de Zijp et al. (1973) et adaptees par l'emploi du meme type de fonction que pour les autres reactions. A l'lnstitut central de recherches en physique les courbes d'excitation ont ete tirees de la compilation EANDC 95 "U" (Liskien et Paulsen, 1974). Ces courbes donnent des sections efficaces moyennes qui different de moins de 2% des valeurs du LNCR. Les expressions analytiques employees au LNCR sont reproduces ci-apres en raison de leur commodite. Dans ces expres- sions, a represente la section efficace exprimee en barns, et E l'energie neutro- nique exprimee en MeV.

l03Rh(n,n')103mRh

0,14 0,53 0,36 a(E) = 0,25 - 1 + (4E)3'5 1 + (E/0,7)10 1 +(E/1,9)8

0,39 1,17 + 1 + (E/5,4)10 1 +(E/11,5)13

i5In(n, n')n5mIn

0,33 0,285 a(E) = 0,045 • 1 + (E/1,45)4'3 1 + (E/l 1,2)'

21 32S(n, p)32P

0,30 0,09 0,25 a(E) = 0,04 +- 1 + (E/15,4)8 1 + (E/5,65)25 1 + (E/3,6)7

2 2 + 0,075 e-(3,lE-7,4) + 0)j 5 e-(3,3E- 14)

8E 22 4 2 8E 24 2 + 0,06 e-( " . ) + 0,11 e-( ~ .5)

4E 14 2 2 + 0,12 e-< " > + 0,08 e-(°.6E-6,6)

31 Pin, p)3lSi

CT(E) = 0,030 + 1 + (E/14,3)9 1 + (E/5,1)18 1 + (E/2,25)14

E 3 2 9 2 + 0,26 e-( " .°5/°.26) + o,08 e^" ^

2 + 0,05 + 0)052 e-(E-4,55/0,45)

231 Np( n, f)

1,43 0,82 0,43 a(E) = 2,7 - 1 + (E/0,57)5'3 1 + (E/7)16 1 + (E/15)40

2 2 2 2 + 0,3 e-®" ' ) + 0,007 e-(20E-4)

233U(n,f)

0,51 0,45 0,37 a(E) =1,33- 1 + (E/l,5)n 1 + (E/6,4)20 1 + (E/14,1)20

-(3E-6)2 + 0,03 e

22 232 Th( n, f)

0,14 0,14 0,24 CT(E) = 0,52 - 1 + (E/2,1)7 1 + (E/6,7)330 0 1+(E/14,8)1 5

+ 0,1 e-(E-7^2 + 0,095 e"(5E"8)2

+ 0,055 e-(5E"1(W

Bien que les expressions ci-dessus correspondent a un choix de donnees experimentales et chiffrees dans la limite des marges d'erreurs indiquees au moment de leur publication, certaines modifications peuvent s'averer necessaires a mesure que Ton dispose d'informations plus sures. Ces expressions faisant appel a des n «fonctions en escalier lissees» de la forme 1/(1 + (E/E0) ) et a des fonctions gaussiennes, ces modifications sont faciles a apporter. Les caracteristiques et les avantages des fonctions en escalier lissees sont analysees dans l'ouvrage initial (Cross et Ing, 1975). Les expressions analytiques pour le kerma (K), la dose a l'element 57 (D), la dose equivalente (DE) et la dose 'H(n,7)2H(D7) ont ete obtenues par ajuste- ment des donnees de Snyder (1971) et de Auxier et al. (1968). Ces expressions pour K, D, DE et D7 sont moins concises car la gamme des energies allant de 1 eV a 15 MeV est divisee en plusieurs intervalles et des fonctions analytiques sont donnees pour chaque intervalle. Dans les expressions ci-apres, les unites de K, D, et D7 sont exprimees en nrad/(n/cm2) tandis que DE est exprime en nrem/(n/cm2). E est exprime en MeV.

KERMA

10"6 < E < 5,0 X 10"2

0 83 2 2)3E0,466-0,042 InE + ' 5,0 X 10" < E < 15 E(.B/O-2,5)

23 Dose a I'element 57 due aux particules chargees

D =-0,033/E°>06 1(T6

= 2,8 E0'75 4 X 1CT3 < E < 1,0

= 2,8 E0'4 1,0 < E < 15

Dose equivalente

DE =1,15 10~6 < E < 0,01

= 39 E°>77 0,01

20 6 = 61 1 + (E/13)20 1 + (E/4)10

4 1,0

Dose a I'element 57 due a la reaction H(n, y)2H

-0 0607 6 4 D7 = 0,2223 E ' 1 0" < E < 10"

= 0,3136 E-0'0?334 10~4 < E < 0,25

= 0,231 E"0'277 0.25

0,685 0,83 1 + (E/l l)7'2 5 < E < 15

Bien que ce mode de representation puisse sembler rebutant, il est souvent plus pratique que les tableaux de donnees originaux, notamment si l'on dispose d'ordinateurs ou de calculateurs programmables, et en l'absence de «sous-programmes d'ajustement» complexes.

1.4. Conventions et unites

Tous les spectres sont presentes sous forme de fluence par unite de lethargie (c'est-a-dire par unite d'energie logarithmique), en fonction de l'energie neutro- nique exprimee en eV. On a retenu l'unite de lethargie car lorsqu'on represente

24 les spectres de neutrons par la fluence par unite d'energie, ces spectres se carac- terisent souvent par une forte pente negative aux energies inferieures en raison d'un type de dependance variant, grosso modo, inversement a l'energie, et neces- sitent un grand nombre d'unites decimales sur l'axe de la fluence si Ton veut les representer en totalite. Attendu que l'unite de lethargie pondere essentiellement la fluence par l'energie neutronique correspondante (c'est-a-dire: AN/A In E = E AN/AE), la pente negative devient une ligne quasi-horizontale dont la repre- sentation graphique est beaucoup plus aisee. Les spectres de fluence par unite de lethargie sont egalement preferables dans la mesure ou, si l'axe de flux est d'echelle lineaire tandis que l'energie est logarithmique, la zone observee en dessous de la courbe entre deux energies donnees est proportionnelle a la fluence totale pour cet intervalle d'energie. On lira, sous le titre principal de la plupart des tableaux de spectres, les expressions ((geometrie spherique» ou ((geometrie de plaque». Elles precisent la configuration pour laquelle les spectres ont ete obtenus. (Les differences de spectres typiques dues aux configurations geometriques ont ete etudiees par Ing et Cross (1975a, 1975b).) Pour la geometrie spherique, le rayon de la sphere est designe par le.symbole R0 et les fluences sont generalement celles que l'on observe a une grande distance (>3 R0) des divers assemblages. Attendu que la forme du spectre varie notablement selon la distance (R) lorsque les distances sont courtes (voir Ing et Cross, 1975a), les spectres, tels qu'ils sont observes au contact de l'assemblage, sont aussi representes pour certains cas. Ces spectres sont designes par la notation R = R0 portee a la suite des informations relatives a la geometrie (voir, par exemple, 4.2). Pour la geometrie de plaque, l'epaisseur de la plaque est indiquee par le symbole d. Les fluences donnees sont celles qui penetrent sur une face des plaques, irradiees sur l'autre face (la meme que pour les spectres reflechis) par des neutrons ayant, sauf indication contraire, une distribution angulaire sinusoi'dale. Tous les spectres sont normalises selon l'une des trois methodes ci-dessous: si la distribution de fluence est indiquee comme etant E0(E), toute la zone sous le spectre au-dessus de 1 eV est normalisee a l'unite de fluence; si l'axe de la fluence est indique par l'expression 47rR2 E0(E), le spectre est normalise a un neutron ne dans un assemblage critique spherique. Le facteur 47tR2 vaut pour tous les neutrons s'echappant de la surface de l'assemblage (c'est-a-dire que le detecteur est une enveloppe spherique de meme centre que l'assemblage). L'emission de neutrons par la sphere etant symetrique, la distribution de fluence 2 a une distance R (quand R»R0) s'obtient en divisant les valeurs par 47rR . Si la distribution de fluence est indiquee par la formule PHI(u), le spectre est normalise a un neutron emis par une source plane. Les spectres exprimes par des graphiques et des tableaux sont presentes sous la forme d'histogrammes. Dans les tableaux, l'energie associee a une valeur de

25 Rayon (R0) de la sphere (cm)

l03Rh(n, n')103m Rh • 115 ln(n, n')"Sm In - 32S(n, p)32P •

31 3 Section efficace P(n, p) 'Si • moyenne (barns) 237Np(n, f) • 232Th(n, f) • 238U(n, f) •

Kerma moyen (nrad/(n/cm2))

Dose moyenne a I'element 57 du fantome due aux particules de recul (nrad/(n/cm2))

Dose equivalente moyenne a I'element 57 du fantome (nrem/(n/cm2))

Dose gamma moyenne a I'element 57 du fantome provenant de neutrons de plus de 1 eV frappant le corps (nrad/(n/cm2))

FIG.2. Exemple faisant apparaitre les quantites dosimetriques pour le spectre de fuite de la sphere de H2O, de R0 = 2 cm, contenant une source a fission en son centre (caracteristiques tirees de 4.1). Les quantites ont ete obtenues en faisant la moyenne de I'intervalle d'energie de 1 eV a 15 MeV. Pour la geometrie de plaque, le rayon (R0) de la sphere est remplace par I'epaisseur de la plaque (d). Pour les spectres de certains assemblages critiques choisis, le nom de I'assemblage figure au-dessus des quantites dosimetriques.

fluence correspond a la limite superieure de l'intervalle de l'histogramme. Cette energie est aussi la limite inferieure de l'intervalle energetique suivant (superieur), et ainsi de suite. Dans la representation graphique, les spectres ont ete deplaces verticalement par l'application des facteurs indiques chaque fois que cette operation s'imposait pour eviter le chevauchement des lignes. Toutes les distances et toutes les dimensions des assemblages sont exprimees en centimetres.

26 Les sections efficaces moyennes pour les diverses reactions ont ete evaluees en utilisant la formule:

15 MeV 15 MeV

J a(E) E0(E) d(ln E) J a(E)0(E)dE

_ 1eV 1eV a = 15 MeV 15 MeV

J E0(E)d(lnE) J 0(E) dE

1 eV 1eV dans laquelle a(E) est defini par l'expression de 1.2 et E0(E) est le spectre recherche. (On notera que E est exprime en MeV dans les formules et en eV dans les donnees relatives aux spectres. De meme, le kerma moyen (K), la dose maximale de recul (D), la dose equivalente (DE) et la dose gamma produite par des neutrons superieurs a 1 eV (D7) sont calcules en rempla?ant a(E) par la fonction correspondante. Les sections efficaces moyennes (a) sont exprimees en barns. K, D et D7 sont exprimes en nrad/(n/cm2), tandis que DE est exprime en nrem/(n/cm2). Pour plus de commodite, les quantites et les unites dosimetriques sont resumees a la figure 2, qui presente un extrait caracteristique d'une liste concer- nant les donnees relatives aux neutrons de fission s'echappant de spheres de

H20 (voir 4.1).

1 . BBEflEHHE

Rjih onpeae/ieHHH ypoBHH fl03i>I HeHTpoHHoro H3JiyHeHHH, B03HHKAIOMERO npn ABAPWAX B YC^OBHNX KPHTHMHOCTH, O6BIHHO Tpe6yeTca 3HaHHe SHepreTHqecKoro cneKTpa HeflTpoHOB, na^a- IOIUHX Ha rejio ne/iOBeKa. TaKOH cneKTp MoaceT HMeTb MHoroo6- pa3HI>ie (fjOpMbl H 3 3BHCHT KSK OT napaMeTpOB KpHTHMeCKOH C6OPKH, TSK H OT xapaKTepwcTHKH oicpyHcaiomeH cpeflbi npw aBa- pHH. B TOM c^yqae, xor^a opMa cneKTpa H3BecTHa, noxasa- HHH oflHoro fleTeKxopa 6biBaioT flocTaToqHbi una pacieTa ypoBHH fl03bl HeHTpOHHOrO H3JiyMeHHH, 33$HKCHpOBaHHOTO fleTeKTOpOM .

27 JLETEKTOP MOSEX NPEACTABJIHTB CO6OH, HanpHMep, noporoBbifl aKTHBaqHOHHBIH fleTeKTOp HAH fleTeKTOp CJieflOB pa3pymeHHH, R03HMeTp XHMHNECKORO HJIH n0jiynp0B0,HHHK0B0r0 Tuna. ReU- CTBHe fleTeKTopa MoaceT 6biTb TaK5Ke ocHOBaHO Ha 3aMe,ziJieHHH HEFTTPOHOB, KAK HanpHMep, MeTO^AX a/ib6e,zio HJIH AKTHBAQHH Ha- TPHH B KPOBH nejiOBeKa. 3HaHHe 3HepreTH^ecKoro cneKTpa HeHxpoHOB, naflaiomnx Ha Tejio qe^OBeKa, TaKxe n03B0ji5ieT paccMHTaTb pacnpeaejieHHe fl03bi HeHTp0HH0r0 H3JiyHeHHH no Tejiy H onpeaejiHTb MecTa pacnpeaejieHHa MaKCHMajibHOH ^03bi HJIH ^03BI, NOTIYNEHHOH OTJIE JIBHBIMH KPHTHHBCKHMH opraHaMH. B HHTeHCHBHOM paflHaqHOHHOM none B yCJIOBHSX KpHTHMHO- CTH 06bIHH0 HeB03M0)KH0 H3MepHTb CneKTp HeHTpOHOB C nOMO" mbio TaK Ha3bIBaeMbIX "aKTHBHUX" fleTeKTOpOB, T3KHX KaK npo- IlOpiJHOHajIbHiie CMeTHHKH HJIH C UHHT HJIJIJJTOpbl , BBH^y HaCbime- HHH T3KHX fleTeKTOpOB. TpyflHO TaK»e BOCnpOH3BeCTH aBapHH- Hyio CHTyaqHio .HJIJI npoBe^eHHH TaKHX H3MepeHHH npn KOHTPOJTH- pyeMbix CTaqHOHapHbix yc JIOBHHX. TaKHM 06PA30M, HH$opMa- qmo o cneKTpe HeHTpoHOB OGMHHO cjie^yeT nojiy^aTb c noMombio "naccHBHbix" ^eTeKTopOB, ycTaHaBjiHBaeMbix Ha MecTax ,ao aBa- PHHHOH cHTyaqHH. B 1956 r. XepcT H ap. npe,zuio>KHjiH ncnojib- 30BaTb rpynny naccHBHbix aeTeKTopoB, qyBCTBHTejibHbix K pa3- JIHMHBL M ypOBHHM SHeprHH HeHTpOHOB. 0Ta CHCTeMa COCTOHT H3 HECKOJIBKHX aKTHBaUHOHHblX fleTeKTOpOB H CHeTHHKOB fle^e- HHa, SKpaHHpoBaHHbix 6opoM-10, HTO n03B0^aeT nOAynaTboqeH- Ky oSiuen $opMbi cneKTpa HeHTpOHOB (CM. XepcT H PHTHH, 1959). OflHaKO TaKaa yciaHOBKa - flOCTaiOMHO rp0M03flKaa H floporocToamaa — HBAaeTCH npHMeHHMOH TOjibKO npn a03HMerpH- MecKOM KOHTPOJIE njioma^H H YAO6HA KAK cpe/icTBO ao3HMeTpn- MecKOTO KOHTpOTis MejiOBeKa. Eojiee ioro, OHa BbiflaeT jiHiiib cneKTpbi HeHTpOHOB c SHeprnen 6ojiee 1 KSB no neTbipeM 3Hep- reTHMecKHM rpynnaM. IIosTOMy j\rh onpeflejieHHH 30311 H3/iy- qeHHS c ace/iaeMOH TOHHOCTbio Heo6xoflHMO HMeTb 6o^bme nofl- PO6HBIX AAHHBIX NNA. HEKOTOPBIX BH^OB cneKTpOB HEHTPOHOB. ^pyrHM no^xoflOM win nojiyqeHHH HHiJiopMauHH o cneKTpe HeHTpOHOB HB^aeTca MeTOfl pacneTa. C noMombio coBpeMeHHOH BblHHCJIHTejIbHOH TeXHHKH MOJKHO npOH3BOflHTb n0flp06Hbie pac~ HeTbl CneKTpOB yTeHKH HeHTpOHOB C pa3 JIHMHblX KpHTHMeCKHX c6opoK. Hcnojib3yH HMeiomnecH B HacToamee BpeMs aaHHbie, TaK He pac^eTHbie cneKTpti nacTO OKa3bi BaioTCH HaMHoro Jiynme SKcnepHMeHTajibHHX H3MepeHHH. B HecKOjibKHx cjiyqajix HflepHbix aBapHH, HMeBinHX MecTO B nponuiOM (XepcT H ,ap., 1959; PHTHH H 1961; XeH- $op4CKHe jia6opaTopHH, 1962), pacvieTHbie cneKTpbi aonojiHHjiH

28 pa3JIHMHBIe ,go3HMeTpHHecKHe H3MepeHHH, npoBe^EHHTIE B HcKyc- CTB6HHO C03AaHHbIX yCJIOBHHX KpHTHMHOCTH B UejIflX OnpeflejieHHH ypOBHeH MaKCHMajIbHO flOnyCTHMOH ,ZI03bI HeHTpOHHOrO H3JiyHe- HHH . OflHaKO, CHCT6M3 a03HMeTpHH, KOTOpaH OCHOBaHa Ha CJ10~ 5KHOH BblHHCJIHTejIbHO~3KCnepHMeHTajIbHOH npOTpaMMe, npOBOJH- MOH nocne aBapHH, HBNNETCH HBHO HeyflOBjieTBOpHTenbHOH . Ta- Kaa CHCTeMa He MOXET OTBenaTb Tpe6oBaHHHM (MATAT3,1970), NPEFLIHBMEMHM K cncTeMe ^03HMETPMI H/iepHOH aBapHH, ryie ypoBHh p.03 HeHTpOHHOrO H3^yMeHHji ao^>KHbi 6biTb nonyneHbi ne- pe3 CyTKH C TOHHOCTbK) flO 50% H Hepe3 4 flHH — flO 25%. HCNO/IB3YH cymecTByiomHe CHCTEMBI AO3HMEIPHH, MOSHO o6ecneqHTb STH TPE6OBAHH5I npn HA/IHMHH 060CH0BAHH0R0 npn- 6^H»EHHH K FLEFICTBHTEJIBHOMY cneKTpy HEHTPOHOB. ILOSTOMY cSopHHK no CneKTpaM HeHTpOHOB, OTHOCHMHXCH K YCNOBMM KpHTHHHOCTH, NPEFLCTABJIHET 60JIbIU0H HHTepec ana ,H03HMeTpHH ABAPHH. Jlna BBINOJIHEHHH STOH 3A,AAMH rpynna CNEUHA/IHCTOB MATAT3 PEKOMEH^OBA^A N0FLR0T0BHTB C6OPHHK no cneKTpaM HEHTPOHOB (B XeiiByae H IlocTOHe, 1972). BnojiHe IIOHHTHO, MTO TAKOTO Tuna C6OPHHK He MO»eT co^ep»aTb HHifiopMaiiHio, npH- MeHHMyio ana KAWORO B03M0XH0R0 aBapHHHoro C^YNAN. B p«- FLE c/iynaeB MOXET NOABHTBCS HEO6XO,NHMOCTB NPOBEFLEHHH cne- UHAJIBHBIX PAC^ETOB HJIH H3 MEPEHHH B UEJIAX NOJIYMEHHH aocTa- TOHHO TOHHOTO ypOBHfl fl03bl HeHTpOHHOrO H3JIYHEHHH . TeM He MeHee, B JAHHOM C6opHHKe co6paHbi cneKTpbi HEHTPOHOB, KOTO- pbie MoryT BEPOHTHEE Bcero BCTPETHTBCH npn HflepHbix aBapH- HX. ABTOPH BbipamaioT HAJEWY, HTO HCNONB3YA STH aaHHbie, MOJKHO ONPE^E^HTB c AOCTATOHHOH TOHHOCTBK) cneKTpw ana apy~ THX OKpyacaromHx cpea.

1.1. I^E/IB C6opHHKa reoMeipHH H cocTaB Maiepnajia KpHTHnecKOH cSopKH, a TAKXE OKpy»aioinHe ee yc/iOBHH npn H^epHOH aBapHH MoryT 6biTb OMeHb C^O»HbIMH. npH OflHHX H TeX »e yCJIOBHHX KpHTHHHOCTH cneKTpbi HeHTpOHOB, BK^ronaiomHe MHOTOKpaTHbie paccenHHH HeHTpOHOB OT CTeH nOMemeHHH HJIH OKpyacaiOmHX 06l>eKT0B, 6y- flyT pa3^HyaTbca He TOjibKO OT pacno;io5KeHHH caMHX C6OPOK,HO TAXATEH OT Haxo»aeHHH OT^e^bHbix njonePi. K cnacTbio, pacceHHHbie KOMnOHeHTbl HACTO BHOCHT He3Ha^HTe^bHbIH BKJiafl B o6mHH ypo- BeHb fl03bi (XepcT H ap., 1949: PHTMH H 1961; fle/ia-

H ByT, 1973). TaKHM 06pa30M, NPH6^H»EHHE fleficTBH- TE^BHORO cneKTpa K cneKTpy HEHTPOHOB yTe^KH KPHTHNECKOH C6OPKH - npHMoro HJIH npoijiHJibTpoBaHHoro QEPE3 PA3;IH*IHBIE MaTepnajibi — BO MHOTHX CYIY^AAX SB^SETCS AOCTAXO^HBIM ana

29 qejiefi fl03HMeipHH aBapHH, Kor^a Hcno;ib3yioTCH cooTBeTCTByio- IUHe ^eTeKTOpbl HeHTpOHOB. HecMOTpa Ha 6o;ibiiioe KOjiH^ecTBO 0ny6;iHK0BaHHbix cneK- TpOB, nojiyqeHHbix 3KcnepHMeHTajibHbiM H pacneTHbiM METOJAMH, flJIH KpHTHHeCKHX H nOflKpHTHHeCKHX C 60p0K (HanpHMep, CM. MATAT3, 1965; MATAT3, 1968a; MATAT3, 1968b; EAiI3/MArAT3, 1970; ina$$ep, 1973), TOjibKO HeKOTopbie H3 HHX MOSCHO npHMeHHTb B qejIHX fl03HMeTpHH aBapHH B yCrtOBKHX KPHTHHHOCTH. MHOrHe H3 TaKHx cneKTpoB 6biJiH nojiyneHbi B Ue^HX onpefle^eHHH KOHCTpyKqHH peaKTOpOB HJIH TonmHHbi 3amH-

TH HJIH npoBepKH HflepHwx aaHHbix c noMombio cneunajibHO C03^aHHBIX c6opOK, COflep^amHX HeHTpOHHblH HCTOHHHK. HeKO" TOpbie H3 cneKTpoB HBJIJJIOTCfl y3KOCneUH$HHeCKHMH B TOM CMbl- c;ie, mo cneKTp HeHTpOHOB yTe^KH onpe#ejieHHbix C6OPOK npefl- CTaBMeT CO6OH CKOpee pa3H006pa3He cneKTpoB aHa;iorHMHbix c6opoK, MTO 6BI/IO 6BI 6ojiee yjo6HO B CBere fl03HMeTpH 0,7 MaB). 3TH pe3y;ibTaTbi He BK;noHeHbi B .aaHHbiH C6opHHK, TaK KaK OCHOBHOH qejibio HX pa6oTbi He aBjinnoch Hcn0jib30BaHHe ^aHHbix B 06/iacTH fl03HMeTpHH. Ciofla TaKace He BKJiioMeHbi CneKTpw HeHTpOHOB KpHTHHeCKHX c6opOK, KOTOpbie 6bIJIH H3Me- peHbi TOjibKO noporOBbiMH fleieKTopaMH (HanpHMep, BpHKa H £p., 1973), BBH^y HX CJIHIIIKOM rpyBoro onpeae^eHHH cneKTpa.

ILPEACTABNEHHBIE B C6opHHKe cneKTpbi HeHTpOHOB YTE^KH Qbijiu nojiy^eHbi MeTO^OM pacmeTa, 3a HCKTUoneHHeM jiniiib He- 6o;ibiiioro HHcyia cneKTpoB, nonyHeHHbix c BbiGopoHHbix KPHTH- qecKHx c6opoK. B pacneTax Hcn0jib30Ba;iHCb npocTbie c6opKH, KaK HanpHMep, cijepbi HJIH njiacTHHbi. HCTOHHHK HeHTpOHOB fle- /IEHHH KJIH CPE^HEAHEPRETHMECKHX HEHTPOHOB ^EJIEHHH ana c6o~ poK, HMeiomHx $opMy c$epbi, pa3Mema;icH B qeHTpe c$ep pa3~ JIHMHBIX MaTepHajiOB H onpe^e^HJicH cneKTp HeHTpOHOB yTe^KH ana PA37IHMHBIX PA3MEPOB c$ep. HHORAA B QEJUIX HMHTAQHH flejinmerocH pacTBOpa HeHTpoHbi /leyieHHH pacceHBanHCb paBHO- MepHO no BceM BO^HMM cepaM. IIIHPOKHH ny^OK HeHTpOHOB HanpaB;ifljicH Ha njiacTHHw ana 6oM6apflHpoBaHHH O^hoh H3 ee noBepxHOCTen H H3yHeHHH cneKTpa H3;iyieHHbix HJIH OTpaaceHHbix HeHTpOHOB. METOFL npaBOMepHOCTH cneKTpoB npocTbix C6OPOK B OTHO- meHHH ^03 HMeTpHH aBapHH B yCJIOBHflX KPHTHMHOCTH OCHOBaH

30 HA HA6;IIOFLEHHFLX (HHT H Kpocc, 1975a, 1975b), KOTOpae noKa- 3ajiu, ITO npw onpeae^eHHH $opMti cneKTpa HefiTpoH'oB yTen- KH cocTaB H> TOjimHHa MaTepwajia 3amHTbi HBJIJIIOTCH HaMHoro BaacHee, MeM ero reoMeTpHa. JJeftcTBHTejibHO, ontiT noKa3an, no flaxe fljia cmiHtix c6opoK, TSKHX, KSK HanpnMep peaKTop Viper (Beane H flp., 1968), cneKTp HeiiTpoHOB yTe^KH MoaceT 6BIRB c00TBeTCTBeHH0 npH6;iH}KeH K cneKTpy heHTpoHOB j^e^eHHH, npoxoflHiUHx qepe3 "3$$eKTHBHyio TOjimHHy" 3aMe.ajiHTe.7iH (HHT h Kpocc, 1976 ). TaKHM 06pa30M, nojie3HO HMeib cneKTpbi nnn MaTepwajlOB C pa3JIHMHOH nO/ie3HOH TOJ1HHHOH, TaK KaK Hcnonb- 3yx MeroR HHTepnojiauHH, MOXHO onpeaenHTb ao3HMeipHMecKHe Be^H^HHbi (CM. no,anyHKT 1.3) rjih onpe^e^eHHOfl TOjimHHbi, a TAKACE no/iy^HTB BEJIHHHHY HEONPEFLEJIEHHOCTH B OQEHEHHOM ypo- BHe fl03bi H3JiyqeHmsi, B03HHKaiomero npw cneKTpa^bHbix pa3Jin- ^hhx. B jaHHOM C6opHHKe B 6o^biiiHHCTBe c/iyqaeB paccMaTpH- BaiOTCH OTHOCHTemHO TOHKHe CJIOH o6bIHHbIX MaTepHa/lOB, nOTO- My MTO Maji0Bep0HTH0, iTo6bi nepcoHaji MOT noJiy^HTb 6o;ibiiiHe "aBapHHHbie" #03bi (>25 paa (MATAT3, 1970)) npH MOIUHOH 3amnTe KpuTvmecKOH c6opKH. B C6opHHKe cneKTpbi HeHTpoHOB crpynnnpOBaHbi B cooTBer- CTBHH c KOH$Hrypat(HHMH aBapHH. B pa3fle/ie 2 npe,ncTaB./ieHbi cneKTpbi HefiTpOHOB yTeMKH HeCKOmKHX Bbl60p01HbIX KpHT HH6C ~ KHX c6opoK p.jix Toro, HTO6w noKa3aTb B/IHHHHG cocTaBa h pa3- Mepa KpmHiecKHx HCTOTHHKOB . 3TH cneKTpbi 6BIjiu no^yqeHbi KaK 3KcnepHMeHTajibHbiM MeTOflOM, TaK H MeTOflOM pacHera. B pa3fle.ne 3 npe,ncTaBjieHbi cneKTpbi HeHTpoHOB yTe^KH aejia- IUHXCH pacTBopoB. B pa3,nejiax 4-6 noKa3biBaeTcn b^hhhhc pa3- JIHHHblX THIIOB 3amHTbI Ha cneKTpbi pa3nHHHbIX HCTOMHHKOB . B pa3.ne.7ie 7 npe,zicTaB;ieHbi cneKTpbi HEHTPOHOB, OTpa»EH- HblX p33/IHHHbIMH MaTepHaJiaMH. HeCMOTpH Ha TO, HTO OTpa- aceHHbie HeHTpOHbl 06bIHH0 COCTaBJIHKJT TOJIbKO He3HaMHTejIbHyiO MaCTb fl03bl npH aBapHHX B yCJIOBHHX KPHTHHHOCTH, HH $OpMaiJHJI no cneKTpaM TaKHx HeiiTpoHOB Moxe? Bee »e noTpe6oBaTbca RJia paCHIH(|>pOBKH nOKa3aHHH a03HMeTp0B, 3amHmeHHbIX OT npa- MOTO aeiicTBHH HeHTpoHHoro nyHKa (T.e. TejioM qeyiOBeKa HJIH JI0Ka/IH30BaHH0H 33 mHTOH) , HJIH fljlfl OLjeHKH B03MYMEHHH CneKT- pa, Bbl 3B3HHBIX OTpa)KeHHeM HeHTpOHOB OT TejI3. HejIOBeKS . B qe/iax ONPE^E^eHHH TSKHX B03MymeHHH BMecTO Te^a lejiOBexa MO?KHO Hcn0iib30BaTb C^OH BO^w TOjimHHOH 20 CM (MaKpa, 1973; ria^(|)a/iBH H Maxpa, 1974, 1975). B pa3fle^e 7 He npeflCTaB^e- HM cneKTpbi OTpaaceHHbix HefiTpoHOB oieHt TOJICTHX n/iacTHH , noTQMy HTO TOJIMHHA MATEPHA^A noc^e HacwueHna (~20 CM

31 AJix BOflopoflcicoflepjKamHX MaTepnajiOB H 40 CM ana flpyrux) cy- mecTBeHHO He H3MeH*ieT (JiopMbi cneKTpOB. B pa3,nejiax 8 H 9 npeacTaB^eHbi cneKTpbi HeHTpOHOB yTeq- KH H cneKTpbi OTpaaceHHbix HeftTpoHOB peaKqHH D (T, 4He) n (H-eftTpoHbi c 3HeprHen B 14 MSB), npoHHKaiomnx qepe3 pa3JiHq- Hbie MaTepna^bi. XOTH 3TH pe3yjibTaTbi He HMeioT npaMoro OT- HOineHHH K aBapHHM B yCJIOBHHX KPHTHHHOCTH, OHH BKJIIOMeHbl B C6opHHK BBHfly HX nOJie3HOCTH npH Ka^H6pOBKe aBapHHHHX (HUH apyrHX) fl03HMeTp0B. SHeprHH HeHTpOHOB B 1 aB HBJIHeTCH C3MOH M3JIOH BejIHHH- HOH SHeprHH BO MHornx cneKTpax, npeacTaBjieHHbix B JAHHOM C6opHHKe. OrpaHHMeHHe STOH SHeprHH npHHHTO no c;ie,ay- iomHM npHiHHaM: 1 . npH J\03 HMeTpHH aBapHH fl03bl H3/iyHeH HH HeHTpOHOB C SHeprneft MeHbine 1 sB oGHMHO H3 MepjnoTCH c noMombio xoporno pa3pa6oTaHHoro aKTHBaqHOHHoro MeTO^a c npn- MeHeHHeM 30ji0Ta HAH cnjiaBa 30ji0ra c Ka^MHeM (CM . Ha- npHMep, OTHeT 1CRU 13, 1969). 2. PacneTHbie Be/iHHHHbi, 0CH0BaHHbie Ha noTOKe HeHTpo- HOB yTeHKH KpHTHMeCKOH c6opKH, MOTyT 6bITb B 60Ab- niefi CTeneHH oiiiH6oHHbiMH (CM. HanpHMep, XepcT H flp., 1959), nocKO^bKy TenAOBbie n0T0KH (TaKxe, KaK H Hafl- TenjiOBbie IIOTOKH, HO B MeHbiueii CTeneHH) HAXOFLAXCFL B 6ojIb HI OH 3 3BHCHMOCTH OT paCCeHHHH HeHTpOHOB B HenO" cpeflcTBeHHOH OKpyacaromefi cpe^e. 3. no,zipo6Hbie pacieTbi pacnpe^e^eHHH TennoBbix HefiTpo- HOB SIBAHIOTCfl TOJlbKO nOTepefi BpeMeHH, T.K. HCnOJIb- 30BaHHe onpeae/ieHHbix MeTOflOB, KaK HanpHMep, Meion MoHTe-Kap.no, H 6o;iee npocTbix paccMOTpeHHH, KaK HanpHMep, MeToa o,ziHorpynnoBbix npH6jiH>KeHHH, MO»eT 6bITb HeflOCTaTOHHblM . XOTH 3HaqeHHJJ TenjIOBblX nOTOKOB npHBOflHTCfl B TOM c/iy- nae, Kor^a OHH H3BecTHbi, HX c/ieayeT paccMaTpHBaTb KaK rpy- 6yio oqeHKy B npefleAax o,ziHoro NOP^AKa. 3HaneHHjiM TenAOBbix nOTOKOB, noayqeHHbix 3KcnepHMeHTa/ibHbiM nyTeM c Hcn0;ib30- BaHHeM cHCTeM aBapHHHOH 303HMeTpHH, Bcer/ia c/ieayeT OT^a- BATB NPE^NOHTEHHE NEPEA NPHBO^HMBIMH B C6opHHKe.

1.2. PacneTbi cnexipoB PacneTbi Bcex cneKTpOB (3a HCK/noneHHeM ynoMHHyTbix B pa3fle^e 2) npoBOflHAHCb c noMombio Meioaa MoHTe-Kapjio 05R (KoBbio H AP., 1965, HJIH H3MEHEHHBIE Ko6^HHREPOM (1974) HAH

32 MeTO.ua MUSPALB (BepTec, 1970), B KOTOPOM Hcnojib3yeTca MaTpwqa MeTO^a ajib6e,zio. .HaHHbie no B3aHMO#eHCTBHio Hefl- TPOHOB ana pacneTOB MeTOflOM MoHTe-Kapjio 6HJIH B3HTbi H3 6H6JIHOT6KH ceneHHH HeHTpOHOB ENDF/B 111 HJIH ENDF/B IV (flpaxe, 1970). flaHHbie no ceieHHHM HeHTpOHOB ana pacneTOB MeTOflOM MUSPALB 6bijiH B3HTH H3 KEDAK (Bonn, 1968) H c6opHHKa flaHHbix AWRE (IlapKep, 1963), co6paHHbix MATAT3. HaSjnoaeHHe 3a HeflTpoHaMH MeTOflOM MoHie-Kapjio ocy- meCTBJIHJIOCb nyTeM HCI10JIb30BaHHH "CTaTHCTHMeCKHX BecoB" (KauiBejiJi h SBepeTT, 1959) ana o6t>hch6hhh npoqeccoB norjio- meHHH HeHTpOHOB, a " Ba JKHblH Bbl 60p0HHbIH" MeTOfl (Kajioc,, 1963) He Hcn0^b30Bajica. HeftTpoHbi, "po>K,aeHHbie" B c6opKe HJIH naaaiomne Ha ruiacTHHy, <|>HKCHpoBajiHcb c nOMombio TpeKOB, yflap 3a y^apoM, 30 Tex nop, nona HX SHeprHH He 6bijia MeHbiiie Bbl6paHHbIX BejIHHHH (B 3T0T MOMeHT HX y>Ke OT6paCbIBajIH) HJIH noKa OHH He noKHHyjiH c6opKy. 3aTeM 6bijiH nojiyHeHbi cneKTpbi HeHTpOHOB yTeqKH B onpeaejieHHbix MecTax no OTHOineHHK) K c6opKe. ripn Hcn0jib30BaHHH MeTO^a c MaTpnqeH ajib6eflo 3KpaH B <|)opMe n^acTHHbi - 6ecKOHeHHbiH no ^ByM BejiHMHHaM — pa3,nejiH- eTca Ha TOHKHe CJIOH, BHyTpeHHHe pa3,ziejn>i KOTOPWX xapaKTe- pH3yioTCH onepaTopaMH OTpa^eHHH H nepe^aHH B (JopMe MaTpn- Ubl . HCTOHHHK HeHTpOHOB IIJIOCKOH

1.3. ^03HMeTpHiecKHe BejiHMHHH, BbiBO^HMbie H3 cneKTpajib- Hbix flaHHblX

, Jl03HMeTpHHeCKHe BejIHMHHbl, npeflCTaBJIHIOmHe HHTepeC, 6buiH paccHHTaHbi H BKjiioMeHbi B flaHHbiH C6opHHK ana TOTO, HTo6bi o6^erHHTb npHMeHeHHe cneKTpajibHbix aaHHbix %na fl03H- MeTpHH aBapHH. Cpe^HHe BejiHHHHbi ceneHHH (d) ana pfl.ua npo- CTMX ^eTeKTopOB NPHBOFLHTCH BMSCTe c KaKjofi rpynnofi cneKT- panbHbix aaHHbix. B cnncKe nepenncjieHbi He Bee ^eTeKTopbi, KOTOpbie HCriOJIb3yiOTCfl B CymeCTByiOmHX flOSHMeTpH^eCKHX CH- CTeMax. 3aecb HBHO OTcyTCTByroT aeTeKTopbi, KOTOpbie MyBCT- BHTe/ibHbi K Ten^OBbiM HJIH HaflTenjiOBbiM HeHTpoHaM. OHH He BKJIIOHeHbl BBHfly H eOnpeflejieHHOCT H HH<|)OpMaiJHH B 3TOH o6jiac~

33 PHC.1. AHTpOnOMOp$HMeCKHH $aHTOM (OKCH^ep nap.,'1968). SjieMem o6teMa 57 HaxoaHTCH B TpeTteM cjioe Ha riOBepxHOc- TH, o6panteHHofi K HEHTPOHHOMY nyHKy.

TH SHeprHH HeHTpOHOB H BC/ieflCTBHe Toro, HTO HeHTpOHfcl, 06- jiaflaiomHe Majion SHeprHeft, MeHee BaacHti. Rna Ka»floro cneKTpa BK^OMeHii Taxace cpe^HHe 3HaneHHH BejiHHHHH Ha eflHHHuy n0T0Ka ana TKaHH KepMa (K), fl03ti 3apn~ aceHHOH MaCTHljM (D), 3KBHBajieHTa fl03M (D.E.) H fl03BI raMMa- jiyneH (D7). IIocneflHHe TpH BeyiHMHHti npe^Ha3HaHeHti a^h ajieMeHTa o6teMa 57 aHTOMa SKBHBajieHTa TKaHH, H3o6pa>iceH- Horo Ha pnc. 1. ,Ho3i>i B pa3;iHHHi>ix MecTax TaKoro (JaHiOMa

34 6HJIH PACCMHTAHTI OKCHepoM H ap. (1968) ana o6jiyneHHH MOHO- SHepreTHHecKHMH HeiiTpoHaMH. 3TH pacneTM noMOrjiH nojiy- HHTb fl03bl H3JiyHeHHH 3ap«>KeHHbIX HaCTHU OT^aHH, fl03bl raM- Ma_H3JiyMeHHH B pe3yjibTaTe peaxttHH 1H(n,7)2H H 3KBHBajieH- TH R03, Hcnojib3yiomHe KaqecTBeHHbie <|>aKTopbi, ocHOBaHHbie Ha /tHHeHHOM nepeHOce SHeprHH HOHH3HpyK>merO H3/iyHeHHH. Pe3y^bTaTbi NOKA3A^H, HTO HaH6ojibiiiyio fl03y 06HHH0 nojiyna/iH OT o6ieMHoro AJIEMEHTA 57. Il03T0My fl03bi B STOM Mecje OT- HOCHTCS K oSjiaCTH #03HMeTpHH aBapHH. K epMa H fl03bl 3Jie- MEHTA o6i>eMa 57 — o6e 3TH FLBE xapaKTepHCTHKH Hcn0jib30Ba- JIHCb npH H3 JIO )KeHHH pe3yjIbTaT0B HeCKOJIbKHX MeaCflyHapOflHblX CpaBHeHHH CHCTeM fl03HMeTpHH HflepHOH aBapHH (CM. HanpHMep, XefiBya H IIOCTOH, 1972; Mnpnq H Y6OBHH, 1974). HCn0JIb30BaHHe nOHJITHfl 3KBHBajieHT /I03bl OrpaHHHeHO npH aBapHjjx, Koraa nojiynaioTCH ^03bi 6ojiee 25 pa,n. KanecTBeH- HblH K03$$HqHeHT B T3KHX CHTyaqHHX nOKS 0,HH03HaHH0 He on- pe^ejieH, XOTJI OH 06biiH0 npHHHMaeTCH (KOMHTOT RBE, 1963) Me>K,ziy EJJHHHQEFT H JJBOHKOH . B HacToameM C6opriHKe BenHHH- Ha 3KBHBaneHTa ,n03bi 6bijia paccnHTaHa c noMombio KaqecTBeH- HWX K03$i|)HqHeHT0B, o6biHHO npHHHMaeMbix ana pa^HaqHOHHOH 3amHTbi. 3TA BEJIH^HHA BKJNOQEHA B CSOPHHK ana YAO6CTBA npw onpejiejieHHH SKBHBajieHTa ,ao3bi ana Tex Jinq, KTO nojiy^HJI FL03BI MEHEE 25 6ap H ana KOTO BEJIHQHHA 3KBHBAJIEHTA ^03BI, no/iyqeHHaH B ycjiOBHjjx KPHTHHHOCTH, aojiacHa 6biTb npH6aBjie- Ha K y»e HaKonjieHHon fl03e o6jiyHeHHH.

CpeflHHe BEJIHHHHW ceMeHHH (o) H ^03HMeTpHqecKHe Benn- HHHbi 6bijiH nojiyqeHbi H3 ycpe^HeHHbix KpHBbix B036y»aeHHH HJIH KpHBblX fl03bl pa3JIHHHbIX CneKTpOB (HOpMHpOBaHHblX K ejHHHqe n0T0Ka) OT 1 AB .no 15 MAB . Y STOH MeTOflHKH ecTb HeflOCTaTOK B TOM, HTO O 3 3BHCHT OT KOJIHHeCTBa HeHTpOHOB HHxe nopora peanqHH. KpOMe TOTO, nocKOjibKy $opMa cneKT- pa B o6;iacTH Majibix SHeprnn eine TOMHO He onpeaejieHa, 3Haqe- HHe BejiHMHHbi a MoaeT npejxcTaB JiHTb co6ofl 6ojibiHHe H3Me- HeHHH, Kor^a npHMeHHeTca STOT MeTOfl ycpe^HeHHa (a He yc- pe^HeHHe Haa noporoM peaKUHH) ana cneKTpoB, nojiyneHHbix 3KcnepHMeHTajibHbiM HJIH pacneTHbiM nyieM HJIH no pacieiaM pa3JIHHHblX aBTOpOB . BaXHOCTb nOHHMaHHH 3TOrO COCTOHT B TOM, HTO TaKoe H3MeHeHHe He BKjnonaeT noao6Horo H3MeHeHHfl B o6T.HCHeHHH BejIHHHH H3MepeHHOH fl03bl , TaK KaK HX COOTBeT" CTBHe BejIHMHHaM ^03HMeTpHH C OCTaBJIfleT COOTHOIIieHHe 0~/K HJIH CS" / D H T.fl.; 3TH COOTHOIIieHHH HaMHOrO MeHee HyBCTBH- TejibHbi K nacTH cneKTpa, HMeiomen HH3Kyio SHeprHio, neM Ka»- aaa H3 BEJIHHHH o HJIH K B OTflejibHOCTH (CM . HanpHMep, HHT H

35 Kpocc, 1975a WIH 1975b). IIocKOjibKy CMHTaeTca 6o/iee pa33'M- HTIM ycpeflHHTb fl03HMeTpHMecKHe BeJIHHHHBI no BceMy cneKTpy, 6y.neT 6o;iee yao6HO T3KHM ace 06pa30M paccMaTpHBaTb H ceqe-

HHH . 3HaneHHH ceMeHHH peaKijHH H3MeHHioTCH B cooTBeTCTBHH C HCTOHHHKOM HH$opMaqHH. IlpH npoBeaeHtiH pac^eTOB B HOK- PHBep BejiHMHHH KpHBbix B036y»^eHHH ana Bcex peaKUHii (3a 31 31 HCK^ioHeHHeM peaKUHH P(n, p) Si) 6bi/iH BSHTM H3 pa6oTw Kpocca H UHra (1975). flaHHbie ana peaKUHH 3IP(n, p)31Si 6bi- nVl B3HTM H3 c6opHHKa (3HHn H FLP . , 1973) H nOflrOHHJIHCb C HC- n0nb30BaHHeM Tex ace caMbix (JIYHKUHH, KaK H ana .apyrnx peaK- UHH . B IleHTpajIbHOM HCC/ieflOBaTejIbCKOM HHCTHTyTe $H3HKH (L(HH) Be/IHMHHbl KpHBblX B03 SyJKfleHHH 6bIJIH B3HTH H3 c6op- HHKa EANDC 95"U" (JIHCKHCH H Ilay^bceH, 1974). 3TH KPH~ Bbie aaiOT cpe^HHe ceneHHH, KOTOpbie OTjiHnaioTCH OT noyiy^eH- Hbix Be/iHMHH B ^loK-PHBep, MeHee MeM Ha 2%. TaK KaK HC- no;ib3yeMbie B Hok-Phbcp aHajiHTHMecKHe BwpaaceHHH HB;IHK>TCH yflo6HbIMH, TO OHH npHBOflHTCH HHJKe . B 3THX BbipajKeHHHX O — BejiHHHHa ceHeHHH B 6apHax, a E - aHeprnn HeHTpOHOB B MaB .

i03Rh(n,n')103mRh

0,14 0,53 0,36 FF(E) = 0,25 • 1 + (4E)3,5 1 + (E/0,7)10 1 +(E/1,9)

0,39 1,17

1+(E/5,4)10 1 + (E/L 1,5)13

llsIn(n, n')llSmIn

0,33 0,285 a(E) = 0,045 -i+(E/i)45)4,3 + 1 + (E/11)2)1

32S(n, p)32P

0,30 0,09 0,25 A(E) = 0,04 + 1 + (E/L 5,4)8 1 + (E/5,65)25 1 + (E/3,6)7

3 1E 7 4 2 3 3E 14 2 + 0,075 E-( . * » ) + 0,15 E-( . " >

8E-22 4 2 8E 24 5 2 + 0,06 E-( > ) + O,U E-( " ' )

4E 14 2 6E 6 6 2 + 0,12 e"( " ^ + 0,08 e-(°. - . )

36 31P(n, p)31Si

0,105 0,065 0,070 ct(E) = 0,030 + 1 + (E/14,3)9 1 + (E/5,1)18 1 + (E/2,25)14

3 5 26 2 E 9 5 2 + 0,26 e-(E- .° /°. ) + 0,08 e"( " . >

E 3 7 24 2 1 + 0,05 e-( - > /°' > + 0,052 e-V-WOAS)

231Np(n,f)

J(D_ 2 7 1,43 0,82 0,43 ' 1 + (E/0,57)5-3 1 + (E/7)16 1 + (E/15)40

E 2 2 2 20E 2 + 0,3 e-( " . ) + 0,007 e-( -4)

233V(n,.f)

(E)= j .3 0,51 0^45 0,37 ' 1 + (E/l ,5)n 1 + (E/6,4)20 1 + (E/14,1)20

+ 0,03 e_(3E_6)2

232 Th( n, f)

0,14 0114 0,24 30 5 a(E) - 0,52 1 + (e/2)1)7 1 + (E/6,7) 1+(E/14,8)'

E ? 3 2 SE 8 2 + 0,1 e-( - . > + 0,095 e-( " >

5E 10 3 2 + 0,055 e-( - ' >

XOTH BBIUIENPHBEAEHHBIE BBIPAJKEHWA OOOTBETCTBYIOT OTO6- paHHbiM SKcnepHMeHTa^bHO oqeHeHHbiM aaHHbiM B npefle^ax pacneTHbix norpeiiiHOCTeH KO BpeMeHH NY6/IHKAQHH aaHHoro C6opHHKa, Bee »e MOM 0KA3ATBCN HEO6XOAHMBIM BHGCTH B HHX H3MEHEHHA npH HANHIHH 6o;iee TOHHBIX flaHHbix. TaKHe H3- MEHEHHH MO«HO jierKO ocymecTBHTb, TaK KaK B STHX Bbipaace-

37 HHflX HCnO;ib3yK>TCH " (JiyHKLJHH njiaBHOH nOC^eflOBaTe^bHOCTH" n BHja l/(l+(E/E0) ) h $yHKUHH Taycca. CBOHCTBa h npeHMy- mecTBa i|)yHKUHH njiaBHOH nocneflOBaTe/ibHOCTH o6cy«AaioTca B pa60Te Kpocca H HHra, 1975. AHanHTHMecKHe Bwpa5KeHHH ana KepMbi (K), ^03bi 3/ieMeH- Ta-57(D), SKBHBajieHTa fl03bi (D.E.) h fl03bi peaicqHH (D-y) BM- pa»eHHH 1H(n,7)2H 6bi;iH nonyqeHbi noarOHKOH aaHHbix IHHan- flepa (1971) h OKcnepa H ap. (1968). 3TH Bbipa»eHHH aha Be;iH- HHH K, D, D.E. H Dy HBJIHIOTCH MeHee KOMnaKTHblMH, TaK KaK SHeprHH HeftTpOHOB OT 1 sB .zio 15 MsB pa3fleaeHa Ha HecKOjib- KO HHTepBajiOB H aHa'/iHTH^ecKHe (JiyHKqHH npHBOflHTCH ana Kax- floro TaKOTO HHTepBa/ia. B HH»enpnBefleHHbix Bbipa»eHHHX eflHHHqbl. BertHHHH K, D H D.y Bbipa»CeHbI B Hpafl/(HeHTp/cM2) , a Be^HMHHa D.E. - B h6sp/ (Heft.Tp/ CM2) , E BbipaaceHa B MsB .

KEPMA

4 4X1 cr6 K = + 10E-45E2 10'6

0 ft'} •= 2,3E°.466-°»0421NE + 5,0 X 10'2 < E < 15 e(fc/8-2,5)

jQ3a 3apa»eHHbix qacTHU sjieMeHTa 06'beMa 57

D = 0,033/E0,°6 10"6

= 2,8 E0,7S 4 X 10~3

= 2,8 E0'4 1,0 < E < 15

3KBHBajieHT flQ3bI

D.E. = 1,15 10"6 < E < 0,01

= 39 E°>77 0,01

4 1.0

38 nojiyqeHHag sjieMeHTOM o6i>eMa 57 OT ffiyHKqHH 1H(n,7)2H

0 0607 6 4 D7 = 0.2223 E" - 1 0 " < E < 10"

= 0.3136 E~0-02334 1 0 "4 < E < 0.25

= 0.231 E"0-277 0.25

0.685 _ oo 1 + (E/l l)7'2 5 < E < 15

XOTH xaKaa (JopMa npe,ncTaBjieHH5i Ka»eTCH Heyao6HOH, ee 4acTO aHaiHTeflbHO Jierne Hcn0Ab30BaTb, neM CBefleHHtie B Ta- 6;iHqy HCXOflHbie flaHHbie, 0C06eHH0, Kor^a flOCTynHbi BbmHCJiH--

TejibHbie H nporpaMMHpoBaHHbie cneTHbie MamHHbi, a c/iojKHaa "nojiroHKa no^nporpaMM" He HB/[HeTca TaKOBOH.

1.4. YcAOBHbie o6o3HaqeHHH H eflHHHqbi H3MepeHHa

Bee cneKTpbi npeflCTaBJieHbi B $opMe noTOKa Ha e^HHHqy jieTaprHH (TO ecTb Ha e^HHHqy npojiorapH<|)MHpOBaHHOH SHeprHH) B 3 3BHCHMOCTH OT 3HeprHH HeHTpOHOB B SB . EflHHHqa JieTaprHH CHHTaeTCH 6o/iee y;i06H0H, TaK KaK cneKTpbi HeHTpOHOB npH Ha- HaHeceHHH HX Ha rpa<|)HK - nc>TOK Ha eflHHHqy SHeprHH - qacTO HMe- IOT pe3KO na^aiomnn OTpnqaTe/ibHbiH HaKjiOH npn donee HH3KHX SHeprHHx 3a cneT rpy6on 33BHCHMOCTH THna HHBepcHH SHeprHH H Tpe6yioT MHOTHX aecHTKOB Ha OCH nOTOKa nnx nojiHoro npefl- cTaBHTe/ibCTBa TaKoro cneKTpa. IIocKOjibKy e^HHHqa JieTaprHH cymecTBeHHO BjinaeT Ha nOTOK cooTBeTCTByiomeH SHeprneH Hefi- TPOHOB (TO ecTb AN/AlnEsE AN/AE), OTpnqaTeAbHbiH HaK/iOH H3MeHHeTCH no nOHTH r0pH30HTajIbH0H 7IHHHH, KOTOpyiO HaMHO" ro npome H3o6pa3HTb rpaHHecKH. CneKTpbi nOTOKOB Ha eflH- HHqy /ieTaprHH HMeioT eme npeHMymecTBO B TOM, HTO ocb n0T0- Ka HBJINETCH TiHHeHHOH B MacniTa6e, a SHeprHH — jiorapHt|)MHHe — CKOH, Tor^a HA6JIK>,ZIAEMAH o6;iacTb HHace KPHBOH Mex^y jByMa /noGbiMH 3HeprHHMH HBAHeTCH nponopqHOHa/ibHOH o6meMy noTO- Ky RJiH aToro SHepreTHnecKoro HHTepBayia. IlOfl OCHOBHWMH 3ar0A0BKaMH CneKTpOB, npeflCTaBAeHHbix B Ta6jiHqax, MOKHO QACTO HafiT H TepMHHbi "cepHHecKaji reo-

39 MeTpHfl" W1VL "reOMGTpHH njiaCTHHbl" . 3TH TepMHHbl OTHOCHTCH K KOH(|)HrypauHH, ana KOTopofi 6MJIH no/iyneHbi cneKTpbi. (TH- nHHHtie pa3/iHMHH no cneKTpaM, B03HHKaiomHe 6^aroaapH reoMe- TpHHeCKHM KOH(J)HrypaqHHM, paCCMaTpHBaiOTCH HHTOM H Kpoc- COM (1975a, 1975b)). Jinn c$epHHecKOH reoMeipnn pa^Hyc cijepbi o6o3HanaeTCH RQ, a IIOTOKH 06biHH0 ocTaioTca T3KHMH ace, KaK H Ha 6o;ibiiiHx paccTOHHHJix(> 3 Ro) OT pa3JiHHHbix c6o- poK. TaK KaK $opMa cneKTpa cymecTBeHHO H3MeHneTCH c paccTOHHHeM (R) npn ero Majibix 3HaneHHHX, TO cneKTpbi, KOTO- pbie HaGnioaaioTCH no KOHTaKTy co cSopKon, TaKace npeflCTaBjie- Hbi ana onpe,ne;ieHHbix c;iyHaeB. TaKHe cneKTpbi HMeioT o6o3Ha-

HeHHHR = R0 noMHMO HH$opMaqHH, KacaiomeHCH HX reoMeTpHH (CM., HanpHMep, no^nyHKT 4.2). JXna reoMeTpHH njiacTHHbi ee TO/imHHa o6o3HanaeTca 3HaH~ KOM d. IIpHBOflHMbie B C6opHHKe nOTOKH HBJIHIOTCH HHTerpHpO" BaHHbl MH nOTOK3MH C O^HOH nOBepXHOCTH n/iacTHH , ^pyraa CTOpOHa KOTOPMX o6jiyMaeTCH HeHTpOHaMH, HMeiOmHMH KOCHHy- coH^a/ibHbiH yro;i pacnpeaejieHHa, ecjin HM He 3aflaH flpyroft yro;i pacnpe^ejieHHH. (Jlpyraa CTopoHa n^iacTHHW Hcno;ib3yeT- ca TaKace ana nojiyqeHHH OTpaaceHHbix cneKTpoB). Bee cneKTpbi HOPMHPOBAHTI no o^HOMY H3 Tpex nyTen. ECIH pacnpefleaeHHe N0T0KA 0603HAMEH0 KAK E«^(E), TO BC3 30Ha nofl cneKTpoM 6o;iee 1 3B HopMHpoBaHa K e^HHHue noTOKa. ECJIH ocb n0T0Ka o6o3HaneHa 47rR2E (E), Tor\na cneKTp HopMH- poBaH K o^HOMy HeHTpoHy, 06pa30BaHH0My BHyTpn KPHTHHecKOH 2 C6OPKH, HMeiomen c^epHMecKyio $opMy. $aKTop 47rR y^HTbiBa- eT Bee HeHTpoHbi, BBI/IETAIOMHE c nOBepXHOCTH C6OPKH (T.e. fle- TeKTopoM HBnaeTCH coocHaa co cGopKon ciJepHMecKaH O6OJIOH- Ka. TaK KaK 3MHCCHH HeHTpOHOB H3 C(|)ep HBJIfleTCH CHMMeT- PHHHOH, pacnpeae/ieHHe noTOKa Ha paccTOHHHH R (KORAAR»RO) 2 ^ocTHraeTCH npn noMomn aeneHua 3Ha*ieHhh BeyiHHHH Ha 47rR . ECTIH pacnpe/te/ieHHe nOTOKa 0603Ha*ieH0 KaK RHl(u), TO cneKTp HopMHpoBaH K OflHOMy HeHTpoHy, HcnycKaeMOMy IIJIOCKHM HCTO- MHHKOM. rpa$HKH H Ta6;iHUbi cneKTpoB npe,ncTaB;ieHbi B BHFLE THCTO- rpaMMbi. B TaG/inqax SHeprHH, CB33aHHaa c BenHMHHOH nOTOKa, OTHOCHTCH K BepxHeMy npe^e^y HHTepBajia rncTorpaMMbi. Be- /iHHHHa 3TOH aHeprHH HBJifleTCH TaKace HHacHHM npe^ejiOM cue- aytomero (BepxHero) SHepreTHnecKoro HHTepBajia H T.^. B rpai|)HMecKOM npe^cTaBjieHHH cneKTpbi Qbinvi cflBHHyTbi BepTHKajibHO c noMOmbio yKa3aHHbix K03$<|>HqHeHT0B Be3^e, rfle 6bijio Heo6xQflHMO, HTO6BI H36eacaTb HaaoaceHHH HHHHH .

40 BenHiHHa pa;inyca (R0) c$epbi (CM)

103 Rh(n, n')l03m Rh - 115 ln(n, n')"5m In - 32S(n,p)32P- BenHHHHa cpeAHero 31 P(n, p)31 Si • ceneHHH (6apn) 231Np(n, f) • 232Th(n,f) • 238U(n, f) •

BeJiHMHHa cpeAHefi KepMbi (Hpafl/

PHC.2. IIpHMep, nOKa3BIBaiOmHH fl03HMeTpnqecKHe Be/IHHHHM Ann cneKTpa YTEIKH HCHTPOHOB H3 EQ = 2CM BOAHHOH c<$epbi, co- flepacaineH B qeHTpe HCTOHHHK ,ge.aeHHH UaHHue H3 noanyHKTa 4.1). Be^HHHHbi nojiyneHbi ycpeflHeHHeM no SHepreTHMecKOMy HHTEPBAYIY OT 1 aB AO 15 MaB. (Ana REOMETPHH NNACTHHBI pa- flHyc (Ro) c$epw aaMeHeH BejiHHHHOfi to^qhhu ruiacTHHM (d). Jinn cneKTpoB, no^yMeHHbix OT BbiSopo^Hbix KPHTHHECKHX c6o- pOK, Ha3BaHHH T3KHX C 60p0K flaHbl nepefl a03HMeTpHHeCKHMH BeJIHMHHaMH) .

Bee paccTOHHHH H pa3Mepbi C6OPOK aaHii B caHTHMeTpax. GpeflHHe ceqeHHH ana pa3^HMHbix peaKUHH oqeHeHbi c FIOMO- mbio

15 MaB 15 MaB / o(E) E0(E) d(ln E) J a(E) 0(E) dE _ 1 aB 1 aB a = 15 MaB 15 MaB / E0(E) d(lnE) / 0(E) dE 1 aB 1 aB

41 r,ne Be/iHHHHa a (E) NPE^CTAB^eHa BBIPAACEHHEM B noanyHKTe 1,2 h Be;iHHHHa Ei (D.E.) H raMMa-,a03a, Bbi3BaHHa$i HeflTpoHOM c SHeprneH 6o/iee 1 sB (D7), paccHHTaHbi c n0M0- mbio a(E), 3aMeHeHHOH cooTBeTCTByiomeH (JyHKqneH. BenHMH- Ha cpejHHx ceneHHH (a) aaeica B 6apHax. BejiHMHHw K,D H D7 BbipaaceHbi B Hpa^/(HeHTp/cM2), a Be^HiHHa D.E. — B H6ap/(HeHTp/cM2). Jinn yao6cTBa CCBIAKH, ,I(03HMeTpHHeCKHe Be.TIHHHHbl H eflH" HHqbi npeacTaB^eHbi HapHC.2, KOTopbifl aaeT THnHHHbiii nepe^eHb, B3HTHH H3 flaHHblX JXJIH HeHTpOHOB flejieHHH, npOHHKaiOIIJHX nepe3 cepbi H2 O (noflriyHKT 4.1).

1. INTRODUCCION

La determination de la dosis neutronica recibida por las personas expuestas en un accidente de criticidad exige en general conocer el espectro de energfa de los neutrones incidentes en el cuerpo. Este espectro puede revestir distintas formas, segun las caracteri'sticas del conjunto cri'tico y el medio en que se pro- duzca el accidente. Conociendo la forma del espectro, la lectura de un solo detector basta para calcular la dosis de neutrones, cuenta habida de la respuesta del instrumento. El detector puede ser, por ejemplo, un detector de umbral del tipo de activation o de trazas, un dosi'metro qui'mico o un dosi'metro de estado solido. Puede basarse en la moderation de los neutrones, como los instrumentos en que se utilizan metodos por albedo, o en la activation del sodio presente en la sangre del cuerpo. El conocimiento del espectro de los neutrones incidentes permite tambien calcular la distribution de la dosis en el cuerpo a fin de deter- minar las partes expuestas a una dosis maxima o la dosis recibida por los diferentes organos criticos. En el intenso campo radiatorio de un transitorio de criticidad, suele ser imposible medir el espectro neutronico con detectores "activos" tales como los contadores porporcionales o los centelleadores, debido a la saturation del detector. Igualmente, es diffcil reconstruir el accidente en estado controlado (estacionario), para efectuar estas mediciones. Por tanto, la information sobre el espectro debe obtenerse generalmente mediante detectores "pasivos" instalados antes del

42 accidente. Hurst y otros (1956) han propuesto un conjunto de detectores pasivos que responden a diferentes intervalos de energi'a neutronica. Este sistema esta formado por varios detectores de activation y de fision con blindaje de 10B, que permiten hacer una estimation de la forma general del espectro neutronico (Hurst y Ritchie, 1959). Pero tal dispositivo, que es bastante voluminoso y costoso, solo se presta bien como monitor de areas y no sirve como dosfmetro individual. Ademas, solo da espectros neutronicos de mas de 1 keV, en cuatro intervalos energeticos. Para determinar la dosis con la exactitud deseada, pueden ser necesarios datos mas detallados en ciertos casos. Otro modo de conseguir information sobre el espectro es recurrir al calculo. Con las modernas computadoras es posible realizar calculos detallados de los espectros de fugas de distintos conjuntos crfticos. Con los datos disponibles hoy dfa, estos espectros calculados son a menudo superiores a los obtenidos por medicion experimental. En varios accidentes nucleares ocurridos en el pasado (Hurst y otros, 1959; Ritchie y Eldridge, 1961; Laboratories de Hanford, 1962), se han utilizado espectros calculados como complemento de diversas mediciones dosimetricas efectuadas en condiciones simuladas de criticidad para determinar los valores definitivos de las dosis. Ahora bien, un sistema dosimetrico basado en un com- plicado programa de tipo computadorizado y experimental es, evidentemente, poco satisfactorio si sobreviene un accidente. No cumple los requisitos recomendados (OIEA, 1970) para los sistemas de dosimetric en caso de accidente, pues en tal caso la dosis tiene que estimarse con una exactitud del 50% en 24 horas y del 25% en cuatro dfas. Es posible satisfacer estos requisitos con los actuates sistemas dosimetricos si se tiene a mano un espectro que guarde semejanza con el espectro real. Por tanto, una coleccion de espectros neutronicos referentes a transitorios de criticidad es de sumo interes para la dosimetria en caso de accidente. Para responder a esta necesidad, un grupo de expertos del OIEA recomendo pre- parar este compendio (en Haywood y Poston, 1972). Es evidente que una coleccion de espectros como la presente no puede contener information ade- cuada para todos los accidentes concebibles. En ciertas circunstancias, quiza siga siendo necesario realizar calculos o mediciones espectrales para determinar las dosis con exactitud suficiente. De todas formas, este compendio contiene los espectros que con mas probabilidad suelen darse en los accidentes nucleares y se espera que, partiendo de esta base, podran estimarse con una exactitud razonable los espectros correspondientes a otros medios.

1.1. Alcance del compendio

En un accidente nuclear, la geometria y la composition material del con- junto cri'tico y su medio pueden ser muy complejas. Los espectros de neutrones,

43 en los que intervendra la dispersion multiple causada por la sala o por los objetos circundantes, variaran no solo de un conjunto a otro, sino tambien segun la situation de las personas, para el mismo transitorio. Afortunadamente, los componentes de dispersion suelen contribuir poco a la dosis total (Hurst y otros, 1949; Ritchie y Eldridge, 1961; Delafield y Boot, 1973). Por tanto, en muchos casos, una aproximacion del espectro real conseguida por medio del espectro de fugas del conjunto crftico — directo o filtrado por varios materiales — es suficiente para la dosimetri'a en caso de accidente si se utilizan detectores apropiados de neutrones. Aunque en la literatura especializada puede encontrarse un gran numero de espectros medidos y calculados para conjuntos crfticos y subcriticos (por ejemplo, OIEA, 1965; OIEA, 1968a; OIEA, 1968b; AEEN/OIEA, 1970; Schaeffer, 1973) pocos se prestan a su empleo en dosimetri'a para accidentes de criticidad. Muchos han sido realizados para el diseno de reactores o de blindajes gruesos, o bien para comprobar datos nucleares con conjuntos especiales. Algunos son demasiado especificos, en el sentido de que constituyen un espectro de fugas de un conjunto determinado y no una variedad de espectros de conjuntos similares — que responderfan mejor a las necesidades en dosimetrfa. Veselkin y otros (1970) han publicado una coleccion de espectros de neutrones de un reactor que atraviesan muchos materiales de blindaje, pero los datos son tambien para calcular el blindaje de reactores y solo se refieren a neutrones de alta energi'a (> 0,7 MeV). Estos resultados, cuya finalidad primaria no son las aplicaciones dosimetricas, no se incluyen en la presente compilation. Igual- mente se ha prescindido de espectros de conjuntos criticos medidos unicamente con detectores de umbral (Bricka y otros, 1973) porque la definition espectral es insuficiente. Con exception de algunos espectros de conjuntos criticos seleccionados, los espectros de fugas del presente compendio se han obtenido por calculo. Para el calculo se han utilizado conjuntos sencillos en forma de esfera o de placa. En el caso de los conjuntos esfericos, se ha colocado en el centro de esferas de distintos materiales una fuente de neutrones de fision o de neutrones de fision moderados y el espectro de fugas se ha determinado para distintos tamanos de la esfera. A veces, los neutrones de fision se han distribuido uniformemente en esferas acuosas para simular soluciones fisionables. En cuanto a las placas, se ha hecho incidir un ancho haz de neutrones en una cara de la placa y se ha examinado el espectro de neutrones transmitidos o reflejados. El interes de estos espectros de conjuntos sencillos para la dosimetria de criticidad se basa en la observation (Ing y Cross, 1975a, 1975b) de que la com- position y el grosor del blindaje son mucho mas importantes para determinar la forma del espectro de fugas que la geometria. En efecto, la experiencia muestra que, incluso para conjuntos complejos, tales como el reactor Viper (Weale y otros, 1968) puede conseguirse una aproximacion adecuada del espectro

44 de fugas con ayuda del de neutrones de fision que atraviesan un "grosor efectivo" del moderador (Ing y Cross, 1976). Por tanto, conviene tener espectros para grosores sucesivos de materiales porque se pueden determinar las magnitudes dosimetricas (vease la Subsection 1.3) de un grosor determinado por interpola- tion y obtener asf una indication del grado de indeterminacion de la dosis estimada debido a las variaciones espectrales. En el presente compendio se consideran sobre todo capas relativamente delgadas de materiales comunes, pues no es probable que el personal reciba grandes dosis "accidentales" (> 25 (OIEA, 1970)) si el conjunto critico tiene un blindaje grueso. Los espectros se han agrupado segun las configuraciones de cada accidente. La Section 2 contiene los espectros de fugas medidos y calculados en algunos conjuntos cri'ticos seleccionados a fin de demostrar el efecto de la composition y el tamano de las fuentes criticas. La Section 3 contiene los espectros de fugas de soluciones fisionables. Las Secciones 4 a 6 muestran el efecto de varios tipos de blindaje sobre diferentes espectros. La Section 7 presenta espectros de neutrones reflejados por varios materiales. Aunque en general los neutrones reflejados solo constituyen una fraction despreciable de la dosis en los accidentes de criticidad, es posible que a pesar de todo se necesite information espectral sobre dichos neutrones para inter- pretar los dosi'metros protegidos contra el haz directo (por ejemplo por el cuerpo o por un blindaje localizado), o para estimar las perturbaciones espectrales debidas a los neutrones reflejados por el cuerpo. Para esta ultima aplicacion, el cuerpo puede ser sustituido por una placa de agua de 20 cm de espesor (Makra, 1973, Palfalvi y Makra, 1974, 1975). La Section 7 no contiene espectros reflejados por placas muy gruesas porque despues del grosor de saturation (~ 20 cm para materiales hidrogenados y 40 cm para otros materiales), las formas espectrales no cambian de modo significativo. En las Secciones 8 y 9 figuran espectros de fugas y de neutrories reflejados procedentes de la reaction D(T, 4He)n (neutrones de "14 MeV") que atraviesan distintos materiales. Aunque estos resultados no tienen interes directo para los accidentes de criticidad, se incluyen por su utilidad para la calibration de dosi'metros (y otros instrumentos) en caso de accidente. La energfa minima de muchos espectros de este compendio es 1 eV. Este lfmite se ha adoptado por las siguientes razones:

1) Para los neutrones inferiores a 1 eV, las dosis suelen medirse en caso de accidente por tecnicas de activation de Au y de Au-Cd bien conocidas (vease, por ejemplo, el Informe 13 de la CIUMR, 1969). 2) Las fluencias termicas (y en menor grado las epitermicas) dependen de tal modo de la dispersion neutronica en el medio inmediato que los valores calculados, basados en la fluencia de fugas del conjunto crftico, pueden adolecer de grandes errores (vease, por ejemplo, Hurst y otros, 1959).

45 3) El calculo detallado de la distribution de neutrones termicos exige mucho tiempo si se utilizan tecnicas tales como la de Monte Carlo, y otros metodos mas sencillos, como las aproximaciones de un solo grupo, pueden ser insuficientes.

Aunque se incluyen las fluencias termicas, cuando se conocen, estos valores deben considerarse unicamente como una estimation aproximada del orden de magnitud. Debe darse siempre preferencia a los valores medidos obtenidos por la mayoria de los sistemas de dosimetria para casos de accidente, y no a los valores aqui dados.

1.2. Calculo de los espectros

Todos los espectros (excepto los de la Section 2) se han calculado utilizando bien el codigo Monte Carlo 05R (Coveyouy otros, 1965, o el mismo modificado por Koblinger, 1974) o bien el codigo MUSPALB (Vertes, 1970) basado en el metodo matricial de albedo. Los datos de interaction neutr6nica para el calculo por el codigo Monte Carlo se han tornado de la biblioteca de secciones eficaces para neutrones ENDF/B III o ENDF/B IV (Drake, 1970). Los datos de secciones eficaces para neutrones usados para el calculo por el codigo MUSPALB se han tornado de los archivos KEDAK (Woll, 1968) y AWRE (Parker, 1963) compilados por el OIEA. En el caso de la clave de Monte Carlo, la evolution de los neutrones se ha determinado recurriendo a las "ponderaciones estadfsticas" (Cashwell y Everett, 1959) para tener en cuenta los procesos de absorcion, pero se ha prescindido del "muestreo segun la importancia" (Kalos, 1963). Las trazas de los neutrones "nacidos" en un conjunto o en un incidente ocurrido en una placa se han seguido, colision tras colision, hasta que su energfa es inferior a un valor determinado (en cuyo momento se han despreciado) o hasta que escapan del conjunto. Los espectros de los neutrones escapados se han obtenido a continuation en lugares determinados con respecto al conjunto. En el caso del metodo matricial de albedo, el blindaje eri forma de placa — infinito en dos dimensiones — se divide en capas delgadas cuyas superficies de separation se caracterizan por operadores de transmision y reflexion en forma matricial. La fuente, que es plana, emite neutrones sobre una superficie de la placa con una distribution cosinusoide. Las ecuaCiones que rigen el transporte de los neutrones en el medio se han obtenido aplicando los principios de conservation del transporte de radiaciones a cada una de las capas delgadas. La solution de estas ecuaciones por tecnicas numericas brinda espectros de fugas de interes.

46 1.3. Magnitudes de interes dosimetrico determinadas a partir de los datos espectrales

Para facilitar la aplicacion de datos espectrales en dosimetria, se han deter- minado en el presente compendio magnitudes de interes dosimetrico. Con cada conjunto de datos espectrales figuran las secciones eficaces medias (a) para cierto numero de detectores comunes. No se incluyen todos los detectores utilizados en los actuales sistemas dosimetricos. En particular, no figuran los sensibles a los neutrones termicos o epitermicos. Ello se debe a la indeterminacion de la information espectral en este intervalo de energi'a neutronica y a la menor impor- tancia de los neutrones de baja energi'a. Igualmente, para cada espectro se han incluido los valores medios por unidad de fluencia del kerma tisular (K), la dosis de parti'culas cargadas (D), el equi- valente de dosis (D.E.) y la dosis de rayos gamma (D7). Las tres ultimas magnitudes se refieren al elemento volumetrico 57 del fantoma equivalente a tejido de la figura 1. Auxier y otros (1968) han calculado las dosis en distintos lugares de este fantoma en caso de irradiation con neutrones monoenergeticos. Estos calculos indican las dosis debidas a las particulas cargadas de retroceso, las debidas a los rayos gamma producidos por la reaction 'H(n,7)2H y los equivalente de dosis obtenidos utilizando el factor de calidad basado en la transferencia lineal de energfa de la radiation ionizante. Los resultados muestran que la dosis mas ele- vada la suele recibir el elemento volumetrico 57. Por tanto, las dosis en este lugar son de interes para la dosimetrfa en, caso de accidente. En varias inter- comparaciones internacionales de sistemas de dosimetria en caso de accidente nuclear (veanse, por ejemplo, Haywood y Poston, 1972; Miric y Ubovic, 1974) se han utilizado el kerma y la dosis en el elemento volumetrico 57 para obtener los resultados. El concepto de equivalente de dosis es de utilidad limitada en los accidentes en los que se han recibido dosis de mas de 25 rad. El factor de calidad en estos casos no se define de modo uni'voco, aunque suele suponerse (Comite RBE, 1963) que esta comprendido entre uno y dos. El equivalente de dosis en el presente compendio se ha calculado aplicando los factores de calidad utilizados normalmente en protection radiologica. Se ha incluido en este trabajo a fin de facilitar la determination del equivalente de dosis en el caso de las personas expuestas a dosis inferiores a 25 rem y en los casos en que el equivalente de dosis recibido en un incidente de criticidad debe sumarse a las exposiciones ya acumuladas. Las secciones eficaces medias (a) y las magnitudes dosimetricas se han obtenido promediando las curvas de excitation 0 las curvas de dosis respecto de los diferentes espectros (normalizados para la unidad de fluencia) entre 1 eV y 15 MeV. Este procedimiento tiene el inconveniente de que a depende de la

47 FIG.l. Fantoma antropomorfico de Auxier et al. (1968). El elemento volumetrico 57 se encuentra en la capa 3, en la superficie expuesta al haz neutrdnico.

fraction de neutrones que queda por debajo del umbral de reaction. Ademas, como la forma espectral en la region de bajas energfas esta establecida con menos seguridad, a puede presentar mayores variaciones cuando se utiliza este metodo (y no el de promediar por encima del umbral de reaction) para los espectros que han obtenido por experimentation y calculo o por calculo los diferentes autores. Lo importante es advertir que esta variation no implica una variation similar de la interpretation de las mediciones de dosis, puesto que las magnitudes de

48 interes en dosimetri'a son CT/K o CT/D, etc., mucho menos sensibles a la region de bajas energi'as del espectro que a o K por separado (vease, por ejemplo, Ing y Cross, 1975a o 1975b). Como es muy conveniente promediar las magnitudes dosimetricas en todo el espectro, es igualmente muy apropiado hacer lo mismo con las secciones eficaces. , Los valores de las secciones eficaces de reaction vari'an algo segun la fuente de information. Para los calculos efectuados en los Laboratorios Nucleares de Chalk River (CRNL), las curvas de excitation de todas las reacciones, excepto la reaction 31P(n,p)31Si se han tornado de la compilation de Zijp y otros (1973) y se han ajustado utilizando el mismo tipo de funciones que en las otras reacciones. En el Instituto Central de Investigaciones Fi'sicas (CIRP), las curvas de excita- tion se han tornado de la compilation EANDC 95 "U" (Liskien y Paulsen, 1974). Estas curvas dan secciones eficaces medias que difieren de los valores obtenidos en los CRNL en menos de 2%. A continuation se reproducen, dada su comodidad, las expresiones anali'ticas utilizadas en los CRNL. En estas expresiones, a es la section eficaz, en barnios, y E la energi'a neutronica, en MeV. l03Rh(n,n')l03mRh

, 0,14 0,53 0,36 ct(E) = 0,25 — • ' 1 + (4E)3'5 1 +(E/0,7)10 1 + (E/l ,9)8

0,39 1,17 ' + - - 1 + (E/5,4)10 1 + (E/l 1,5)13 nsln(n, n')n5mIn

0,33 0,285 p(E) = 0,045 - ' +• 1+(E/1,45)4'3 1 + (E/l 1,2)10

32S(n, p)32P

0,30 0,09 0,25 a(E) = 0,04 + 1 + (E/l 5,4)8 1 + (E/5,65)25 1 + (E/3,6)7

+ 0,075 e-(3>1E-7-4>2 + 0,15 14)2

8E 22 4 2 2 + 0,06 e-( - , ) + 0.11 e-C8E-24,5)

4E 14 2 6E 6 6 2 + 0,12 e-( " ) +0,08 e-(°. - ' )

49 3lP(n,p)3lSi

0,105 0,065 0,070 o(E) = 0,030 + • 1 + (E/14,3)9 1 + (E/5,1)18 1 + (E/2,25)14

E 3 5 26 2 9 5 + 0,26 e-( - .° /°. ) + 0,08 e^" - ^

E 3 7 24 2 E 4 55 0 45 2 + 0,05 e-( - » /°' > + 0,052 e-( " . / . )

231Np(n,f)

.(E)- 2 7 1,43 0.82 0,43

' 1 + (E/0,57)5>3 1 + (E/7)16 1 + (E/15)40

E 2 2 2 20E 4 2 + 0,3 e-< - ' ) + 0,007 e-( " )

233 U(n, f)

(E)= j 33 0,51 0^45 0,37 1 + (E/l ,5)" 1 + (E/6,4)20 1 + (E/14,1)20

-(3E-6)2 + 0,03 e

232 Th(n, f)

0,14 0,14 0,24 o(E) = 0,52 - ' 1 + (E/2,1)7 1 + (E/6,7)30 1 + (E/14,8)15

+ 0,1 e"(E"7.3)2 + 0,095 e-(5E"8>2

+ 0,055 e-(5E"10'3>2

Aunque las expresiones precedentes concuerdan con datos experimentales y evaluados seleccionados, dentro de los margenes de error especificados en el momento de la publication, es posible que sean necesarias modificaciones a medida que se disponga de mejor information. Como estas expresiones utilizan n "funciones escalonadas atenuadas" de la forma 1/(1 + (E/E0) ) y funciones de

50 Gauss, tales modificaciones son faciles de introducir. En la obra original (Cross e Ing, 1975), se examinan las propiedades y ventajas de las funciones escalonadas atenuadas. Ajustando los datos de Snyder (1971) y de Auxier y otros (1968) se han obtenido expresiones anah'ticas del kerma (K), la dosis en el elemerito 57 (D), el equivalente de dosis (D.E.) y la dosis resultante de 'H(n,7)2H (D7). Estas expresiones son menos breves porque la region energetica de 1 eV a 15 MeV se divide en varios intervalos y para cada intervalo se presentan funciones anah'ticas. En las siguientes formulas, K, D y D7 se expresan en nanorad/(n • cm2), y D.E. en nanorem/(n • cm2). E se da en MeV.

KERMA

10"6 < E < 5,0 X 10~2

Dosis de parti'culas cargadas en el elemento 57

D = 0,033/E°'06 10"6 < E < 4 X 10~3

= 2,8 E°>75 4X10"3

= 2,8 E'0, 4 1,0

Equivalente de dosis

D.E. = 1,15 10~6 < E < 0,01

77 = 39 E°> 0,01

20 6 = 61- 1 +(E/13)20 1 + (E/4)10

4 1,0 < E < 15 1+(E/1,5)U

51 Dosis en el elemento 57 resultante de iH(n,y)2H

0 0507 6 4 D7 = 0,2223 E~ ' 10~

= 0,3136 E-°'02334 10~4 < E < 0,25

= 0,231 E"°>277 0.25 < E < 5

= 0,83 1 + (E/l l)7'2 5 < E < 15

Aunque este modo de representation parezca complicado, su empleo es a menudo mucho mas facil que el de los datos originales tabulados, en particular cuando se dispone de computadoras o calculadoras programables, pero no de "subrutinas de ajuste" perfeccionadas.

1.4. Convenciones y unidades

Todos los espectros se presentan en forma de fluencia por unidad de letargia (es decir, por unidad de energia logaritmica) en funcion de la energi'a de los neutrones, en eV. Se ha preferido esta unidad de letargia porque los espectros neutronicos, cuando se representan en forma de fluencia por unidad de energia, exhiben a menudo una pronunciada pendiente negativa en la region de bajas energi'as por existir una dependencia aproximadamente inversa a la energi'a y requieren muchas decadas en el eje de fluencias para una representa- tion completa. Como la unidad de letargia es en esencia una ponderacion de la fluencia respecto a la correspondiente energia neutronica (es decir, AN/A InE = AN/AE), la pendiente negativa pasa a ser una h'nea aproximada- mente horizontal cuya representation grafica es mucho mas sencilla. Los espectros de fluencia por unidad de letargia poseen ademias la ventaja de que, si el eje de flujos es lineal y la energi'a es logari'tmica, el area comprendida debajo de la curva entre dos energi'as cualesquiera es proporcional a la fluencia total para este intervalo energetico. Debajo del ti'tulo de los espectros tabulados figuran a menudo las indica- tions "Geometri'a esferica" o "Geometri'a plana". Se refieren a la configuration para la que se ha obtenido el espectro. (Las diferencias ti'picas espectrales resultantes de la configuration geometrica han sido examinadas por Ing y Cross (1975a, 1975b).) En el caso de la geometri'a esferica, el radio de la esfera se expresa por R0 y las fluencias son en general las correspondientes a una gran distancia (> 3 R0) de los distintos conjuntos. Como la forma espectral vari'a de modo apreciable con la distancia (R) para distancias pequenas (Ing y Cross, 1975a),

52 en ciertos casos se presentan tambien los espectros observados en la superficie de ' contacto con el conjunto. Estos espectros llevan la nota R = R0 junto a la information sobre la geometria (vease por ejemplo la Subsection 4.2). En el caso de la geometri'a plana, el grosor de la placa se expresa por d. Las fluencias indicadas son las integradas en una superficie de las placas irra- diadas por la otra cara (la misma de los espectros reflejados) con neutrones que tienen una distribution angular cosinusoide, a menos que se diga otra cosa. Todos los espectros se han normalizado como a continuation se indica. Si la distribution de fluencias es E

esfera es simetrica, la distribution de fluencias a la distancia R (cuando R > R0) se obtiene dividiendo los valores por 47rR2. Si la distribution de fluencias es PHI(u), el espectro se normaliza para un neutron emitido por una fuente plana. Los espectros graficos y tabulados se presentan en forma de histogramas. En el caso de los espectros tabulados, la energi'a asociada con un valor de la fluencia corresponde al h'mite superior del intervalo del histograma. Esta energi'a es al mismo tiempo el h'mite inferior del intervalo energetico siguiente (superior) y asi sucesivamente. En cuanto a los espectros graficos, se han desplazado verticalmente segun los factores indicados, siempre que ha sido necesario para evitar la superposition de h'neas. Todas las distancias y dimensiones de los conjuntos se indican en cm. Las secciones eficaces medias para las distintas reacciones se han evaluado por la formula

15 MeV 15 MeV

1 eV 1 eV a = 15 MeV 15 MeV

1 eV 1 eV

donde CT(E)vien e dada por la expresion de la Subsection 1.2 y E0(E) es el espectro considerado. (Cabe observar que E se indica en MeV en las expresiones Radio (R0) de la esfera, en cm

l03Rh(n, n')103m Rh - "sln(n, n')"5mln • 32S(n, p)32P • Seccion eficaz 31 P(ri, p)31 Si • media, en barnios 237Np(n,f) • 232Th(n, f) • 238U(n, f) •

- Kerma medio (en nanorad/(n/cm2))

Dosis media de particulas de retroceso en el elemento 57 del fantoma (en nanorad/(n/cm2))

Equivalente medio de dosis en el elemento 57 del fantoma (en nanorad/(n/cm2))

Dosis gamma media en el elemento 57 por neutrones de mas de 1 eV incidentes en el cuerpo (en nanorad/(n/cm2))

FIG.2. Ejemplo que muestra las magnitudes dosimetricas para el espectro de fugas de la esfera H20, de R0 =2 cm, que contiene una fuente de fision en el centro (datos de la Subseccion 4.1). Las magnitudes se han determinado hallando los promedios en el intervalo energetico 1 e V-15 Me V. En el caso de la geometria plana, el radio (R0J de la esfera se instituye por elgrosor de la placa (d). En el caso de los espectros de los conjuntos criticos seleccionados, el nombre de los conjuntos figura encima de las magnitudes dosimetricas.

y en eV en los datos espectrales.) De modo analogo, el kerma medio (K), la dosis maxima de partfculas de retroceso (D), el equivalente de dosis (D.E.) y la dosis gamma producida por neutrones de mas de 1 eV (D7) se han calculado sustituyendo a(E) por la correspondiente funcion. Las secciones eficaces medias (a) se expresan en barnios. K,Dy D7 se indican en nanorad/(n • cm2), mientras que D.E. se expresa en nanorem/(n-cm2). Para facilitar su consulta, las unidades y magnitudes dosimetricas se resumen en la figura 2, que constituye una enumeration ti'pica tomada de los datos referentes a neutrones de fision que escapan de esferas de H20 (Subseccion 4.1).

54 2

SPECTRA FROM SELECTED CRITICAL ASSEMBLIES

2.1. Uncollided fission, Jezebel, Godiva IV and Flattop spectra 2.2. Spectra from Health Physics Research Reactor (HPRR) 2.3. Spectra from Viper and IBR reactor 2.1.

UNCOLLIDED FISSION, JEZEBEL, GODIVA IV AND FLATTOP SPECTRA E0(E) (AREA OF SPECTRUM NORMALIZED TO UNITY)

ENERGY C EV) GODIVA IV

1• 06+ C 4 1.2E+04 6. fl1E— 04 6.62E-04 7.05E-04 2.83E-03 1.7E+04 1.2SE-03 1.26E-03 1.37E-03 6.15E-03 2.2E+04 1.91E-03 2.00E-03 2.216-03 1.066-02 2.76+04 2.67E-03 2.866-03 3.206-03 1.61E-02 3.2E+04 3.49E-03 3.84E-03 4.33E-03 2.25E-02 3.76*04 4.396-03 4.926-03 5.60E-03 2.976-02 4.2E+04 5.346-03 6.09E-03 6.99E-03 3.77E-02 4.7E+04 6.356-03 7.366-03 8.50E-03 4.63E-02 5•5E + 04 7.42E-C3 8.726-03 1•01E—02 5.56E-02 6.5E+04 S.686-03 1.17E-02 1.37E-02 7.556-02 7.5E+04 1.216-02 1.49E-02 1.76E-02 9.71E-02 8. 56 + 04 1.476-02 1.846-02 2.19E-02 1.20E—01 9.5E+04 1.746-02 2.2 2E-02 2.656-0 2 1 .43E-01 I• 2E+ 0 5 2.03E-02 2.62E-02 3.146-02 1 .676-01 1.7E+05 3.61E-02 4.86E-02 5.926-02 2.82E-01 £•2E+C5 5.37E-02 7.38E-02 9.C5E-02 3.78E-01 2 . 76 + 0 5 7.26E-02 1.01E-01 1.24E-01 4.446-01 3.26+05 S.23E-02 1.28E—01 1.57E—01 4.826-01 3.76+05 1.13E-01 1.54E-01 1.89E-01 4.956-01 4.2E+05 1.336-01 1.806—01 2.20E-01 4.88E-01 4• 7E+C 5 1.S3E-01 2.056-01 2.486-01 4.67E-01 S.56+05 1.74E-01 2.286-01 2.746-01 4.376-01 6.S6+C5 2.136-01 2.69E-01 3.19E-01 3.636-01 7.56+05 2.S1E-01 3.04E-01 3 . 54E-01 2.886-01 S.5E+05 2.86E-01 3.326-01 3.806-01 2.23E-01 9.5E+05 3 . 1 BE - 01 3.54E—01 3.976-01 1 .716-01 1 .2E+06 3.47E-01 3.726-01 4.086-01 1 .32E-01 1.76+06 4.47E-01 4.086-01 4.03E-01 5.84E-02 2.26+06 4.7eE-Cl 3.99E-01 3.616-01 5.076-02 2.7E+ 06 4.60E-01 3.72E-01 3.14E-01 4.856-02 3.2E+C6 4.1 EE —01 3.34E-01 2.69E-01 4.45E-02 3.7E+06 3.56E-01 2.916-01 2.256-01 3.92E-02 4.2E+C6 2.95E-01 2.47E-01 1.66E-01 3.356-02 4.7E+06 2.38E-01 2.066-01 1.506-01 2.8 0E-02 S.5E+06 1.87E-01 1.69E-01 1.196-01 2.29E-02 6.5E+C6 1.10E-01 1.09E-01 7.26E-02 1.436-02 7.5E+06 6•146-02 6.696-02 4.24E-02 9.116-03 8.5E + 06 3.26E-02 4.OOE-O2 2.406-02 5.456-03 9.5E+C6 1 . 70E-02 2.34E-02 1.33E-02 3.186-03 1.0E+C7 6.56E-03 1.34E-02 7.20E-03 1.82E-03

The uncollided fission spectrum is from Cranberg el al. (1956). Jezebel, Godiva IV and Flattop are fast, experimental, critical facilities at the Los Alamos Scientific Laboratory. Jezebel (Jarvis et al. (1960)) is a critical, spherical mass of i39Pu. Godiva IV (Hankins, (1967)) is a cylinder of highly . Flattop (Geer et al. (1962)) has a 73*U reflector around a fissile core. Experimental data were measured by Stewart (1960). Histogram data were obtained using the six energy groups of Hansen (1961) and quoted by Hankins (1967). Smooth theoretical fits and tabulated spectra are from Cross and Ing (1973)-

56 IO3 I04 I05 I06 I07 ENERGY (eV)

; Uncollided a Fi ssion Jezebel Godiva IV Flattop

Rh 0. 717 0. 659 0.597 0.200

In 0. 174 0.152 0.129 0.0245

S, 0. 0659 0.0576 0.0429 0.00771

P 0. 0322 0.028 0.0210 0.00371

Np 1. 33 1.25 1.17 0.426

Th 0. 0708 0.0618 0.0504 0.00831

U 0. 279 0.240 0.198 0.0324

K 2. 80 2.64 2.47 1.42

D 3. 29 3.09 2.86 1.46

D.E. 33. 0 31.8 30.7 18.5

DY 0. 214 0.222 0.230 0.288

57 SPECTRA FROM HEALTH PHYSICS RESEARCH REACTOR E0(E) (SPECTRUM ABOVE 1 eV NORMALIZED TO UNITY)

1 ERGY ( EV > UNSH IEUDEO SHIELDED WITH SHIELDED 12 CM LUC ITE 13 CM STE

1 .OE-C2 1.OE— 01 4.24E-03 1.44E-01 2.20E-03 4.4E-C1 5.90E-03 5.35E-02 2.92E-03 6.4E-01 3.31E-03 2.42E-02 1•84E-0 3 1.OE+OO 3.50E-03 2.61E-02 1.88E-03 1 • 5E + C 0 3.50E-03 2.67E-02 2.09E-03 2.9E+00 3.S5E-03 3.16E-02 2.30E-03 5.OE + OO 3.96E-03 3.14E-02 2.37E-03 1 •OE + Ol 4.30E-03 2.94E-02 2.48E-03 1 .7E+01 4.43E-03 3.00E-02 2.70E-03 2.8E+01 4.7CE-C3 2.95E-02 2.68E-03 4•8E + 01 4.6SE-03 2.82E-02 2.82E-03 1• OE + 02 5.06E-03 2.8SE-02 3.20E-03 2.1E+02 S.82E-03 2.94E-02 3.S3E-03 5.6E+02 6.2CE-03 2.97E-02 3.6SE-03 1•2E+ 03 6.67E-03 2.88E-02 4.59E-03 3.4E+03 8.13E-03 2.94E-02 9.S7E-03 7•OE + 0 3 S.3CE-03 2.92E-02 1.10E-03 1.5E+04 1.09E-02 3.23E-02 1•28E—0 3 2•OE + 04 1.33E-02 3•44E-02 3.40E-03 2.5E+04 1.60E-02 3.45E-02 8.61E-03 3.0E+C4 1.75E-C2 3.75E-02 2.26E-02 4•OE + 04 1•97c-0 2 4.00E-02 1.91E—02 5.0E+34 2.45E-02 4.30E-02 4•50 E—02 7.0E+04 3.13E-02 4.51E-02 3.91E-02 8.5E+04 4.1CE-02 4.72E-02 9.91E—02 1.2E+05 S.47E-02 S.56E-02 7.6SE-02 4.0E+C5 1.32E-01 7,19E-02 3.16E-01 9.0E+0S 2.97E-01 1.48E-01 3.S6E-01 1.6E+06 3.31E-01 2.04E-01 2.09E-01 3.0E+06 2.92E-01 2.59E-01 9.9SE-02 S.0E+06 1.E2E-C1 1.70E-01 2.92E-02 7.0E+06 6.04E-02 1.04E-01 1.21E-02 1.0E+07 1.60E-02 3.12E-02 3.2SE-04 1.6E+C7 1.29E-03 2.63E-03 2.94E-04

HPRR (Auxier (1965) and Haywood and Poston (1972)) is a fast-burst reactor for dosimetry research at the Oak Ridge National Laboratory. It is basically a 20-cm diameter cylinder of uranium (93.2% mV) alloyed with 10% by weight molybdenum. Its total mass is about 115 kg. Spectra at a distance of 3 m from the reactor were calculated by Poston et al. (1974) using the DOT code (Mynatt et al. (1969)). They have been replotted to conform to the format of the present Compendium. I I I I IIIII| I I I 1 1 Tmi1i 1 mil] 1—I 11 niij 1 i 11 nii| 1 I ninj 1 i 1 niij

io" u HPRR * I 2 CM LUC I IE

10-' u

HPRR 10"

10"' t- e H -=- 100

10' HPRR • 1 3 CM STEEL

10"

10-

I I I lllll I L_1" I • • • ••"•! I I I mill—I i I mill ! 1 io • 10 " 10" 10' I0 10 10 ENERGY eV

HPRR HPRR (shielded HPRR (shielded a (unshielded) with 12 cm lucite) with 13 cm steel) Rh 0.481 0.419 0.248

In 0.107 0.1025 0.0384 S 0.0351 0.0426 0.00813 P 0.0169 0.201 0.0039 Np 0.988 0.790 0. 590 Th 0.0381 0.409 0.0106 U 0.162 0.167 0.0481

K 2.13 1.75 1.54 D 2.44 2.04 1.63 D.E. 26.5 20.4 20.37 Dy 0,252 0.286 0.284

59 SPECTRA FROM VIPER AND IBR REACTOR E0(E) (AREA OF SPECTRUM NORMALIZED TO UNITY)

MERGY« EV» VIPER IBR IBR • IBR * (UNSHIELDED) 49 CM FE 30 CM FE

1.OE+OO 1.4E+00 0. 0. 0. 0. 2.8E+00 0. 4.01E-04 0. 4.28E-04 4.9E+00 0. 4.46E-04 1 .26E-03 5.78E-04 6.9E»C9 0. 4.88E-04 1.43E-03 6.41E—04 8.9E+00 0. 5.28E-04 1•67E—03 7.30E-04 1.4E+01 0. 5.65E-04 1.77E-03 8.326-04 2.8E+01 0. 7.27E-04 2.09E-03 1.056-03 4.9E+01 0. 9.83E-04 2.63E-03 1.27E-03 6.9E-K51 0. 1.12E-03 2•80 E—03 1 .44E-03 8.9E+01 c. 1.21E-03 2.89E-03 1.60E-03 1.4E+02 0. 1.27E-03 3.08E-03 1.62E-03 2.4E+02 0. 1.39E-03 3.31E-03 2.24E-03 3.2E+02 0. 1.4JE-03 2.92E-03 2.17E-03 4.0E+02 0. 1.42E-03 2.39E-03 3.756-04 6•3E+02 0. 1.45E-03 4.28E-03 2.97E-03 6.9E+02 0. 1.64E-03 5.28E-03 3.45E-03 8.9E+02 2.80E-02 1.83E-03 S.75E-03 3.66E-03 1.1E+03 4.26E-02 1.97E-03 5.32E-03 3.98E-03 1.7E»03 6.4SE-02 2.J 2E-03 8.22E-03 5.21E-03 2.6E+03 3.96E-02 2.70E-03 6.39E-03 3.73E-03 3.2E+03 4.18E-02 3.10E-03 1.21E-02 7.63E-03 3.7E+03 5.51E-02 3.46E-03 1.22E-02 8.02E-03 4.3E+C3 e.306-02 3.76E-03 1•16E-02 6.64E-03 E.96+03 7.29E-02 4.17E-03 1•71E-02 1.05E-02 7.SE+03 9.40E-02 S.7SE-03 1.28E-03 8.00E-04 7.9E+03 1.04E-01 S.9SE-03 3.91E-03 S.78E-03 9 aOE+O 3 1.10E-01 6.13E-03 6.60E-03 1.69E-03 1.2E+04 S.63E-02 7.19E-03 1•54E-02 1.076-02 1.8E+04 1.43E-01 1.01E-02 3.86E-02 2.616-02 2.6E+04 1.47E-01 1.47E-02 4.81E-01 3.006-01 3.4E+04 1 .22E-01 2.46E-02 1.07E-02 1.486-02 4•0E+04 9.92E-02 3.25E-02 2.78E-02 4.076-02 5•0E+O4 1.216-01 3.93E-02 3.S2E-02 4.1 IE— 02 6.4E+04 1.8EE-01 6.41E-02 1.00E-01 1.12E-01 8•4E+04 2.26E-01 8.38E-02 1.21E-01 1 .11E-01 1•2E+05 2.02E-01 1.45E-01 3.666-01 3.39E-01 1.5E+05 2.80E-01 1.936-01 3.97E-01 3.24E-01 2.3E+05 2.51E-01 2.32E-01 5.92E-01 5.136-01 3.9E+CS 2.60E-01 3.16E-01 4.03E-01 4.34E-01 5.9E+05 1.68E-01 5.47E-01 1.69E-02 2.696-01 7.9E+05 1.41E-01 4.85E-01 0. 1.306-01 9. 5E + 0S 7.78E-02 3.6SE-01 0. 6.086-02 1 .2E*06 5.74E-02 3.12E-01 0. 4.57E-02 1•7E+0 6 2.78E-02 1.19E-01 0. 1.01E-02 2.2E+C6 1.48E-02 1.57E-02 0. 0. 2.7E+06 S.26E-03 0. 0. 0. 1 3.2E+06 6.67E-C3 0. 0. 0. 3.7E+06 4.44E-03 0. 0. 0.

4•0E+06 3.7CE-03 0. v 0. 0.

The IBR reactor at the United Institute of Nuclear Studies is a fast pulse reactor (Blokhin et ai (1961)} consisting ofaPu rod assembly made critical by having WU. fastened to two rotating discs, traversing the assembly. The measured spectra were taken from the work of Bondarenko et al. (1965) and re plot ted in histogram form. The Viper reactor (Weale et al. (1968)) at the Atomic Weapons Research Establishment (UK) has a core of 37% enriched uranium fuel pins in a matrix of aluminium-loaded epoxy resin and copper. The core it surrounded by 20 cm of Cu. The spectrum, measured by Delafield et al. (1975), has been replotted to conform to the format of this Compendium. VIPER I BR IBR + IBR + 49 cm Fe 30 cm Fe Rh 0.0765 0.224 0.0397 0.0769 In 0.00621 0.0168 0.00030 0.00242 S 0.00058 <0.00001 <0.00001 <0.00001 P 0.00033 0.00001 <0.00001 <0.00001 Np 0.179 0.544 0.0663 0.165 Th 0.00152 0.00241 <0.00001 0.00009 U 0.00627 0.00998 <0.00001 0.00051

K 0.775 1.46 0.807 0.981 ' D 0.740 1.52 0.710 0.912 dTE. 9.88 20. 5 9.60 12.4 DY 0.318 0.282 0.321 0.308

61

3

SPECTRA FROM CRITICAL SOLUTIONS

3.1. Fissile H20 solution

3.2. Fissile D20 solution 3.1.

FISSILE H20 SOLUTION SPHERICAL GEOMETRY

4ttR2E0(E) (1 NEUTRON PRODUCED WITHIN SOLUTION)

R 50 E NERGY(EV) R„ = 2. »0=5. RQ=10. "0=30. o= » 1 .OE+OO I.OE + Ol 1.35E-03 6.74E-03 1.13E-02 5.66E- 03 3.81E-03 5.OE + Ol 1.96E-C3 1.C7E-02 1 .32E-02 6.52E- 03 3.81E -03 1.0E+02 2.79E-C3 1.14E-02 1.15E-02 7.02E- 03 4•20E-03 2.0E+02 4.60E-03 1.20E-02 1.S0E-02 6.64E- 03 4.26E -03 4.0E+02 4.C0E-03 1.33E-02 1.62E-02 6.03E- 03 4.20E -0 3 7.0E+02 S.14E-03 1.S8E-02 . 1 .48E-02 7.50E- 03 4.39E -03 1.0E+03 6.13E-03 1.43E-02 1.44E-02 7.61E- 03 4.76E -03 3.0E + 03 7.96E-03 l.e3E-02 1 .68E-02 7.77E- 03 S.22E- -03 6.0E+03 9.38E-C3 2.00E-02 1.72E-02 8.42E- 03 5.33E -03 1.0E+04 1.19E-C2 2.1SE-02 2.09E-02 8.55E- 03 5.10E -03 2.0E+04 1.88E-02 2.13E-02 2.10E-02 9.7 5E- 03 S.81E -03 4.0E+04 2.26E-02 2.e7E-02 2.58E-02 1•09E- 02 6.65E -03 6.0E+04 2.96E-02 4.01E-02 2.83E-02 1.37E- 02 7.91E -03 8.0E+04 3.82E-C2 4.32E-02 3.08E-02 1.36E- 02 9. 38E -0 3 1.0E+05 4.40E-02 5.74E-02 3.78E-02 1 . 54E- 02 9.81E -03 1.5E+05 5.30E-02 S.41E-02 3.96E-02 1 .97E- 02 1 • 23E -02 2.0E+05 7.19E-02 6.S7E-02 4.69E-02 2.35E- 02 1 .34E -02 2.SE+05 8.99E-02 8.40E-02 6.19E-02 2.71E- 02 1 .57E -02 3.0E+05 1.01E-01 9.39E-02 7.33E-02 3.06E- 02 1.79E -02 3.SE+CS 1.C7E-01 1.10E-01 7.38E-02 3.40E- 02 2.07E -02 4.0E + 05 1 .26E-01 1 • C7E-01 S.23E-02 3.39E- 02 2.17E -02 4.SE+CS 1.41E-01 1.05E-01 8.S8E-02 3.19E- 02 2.02E -02 5.0E+05 1.4SE-01 1.29E-01 8.36E-02 3.94E- 02 2.16E -02 S.5E+C5 1.74E-01 1.68E-01 1.04E-01 4.73E- 02 2.97E -02 e.OE + CS 1*9 SE-01 1.67E-01 1.16E-01 4.80E- 02 3 .10E -02 7.0E+0S 2.09E-01 1 .91E-01 1.3SE-01 5.20E- 02 3.46E -02 e.0E+05 2.55E-01 2.24E-01 1.36E-01 6.70E- 02 3.79E -02 9.0E+05 2.83E-01 2.15E-01 1.50E-01 6.S8E- 02 4.30E -02 1.0E+06 2.S9E-01 1.S6E-01 1.S1E-01 5.85E- 02 3.61E -02 1.2E+06 3.04E-01 2.27E-01 1.76E-01 6.38E- 02 4.17E -02 1.4E+06 3.37E-01 2.ESE-01 1.8SE-01 7.40E- 02 4.85E -02 1.6E+06 3.98E-C1 3.CSE-01 2.07E-01 8.42E- •02 5.04E -02 1.8E+06 4.09E-01 2.99E-01 2.06E-01 8.23E-02 S.49E -02 2•0E+C6 3.79E-01 2.94E-01 1.86E-01 6.49E- •02 5.28E -02 2.3E+C6 4.02E-C1 3.21E-01 2.33E-01 9.25E-02 5.64E -02 2.6E+06 4.0SE-01 2.98E-01 2.4SE-01 1.06E- >01 6.38E -02 3.0E+06 3.77E-01 3.C3E-01 2.13E-01 9.71E-02 5.46E -02 3.SE+C6 3.43E-01 2.59E-01 1 .75E-01 7.70E- •02 4.29E -02 4.0E+06 2.74E-01 2.C7E-01 1.56E-01 6.28E- •02 3.83E -02 4.5E+06 2.28E-01 l.e7E-01 1.31E-01 5.93E- >02 3.S3E -02 E.0E+06 1.79E-01 1.44E-01 1.17E-01 4.75E-02 3.04E -02 6.0E+06 1.32E-01 1.C1E-01 8.34E-02 3.18E- •02 2.13E -02 7.0E+06 6.S6E-C2 S.49E-02 3.79E-02 2.22E-02 1 . 39E -02 8.0E+06 3.74E—02 3.e3E-02 1.86E-02 1.29E- •02 7.08E -03 9.0E+06 2.C0E-02 2.17E-02 1.74E-02 7.11E- •03 4.47E -03 1.0E+07 1.18E-02 l.leE-02 7.09E-03 3.83E-03 2.21E -03 1.1E+C7 4.S9E-C3 3.6EE—03 2.48E-03 1•45E- •03 1 .28E -03 1.2E+07 3•S0E-C3 3.S9E-03 0. 8.66E-04 3.54E -04 1.3E+07 7.81E-04 7.81E-04 7.81E-04 5.75E- •04 1.90E -04 1.4E+07 1.69E-C3 1.69E-03 1.69E-03 2.11E- •04 2.HE -04 1.SE+C7 9.C6E-04 0. 9.06E-04 0 . 0.

Data from: Ing and Cross {1975a) I02 I03 I04 I05 ENERGY eV

a Ro 2 5 10 15 20 30 50 Rh 0. 620 0. 524 0. 490 0. 484 0. 472 0. 476 0. 472 In 0. 150 0. 126 0. 118 0. 116 0. 114 0. 115 0. 113 S 0. 0546 0. 0470 0. 0444 0. 0440 0. 0428 0. 0449 0. 0439 P 0. 0284 0. 0242 0. 0229 0. 0227 0. 0218 0. 0230 0. 0223 Np 1. 15 0. 980 0. 912 0. 903 0. 880 0. 880 0. 876 Th 0. 0602 0. 0511 0. 0473 0. 0470 0. 0461 0. 0471 0. 0461 U 0. 242 0. 204 0. 189 0. 188 0. 185 0. 188 0. 184 ic 2. 48 2. 14 1. 99 1. 97 1. 93 1. 94 1. 92 D 2. 89 2. 49 2. 32 2. 30 2. 25 2. 26 2. 24 D.E. 29. 16 25. 20 23. 54 23. 27 22. 80 22. 75 22. 68 DY 0. 232 0. 254 0. 265 0. 266 0. 269 0. 269 0. 270

65 3.2.

FISSILE D20 SOLUTION SPHERICAL GEOMETRY

4ttR2E0(E) (1 NEUTRON PRODUCED WITHIN SOLUTION)

ENERGY (EV ) P0-2. P0=5. R0=10. R0=30. R0=50. 1•0E + 00 1.0E+01 0. 0. 3.85E-03 2.10E-02 1.74E-02 5 • 0E-+01 0. 3.1CE-04 6.S8E-03 2.46E-02 1.92E-02 1.0E+C2 0. 5.41E-04 1.06E-02 2.79E-02 2.10E-02 2.0E+02 0. 1.3EE-03 1.39E-02 2.99E-02 2.38E-02 4•OE+O 2 9.02E-05 2.43E-03 1.51E-02 3.18E-02 2.26E-02 7.0E+02 2.23E-04 3.35E-03 2.06E-02 3.39E-02 2.46E-02 1.0E+03 1.75E-C4 4.73E-03 2.03E-02 3.54E-02 2.46E-02 3.0E+03 3.41E-04 7.39E-03 3.13E-02 3.70E-02 2.65E-02 6.0E + 03 1.71E-03 1.37E-02 3.87E-02 4.42E-02 2.71E-02 1.0E+C4 4.40E-03 1.E3E-02 4.61E-02 4.64E-02 2.94E-02 2. OE-f 04 6.76E-03 2.87E-02 6.00E-02 4.99E-02 3.31E-02 4.0E+C4 1.5SE-C2 4•66E-02 7.48E-02 S.43E-02 3.51E-02 6.0E+04 3.08E-02 6.46E-02 8.87E-02 S.55E-02 3.96E-02 8.0E+04 3.85E-C2 7.64E-02 1.00E-01 5.83E-02 3.89E-02 1« 0E + 05 5.49E-02 9.46E-02 1.03E-01 S.81E-02 3.98E-02 1•5E + C5 6.64E-02 1.J1E-01 1.07E-01 S.93E-02 3.63E-02 2.0E+05 e.36E-C2 1.21E-01 1.09E-01 5.86E-02 3.77E-02 2.5E+05 1.106-01 1•28E-01 1.16E-01 5.42E-02 3.S3E-02 3•0E+ 05 1.18E-01 1.40E-01 1.21E-01 5.95E-02 3.8SE-02 3•SE + 0 5 1.36E-01 1.4SE-01 1.35E-01 6.08E-02 3.42E-02 4.0E4-05 1.S3E-CI 1•53E-01 1 .24E-01 5.53E-02 3.08E-02 4.SE+0S 1.40E-01 1.27E-01 8.72E-02 4.15E-02 2.73E-02 5•06+ C 5 1.E86-C1 1.44E-01 1.08E-01 4.S8E-02 3.22E-02 E.56+05 1 .93E-01 1.67E-01 1.41E-01 6.59E-02 3.90E-02 6.0E+CS 2.C8E-01 1.9EE-01 1.61E-01 6.07E-02 3.68E-02 7.0E+05 2.316-01 2.14E-01 1.58E-01 6.95E-02 4.68E-02 8.0E+C5 2.70E-01 2.4SE-01 1.76E-01 8.10E-02 4.90E-02 9.0E+05 2.96E-C1 2.ECE-01 1.S6E-01 7.S9E-02 4.35E-02 1• 0E+ 06 2.73E-01 2.24E-01 1.43E-01 6.92E-02 3.71E-02 1•2E + 0 6 3.C6E-01 2.30E-0J 1.68E-01 7.0SE-02 4.53E-02 1•4E+06 3.49E-01 2.77E-01 1.91E-01 8.17E-02 5.41E-02 1.6E+C6 3.88E-01 3.07E-01 2.22E-01 9.8SE-02 5.90E-02 1«8E + 06 3.86E-01 3.3SE-01 2.31E-01 9.90E-02 6.58E-02 2•OE+O6 3.966-01 3.12E-01 2.21E-01 9.58E-02 6.02E-02 2•3E+06 4.11E-01 3.41E-01 2.S2E-01 1.10E-01 7.4SE-02 2.66+06 4.31E-01 3.32E-01 2.70E-01 1.23E-01 7.81E-02 3.0E+C6 3.86E-C1 3.41E-01 2.46E-01 1.09E-01 6.73E-02 3.5E+06 3.47E-01 2.76E-01 2.17E-01 9.14E-02 5.76E-02 4.0E+06 2.87E-01 2.27E-01 1.74E-01 7.25E-02 4.SSE-02 4•56+06 2.49E-01 1.98E-01 1.56E-01 7.16E-02 4.24E-02 5•0E + 06 2.01E-01 1.54E-01 1.25E-01 5.86E-02 3.74E-02 6.0E+06 1.28E-01 1.06E-01 8.66E-02 4.21E-02 2.68E-02 7•0E+06 7.09E-02 S.16E-02 4.83E-02 2.306-02 1.646-02 8.0E+06 3.956-02 3.806-02 2.926-02 1.496-02 8.986-03 9.06+06 2.226-C2 2.276-02 1.606-02 5.09E-03 5.276-03 1.06+07 1.28E-02 5.0EE-03 9.86E-03 4.15E-03 3.286-03 1.1E+C7 3.19E-03 3.19E-03 2.86E-03 2.53E-03 1.01E-03 1•2E+07 3.59E-03 2.16E-03 1.28E-03 4.63E-04 3.31E-04 I.3E+07 7.8 IE— 04 0. 7.81E-04 9.44E-04 0. 1.4E+07 1.EEE-C3 1.69E-03 8.43E-04 1.77E-04 3.88E-04 1.5E+07 1.81E-03 9.06E-04 B.32E-04 2.26E-04 2.26E-04

Datafrom: Ing and Cross (19771

66 ENERGY eV a Ro 2 5 10 15 20 30 50 Rh 0. 638 0. 524 0. 399 0. 323 0. 284 0. 250 0.233 In 0. 154 0. 125 0. 0954 0. 0770 0. 0678 0. 0597 0.0560 S 0. 0568 0. 0460 0. 0367 0. 0298 0. 0259 0. 0234 0.0219 P 0. 0294 0. 0239 0. 0189 0. 0152 0. 0133 0. 01195 0.0112 Np 1. 185 0. 978 0. 743 0. 606 0. 534 0. 470 0.440 Th 0. 0616 0. 0503 0. 0388 0. 0313 0. 0274 0. 0244 0.0230 U 0. 247 0. 201 0. 155 0. 125 0. 110 0. 0971 0.0917

K 2.57 2.20 1.73 1. 42 1.25 1. 11 1.04 D 2.99 2.53 1.97 1. 62 1.43 1. 27 1.19 D.E. 30.20 25.85 20.23 16. 77 14.89 13. 23 12.40 57 0.227 0.246 0.273 0. 294 0.307 0. 318 0.325

67

4

SPECTRA OF FISSION NEUTRONS THROUGH SHIELDING

4.1. Fission neutrons through H20 (spectrum far from shielding)

4.2. Fission neutrons through H20 (spectrum on surface of shielding)

4.3. Fission neutrons through D20 (spectrum far from shielding)

4.4. Fission neutrons through D20 (spectrum on surface of shielding) 4.5. Fission neutrons through graphite

4.6. Fission neutrons through polyethylene (CH2)n 4.7. Fission neutrons through polyethylene +1% boron 4.8. Fission neutrons through Be 4.9. Fission neutrons through Al 4.10. Fission neutrons through concrete 4.11. Fission neutrons through concrete + 1% Fe 4.12. Fission neutrons through concrete + 10% Fe 4.13. Fission neutrons through concrete + 30% Fe 4.14. Fission neutrons through concrete + 50% Fe 4.15. Comparison of spectra of fission neutrons through concrete with different concentrations of Fe (100 cm slab) 4.16. Fission neutrons through Fe 4.17. Fission neutrons through Cu 4.18. Fission neutrons through Pb 4.19. Fission neutrons through 238 U 4.1.

FISSION NEUTRONS THROUGH H20 (SPECTRUM FAR FROM SHIELDING) SPHERICAL GEOMETRY

4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGV ( EV I R„=2. 1^=10. i .oe+oo 1.0E+01 1 .6eE- 03 1 • 25E-02 2 .236-03 4.3 36- 04 1.32E -05 5.0E+01 3 .45E- 03 1 . 20E-02 2 .166- 03 4.19E- 04 3.746 -05 1 .0E+02 5 • 32E-03 1 • 29E-02 1 .896- 03 4.74E- 04 2.12E -.0 5 2.0E+02 5.• 68E-03 1 • 24E-02 2 .286- 03 4.57E- 04 2.25E -05 4.0E+02 6 • G5E-C 3 1 • 23E-02 2 .356- 03 4.54E- 04 3.27E -0 5 7.0E+02 8 • 8 2E -C3 1 .276- 02 2 .166- 03 4.876- 04 4.1 46 -0 5 1.0E+03 9 .81E- 03 1 .216- 02 1 .686- 03 4.17E-04 4.26E -05 3.06+03 1 .15E- 02 1 .226- 02 2 .176- 03 4.4 06— 04 4.16E -05 6.0E+03 1 • 45E-02 1 .296- 02 2 • 036-03 4.626- 04 3.32E -05 1•0E+04 1 • 99E-02 1 .246- 02 2 .476- 03 5.226- 04 4.22E -05 2.0E+04 2 . 346-02 1 . 44E —0 2 2 .286- 03 6.18E-04 3.026 -05 4.06 + 04 3 . 02E-02 1 . 65E-02 3 .036- 03 5.746- 04 3.66E -0 5 6.0E+04 3 .446- 02 1 .616- 02 3 .616- 03 7.556- 04 3.73E -05 8.0E+04 3 .876- 02 2 . 13E-0 2 3 • 766-03 8.396- 04 4.266 -05 1.0E+C5 5 • 49E-02 1 . S9E-02 4 .326- 0 3 8.206- 04 8.846 -05 1.5E + 05 6 • 32E —02 2 .4eE- 02 4 .91 6-03 9.64E- 04 8.24E -0 5 2.0E+05 7 . 1 7E-02 3 . 146-02 5 .126- 03 1.256- 03 1.05E -04 2.SE+C5 9 .2 16- 02 3 .60E- 02 7 .126- 03 1.616- 03 7.44E -05 3.0E+C5 9 • 90E-02 3 • 44E-02 7 • 70 E-03 1 .396-03 9.20E -0 5 3.5E+05 1 .236- 01 4 . 1 0E-02 7 .446— 03 1 .67E-03 9.72E -05 4•0E+05 1 .396- 01 4 .516- 02 8 .556- 03 1.886- 03 1 .13E-0 4 4.5E + C5 1 • 22E-01 4 . 20E-02 8 .966- 03 1.546- 03 1.54E -04 S.0E+05 1 . £ 26-01 5 . 1 EE-02 9 .726- 03 2.16E- 03 8. 786 -05 5.5E+05 1 .eee- 01 e . 30E-02 1 . 19E-02 2.84E- 03 2.096 -04 6.06+05 1.996 - 01 6 . 72E-02 1 .316-•02 2.606- 03 2.09E -04 7.06+05 2 .136- 01 7 . 33E-02 1 .52E- •02 3.486- 03 2.26E -04 8.0E+05 2 • 506-01 7 . S6E- 02 1 • 436-02 3.856- 03 2.04E -04 9 • 0E + 0 5 2 • 626-01 e . 4 2E-02 1 .506- 02 3.906- 03 2.46E -04 1.0E + 06 2 . 47E- 01 7 • 43E-02 1 .376-02 2.886- 03 1.1 6E -04 1.2E+06 2 . 94E-01 8 . 90 E-02 1 .71 E- 02 4.026- 03 2.86E -04 1.4E+C6 3 .246- 01 1 . C2E- 01 2 .306- 02 5.336- 03 2.756 -04 1.66+06 3 .246- 01 1 . 15E-01 2 .586-02 6.56E- 03 4.44E -04 1.86+C6 3 .676- 01 1 .28E- 01 2 .896-02 7.37E- •03 4.62E -04 2.06+06 3 .686- 01 1 . 22E-01 2 .906->02 7.05E- 03 4.336 -04 2.36 + C6 3 . 56E- 01 1 . 33E- 01 3 .666-02 9.51E-03 7.17E -04 2.66+06 3 . 99E- 01 1 . 53E- 01 4 .316- 02 1 .176-•02 8.18E -04 3.06+06 3 .78E-01 1 • 34E-•01 3 .636-02 9.616-03 4.65E -04 3.SE+06 3 .29E- 01 1 • 11E- 01 2 .836- 02 7.126- 03 4.596 -04 4.06+06 2 . 18E- 01 8 . 30E->02 2 . 026-02 5.976- 03 4.37E -04 4.SE+06 2 • 08E- 01 9 . 22E- 02 2 .576- 02 7.77E- 03 8.626 -04 5.06+06 1 . 826-01 7 .38E-02 2 .216-•02 7.06E- 03 6.886 -04 6.0E+06 1 .176- 01 5 .446- 02 1 .84E-02 6.92E- 03 7.74E -04 7.06+06 7 .246- 02 3 .636-02 1 .306-•02 4.466- 03 6.30E -04 8.0E+06 3 .see- 02 1 •97E-02 5 .90E-03 2.406-03 3.35E -04 9.06+06 1 . E3E- 02 9 .73E-03 4 .776-•03 1 .596-03 3.06E -04 1.0E+07 8 .87E- •03 5 .426-03 3 • 02E-•03 1 .01E-03 1.276 -04 1.16+07 3 . 286 -•03 2 • 42E-•03 1 .02E-03 5.90E-04 1 .436-0 4 1.2E+07 2 .876-03 1 .726-•03 5 . 126-04 3.43E-04 3.386 -05 1.3E+07 3 .126- 03 5 .866-•04 4 .796- •04 2.076-04 3.57E -05 1.46+07 8 .4 3E- 04 4 .096-04 1 .056-04 7.916—05 2.116 -05 1.56+07 9 • 066-C4_ 0 0 . 8.35E- •05 0.

Data from: Ing and Crott (] 975a)

70 ENERGY eV a Ro 2 5 10 15 20 30 50 Rh 0. 582 0. 469 0. 462 0. 515 0. 550 0. 623 0. 703 In 0. 140 0. 113 0. 113 0. 130 0. 140 0. 161 0. 182 S 0. 0510 0. 0414 0. 0456 0. 0543 0. 0623 0. 0792 0. 111 P 0. 0266 0. 0215 0. 0230 0. 0276 0. 0308 0. 0382 0. 0500 Np 1. 087 0. 876 0. 848 0. 924 0. 972 1. 070 1. 147 Th 0. 0559 0. 0456 0. 0469 0. 0546 0. 0605 0. 0724 0. 0912 U 0. 225 0. 182 0. 186 0. 216 0. 238 0. 279 0. 335

K 2. 35 1. 92 1. 87 2. 04 2. 17 2. 42 2. 71 D 2. 74 2. 23 2. 19 2. 40 2. 56 2. 87 3. 26 D.E. 27. 72 22. 74 21. 77 23. 28 24. 31 26. 38 28. 15

DY 0.239 0.269 0.277 0.268 0.262 0.2498 0.241

71 4.2.

FISSION NEUTRONS THROUGH H20 (SPECTRUM ON SURFACE OF SHIELDING)

SPHERICAL GEOMETRY (R = R0)

4jt R2 E0(E) (1 NEUTRON EMITTED AT CENTER)

R s E NERGY ( E V I RQ =2. R =5. Ro=10. R0=30. 0= <>. 1 • OE + OO 1.0E+01 2.38E-03 1.99E-02 3.73E-03 7.29E-04 2.51E-05 5.0E+01 5.60E-03 1.91E-02 3.406-03 6.95E-04 4.77E-05 1•0E+02 1.12E-02 2.15E-02 3.116-03 7.82E-04 2.76E-0S 2.0E+02 8.6SE-03 1.92E-02 3.S6E-03 7.96E-04 5.746-05 4.0E+02 1.14E-02 l.seE-02 3.78E-03 6.936-04 4.706-0S 7.0E+02 1.26E-02 1.99E-02 3.S2E-03 8.4SE-04 S.26E-0S 1•0E + 0 3 1.416-02 1.86E-02 2.686-03 7.25E-04 4.95E-05 3.0E+03 1.72E-02 2.00E-02 3.58E-03 7.34E-04 5.34E-0S 6.0E+03 2.086-02 2.196-02 3.16E-03 7.8SE-04 3.61E-05 1.064-04 2.e3E-02 2.0eE-02 3.83E-03 9.526-04 5.806-05 2.0E+04 3.62E-02 2.41E-02 3.756-03 1.28E-03 4.25E-05 4.0E + 04 4.30E-02 2.42E-02 4.86E-03 9.S5E-04 6.23E-05 6•OE +04 5.08E-02 2.67E-02 5.79E-03 1.436-03 5.116-05 8.0E+C4 5.406-02 3.S1E-02 7.36E-03 1.S2E-03 5.42E-05 1.0E+05 7.C6E-02 2.87E-02 6.82E-03 1.326-03 2.206-04 1.5E+C5 7.S6E-02 3 .77E-02 8.38E-03 1.S56-03 1.31E-04 2.0E+05 8.96E-C2 4.S7E-02 8.97E-03 2.10E-03 2.48E-04 2.5E+C5 1.12E-01 5.S7E-02 1.19E-02 2.876-03 1.47E-04 3.06+05 1.206-01 4.906-02 1.13E-02 2.196-03 1.83E-04 3.5E+05 1.48E-01 5.65E-02 1.17E-02 2.576-03 1.586-04 4.0E+05 1.67E-01 6.316-02 1.31E-02 3.506-03 1.79E-04 4.5E+C5 1.51E-C1 6.25E-02 1.4SE-02 2.50E-03 2.66E-04 E.OE+CS 1.72E-01 7.60E-02 1.43E-02 3.32E-03 1.67E-04 5.5E+05 2.11E-01 8.68E-02 2.03E-02 4.30E-03 3.876-04 6.0E+C5 2.19E-01 8.87E-02 1.88E-02 4.09E-03 3.04E-04 7.0E+05 2.32E-01 S.49E-02 2.316-02 5.13E-03 3.65E-04 8.0E+05 2.7SE-01 1.C46-01 1.93E-02 6.34E-03 2.616-04 9.0E + 05 2.81E-01 1.05E-01 2.126-02 5.576-03 3.48E-04 1.0E+06 2.C2E-01 9.38E-02 1.986-02 4.71E-03 1.456-04 1.2E+06 3.12E-01 1.08E-01 2.35E-02 6.06E-03 4.00E-04 1.4E+06 3.37E-01 1.24E-01 3.06E-02 7.59E-03 4.49E-04 1.6E+06 3.33E-01 1.30E-01 3.196-02 8.486-03 6.88E-04 1.8E+C6 3.78E-C1 1.44E-01 3.56E-02 9.35E-03 5.846-04 2.0E+C6 3.77E-C1 1.37E-01 3.43E-02 8.71E-03 5.S6E-04 2.3E+06 3.65E-01 1.4EE-01 4.13E-02 1.11E-02 8.90E-04 2.6E+06 4.10E-01 1.65E-01 4.906-02 1.376-02 1.046-03 3.0E+06 3.84E-01 1.4SE-01 4.09E-02 1.10E-02 5.43E-04 3.5E+06 3.36E-C1 1.21E-01 3.25E-02 8.70E-03 5.51E-04 4.0E+06 2.24E-01 8.99E-02 2 .32E-02 7.07E-03 6.126-04 4.5E+C6 2.126-01 9.75E-02 2.86E-02 8.796-03 1.026-03 5.0E+06 1.89E-01 7.58E-02 2.36E-02 7.66E-03 7.85E-04 6.0E+06 1.18E-01 5.626—02 1.986-02 7.576-03 8.72E-04 7•0E+06 7.34E-02 3.77E-02 1.36E-02 4.64E-03 6.61E-04 8.0E+06 3.99E-02 2.03E-02 6.11E-03 2.49E-03 3.71E-04 9.0E+06 1.54E-C2 1.02E-02 4.96E-03 1.69E-03 3.266-04 1.0E+07 8.88E-03 E.42E-03 3.16E-03 1.0SE-03 1.296-04 1.1E+07 3.28E-03 2.436-03 1.056-03 5.99E-04 1.49E-04 1.2E+07 2.87E-C3 1.93E-03 5.36E-04 3.53E-04 3.48E-05 1.3E + 07 3.12E-03 5.86E-04 4 .89E-04 2 .46E-04 3.74E-05 1.4E+07 8.43E-04 4.09E-04 1.05E-04 7.91E-05 2.116-05 1.5E+07 9.C6E-04 0. 0. 8.38E-05 0.

Data from: lni and Cross (1975a)

72 10° 10' I02 I03 I04 I05 I06 I07 ENERGY eV

a Rq 2 5 10 15 20 30 50 Rh 0. 535 0. 398 0. 387 0. 432 o'. 472 0. 538 0. 633 In 0. 127 0. 0939 0. 0925 0. 106 0. 117 0. 135 0. 162 S 0. 0461 0. 0338 0. 0361 0. 0426 0. 0500 0. 0634 0. 0938 P 0. 0240 0. 0176 0. 0183 0. 0217 0. 0249 0. 0309 0. 0426 Np 1. 002 0. 754 0. 723 0. 791 0. 85.3 0. 948 1. 055 Th 0. 0506 0. 0378 0. 0378 0. 0438 0. 0496 0. 0595 0. 0789 U 0. 204 0. 151 0. 151 0. 174 0. 196 0. 230 0. 292

K 2. 19 1. 68 1.61 1. 76 1.91 2.14 2.49 D 2. 54 1. 94 1.87 2. 06 2.24 2.52 2.97 D.E. 25. 98 20. 09 19.12 20. 55 21.95 23.92 26.49 D? 0. 248 0. 283 0.292 0. 284 0.276 0.264 0.249

73 4.3.

FISSION NEUTRONS THROUGH D20 (SPECTRUM FAR FROM SHIELDING) SPHERICAL GEOMETRY

4vrR2E0(E) (1 NEUTRON EMITTED AT CENTER)

E NERGY ( EV ) R0=2. R0 =S . = 1 0 . RQ=30. RQ =50. 1.OE+OO 1.OE+Ol 0 • 8 • 26E- 03 3 • 96E-02 3 • 18E- 02 4.71E -03 5.0E+01 0 1 .49E- 02 4 .67E- 02 3 .1 1E- 02 3.51E -03 1.0E+02 0 • 2 . OCE- 02 4 . 96E- 02 2 • 82E- 02 2.86E -03 2.0E+02 9 • 02E-C5 2 • 57E- 02 5 • 30 E-02 2 • 83E- 02 2.47E -03 4.0E+02 0 3 • 2BE- 02 5 • 51E-02 2 .66E- 02 2.19E -03 7.0E+02 2 • 2 3E- 04 4 • COE- 02 5 • 61 E- 02 2 • 44E- 02 1.97E -03 1.0E+03 3 • 50E- 04 4 • 65E-02 5 • 50E-02 2 • 26E-02 1.68E -0 3 3.0E+03 1 • 42E- C3 5 • 4SE- 02 S • 63E-02 2 • 09E- 02 1 .42E -03 6.0E+03 2 .80E- C3 6 • 90E- 02 5 • 55E-02 1 • 82E- 02 1 . 26E -0 3 1.0E+04 6 • 98E- 03 8 • 28E- 02 5 .37E- 02 1 • 63E-02 1 .1 IE -0 3 2.0E+04 1 . 16E- 02 9 • 28E- 02 5 • 31E-02 1 .SOE- 02 9.64E -04 4.0E+04 2 • 24E- 02 1 • 07E-01 4 .80E- 02 1 • 24E-02 7.36E -04 6.0E+04 3 • 4 2E- 02 1 . 10E- 01 4 . 35E- 02 1 • 13E- 02 6.86E -04 8.0E+04 4 • 45E-02 1 • C8E-01 3 . 92E- 02 9 .38E- 03 6.00E -04 1.0E+C5 5 . 7 IE - 02 1 . 17E- 01 3 .46 E- 02 8 • 66E-03 5.85E -04 1 a 5E + 0 5 7 • 97E- 02 1 . oeE- 01 3 • 1 8E— 02 6 .89E- 03 3. 66E -04 2.0E+05 9 • 51E- 02 9 • 4 2E- 02 2 .50 E- 02 5 • 80E- 03 5.29E -04 2. SE + OS 1 • 2 1E- 01 1 . 02E- 01 2 • 19E- 02 4 • 86E- 03 3.00E -04 3.0E+05 1 .40E- 01 8 .60E- 02 2 .08E- 02 4 • 30E- 03 3.29E -04 3.SE + C5 1 • S8E- 01 8 • 4 3E- 02 1 i 92E- 02 4 .1 1E- 03 2.31E -04 4 .0E + 05 1 • E2E- CI 6 • 6SE- 02 1 • 43E- 02 3 • 83E- 03 3.71E -04 4.SE+C5 1 • 40E- 01 4 .57E- 02 1 .03E- 02 2 .80E- 03 1 .28E -04 S.OE+OS 1 • 73E- CI 6 • C1E- 02 1 • 34E- 02 2 .83E- 03 2.88E -04 5.SE+OS 1 • 86E- 01 9 • 22E- 02 2 • 34E- 02 5 .33E- 03 4.43E -04 6.0E+05 2 • 1 3E- 01 9 • 43E- 02 2 • 34E-•02 5 • 35E- 03 2.86E -04 7.0E+C5 2 • 50E- 01 1 • OOE- 01 2 • 45E-•02 4 .99E- 03 4.39E -04 8.0E+05 2 • 67E-01 1 • 04E- 01 2 • 51 E- 02 6 • 29E- 03 4.82E -04 9.0E+05 2 .76E- 01 9 . 91E-•02 2 • 29E- 02 S »44E- 03 3.95E -04 1•0E + 06 2 • 64E- CI 7 • 84E- 02 1 • 49E- 02 4 • 49E- 03 2.13E -04 1.2E+06 2 • 93E- 01 9 • 39E- 02 1 .99E- 02 5 .41E- 03 4.95E -04 1.4E + C 6 3 • 38E- 01 1 . 19E- 01 2 • 70E- 02 7 • 21E- 03 4.49E -04 1•6E+06 3 .68E- 01 1 .38E-01 3 • 72E->02 9 • 26E- 03 9.30E -04 1.8E+0 6 3 .74E- 01 1 .37E-01 4 •02E-02 9 • 90E- 03 7.84E -04 2.0E+06 3 • 90E- 01 1 • 4£E-•01 4 .14E- •02 1 • 25E-•02 1.31E -03 2.3E+06 3 •77E-01 1 .E8E-01 5 • 26E->02 1 • 73E- 02 1 .76E -03 2.6E+06 3 • 92E- CI 2 .07E- 01 6 .77E- •02 2 • 40E- 02 2.56E -03 3.0E+06 3 .65E- 01 1 .e4E- •01 5 • 97E-•02 1 • 74E- 02 1 .84E-0 3 3. 5E + C6 3 • 21E- 01 1 •46E-01 4 .67E-02 1 •37E-02 1.S2E -03 4.0E+06 2 .54E- CI 1 . 12E- 01 3 .74E-02 1 .2SE-02 1 .57E -03 4.SE+06 2 .12E- •01 1 . 16E-•01 4 . 03E-02 1 •62E-02 1 .95E -03 5.0E+06 2 • C3E-•01 8 .63E- •02 3 .78E-02 1 .33E-02 2.36E -0 3 6.0E+06 1 • 28E-01 6 . 74E-•02 2 . 80E-•02 1 • 04E-•02 1.73E -03 7.0E+06 7 .00E-02 3 • 94E-•0 2 1 •79E-02 8 •22E-03 1.26E -03 8.0E+06 3 • 86E- C2 1 • 9eE-•02 8 •09E—03 3 •80E-03 8.33E -04 9.0E+06 2 • 25E- 02 1 .30E-02 S .53E-03 2 • 33E- 03 4.23E -04 1.0E+07 9 •49E-03 6 • 76E-•03 2 •78E-03 1 •39E-03 1.81E -04 1.1E+07 S .2 5E-1C 3 2 • eiE-•03 6 .88E- •04 5 •26E-04 2.41 E -04 1•2E + C 7 3 .59E- •C3 1 . 39E-•03 1 • 03E-•03 S • 42E-•05 3.74E -05 1•3E+07 1 • 56E-• C3 3 • 90E-•04 3 . 48E-•04 3 • 48E- 04 0. 1.4E+07 e • 43E-• C4 0 • 1 .94E—04 8 •86E-05 3.07E -05 1.5E + C 7 0 0 7 • 83E-•05 9 •41E-05 4.72E -05

Data from: Ing and Cross {1977)

74 2 3 10° 10' I0 I0 I04 I05 I06 I07 ENERGY eV

0 Ro 2 5 10 15 20 30 50 Rh 0. 606 0 .444 0.269 0.167 0 120 0. 0864 0. 101 In 0. 144 0 .105 0.0660 0.0418 0 .0309 0. 0227 0. 0273 S 0. 0528 0 .0396 0.0268 0.0175 0 .0139 0. 0113 0. 0157 P 0. 0275 0 .0204 0.0137 0.00885 0 .00699 0. 00551 0. 00744 Np 1. 130 0 829 0.498 0.313 0 .227 0. 165 0. 182 Th 0. 0578 0 .0425 0.0271 0.0175 0 .0132 0. 0101 0. 0130 U 0. 232 0 170 0.108 0.0694 0 .0521 0. 0392 0. 0488.

K 2. 47 1 .92 1.22 0.764 0 .545 0. 374 0. 410 D 2. 87 2 .19 1.38 0.876 0 .644 0. 468 0. 528 D.E . 29. 18 22 .59 14.10 9.04 6 .63 4. 82 5. 08 Dy 0.231 0.260 0. 303 0.339 0.362 0. 388 0.400

75 4.4.

FISSION NEUTRONS THROUGH D20 (SPECTRUM ON SURFACE OF SHIELDING)

SPHERICAL GEOMETRY (R = R0)

4?r R2E0(E) (1 NEUTRON EMITTED AT CENTER)

K R 20 E NERGY < EV) P =2 • 0-L°' O- ' R0=30. R =50. I.OE+CO 1.0E+01 0. 1.25E-02 6.376-02 5.096-02 7.66E-03 5.0E+01 0. 2.29E-02 7.42E-02 4.94E-02 6.00E-03 . 1.0E+C2 0. 3.2EE-02 7.81E-02 4.55E-02 4.64E-03 2.0E+02 1.12E-C4 4.15E-02 8.36E-02 4.51E-02 4.10E-03 4 • OE + C 2 0. 4.96E-02 8.77E-02 4.21E-02 3.44E-03 7•OE + O 2 3.34E-C4 £.146-02 8.S1E-02 3.75E-02 3.25E-03 1.06+03 4.36E-C4 6.S6E-02 8.62E-02 3.61E-02 2.66E-03 3.0E+03 1.82E-C3 8.J7E-02 8.78E-02 3.29E-02 2.23E-03 6.06+03 3.42E-03 1.C1E-01 8.606-02 2.92E-02 2.116-03 1.0E+04 8.S7E-C3 1.25E-01 8.07E-02 2.63E-02 1.88E-03 2.0E+04 1.S7E-C2 1.396-01 7.S7E-02 2.36E-02 1.60E-03 4.0E+04 2.95E-02 J.616-01 7.25E-02 1 .86E-02 1.23E-03 6.0E + 04 4.54E-C2 1.59E-01 6.39E-02 1.67E-02 1.11E-03 8.06+C4 S.896-C2 1.51E-01 5.78E-02 1.44E-02 9.39E-04 1.0E+05 7.13E-02 1.66E-01 5.106-02 1.42E-02 8.98E-04 1.56+05 9.73E-C2 L.SCE-01 4.66E-02 1.046-02 5.89E-04 2.0E+05 1.226-01 1.33E-01 3.616-02 8.836-03 7.396-04 £.56+05 1.48E-01 1.44E-01 3.256-02 7.59E-03 4.56E-04 3.0E+05 1.726-01 1.25E-01 3.15E-02 8.30E-03 5.13E-04 3.SE + 05 1 .89E-01 1.18E-01 2.966-02 7.276-03 3.20E-04 4.0E+05 1.S7E-01 9.19E-02 2.28E-02 6.806-03 6.14E-04 4.5E+05 1.70E-01 6.43E-02 1.61E-02 6.17E-03 2.26E-04 E.OE+CS 2.03E-01 8.25E-02 2.40E-02 4.846-03 4.346-04 S.56+05 2.30E-01 1.256-01 3.386-02 8.076-03 8.256-04 6.06+C5 2.376-01 1.30E-01 3.346-02 7.876-03 1.536-04 7.OE + 05 2.75E-01 1.40E-01 3.716-02 1.16E-0 2 7.636-04 8.0E+0S 2.986-01 1.376-01 3.596-02 1.076-02 7.996-04 9.0E+05 3.13E-01 1.256-01 3.466-02 8.556-03 5.136-04 1.0E+06 3.056-01 1.066-01 2.536-02 7.226-03 3.066-04 1.2E+06 3.136-01 1.18E-01 2.72E-02 8.31E-03 9.37E-04 1.4E+06 3.54E-01 1.44E-01 3.64E-02 1.12E-02 9.25E-04 1.66+06 3.666-01 1.646-01 4.776-02 1 .196-02 1.286-03 1.86+06 3.916-01 1.596-01 5.186-02 1.366-02 1.046-03 2•06+C6 4.016-01 1.66E-01 5.07E-02 1.64E-02 1.65E-03 2.3E+06 3.85E-01 1.75E-01 6.25E-02 2.14E-02 2.03E-03 2.6E+C6 3.986-01 2.326-01 7.78E-02 2.88E-02 3.02E-03 3.06+06 3.73E-C1 2.02E-01 6.91E-02 2.22E-02 2.84E-03 3.SE+06 3.306-01 1.656-01 5.606-02 1.766-02 1.926-03 4.0E+06 2.63E-01 1.266-01 4.366-02 1.556-02 2.036-03 4.56+06 2.186-01 1.236-01 4.S06-02 1.916-02 2.58E-03 5.0E+06 2.C6E-01 9.10E-02 4.11E-02 1.49E-02 2.836-03 6.06+06 1.306-01 7.C0E-02 3.036-02 1.146-02 1.986-03 7.06+06 7.056-02 4.156-02 1.91E-02 8.98E-03 1.38E-03 8.0E+06 3.S2E-02 2.02E-02 8.49E-03 4.04E-03 9.29E-04 9.0E+06 2.26E-C2 1.32E-02 5.78E-03 2.446-03 4.476-04 1.06+07 9.496-03 7.406-03 2.866-03 1.516-03 1.83E-04 1.1E+07 5.2EE-03 2.81E-03 7.086-04 5.41E-04 2.63E-04 1.2E+C7 3.59E-C3 1.39E-03 1.056-03 5.756-05 3.766-05 1.36+C7 1.566-03 3.906-04 3.496-04 3.49E-04 0. 1.4E+07 E.436-04 0. 1.95E-04 9.02E-05 5.23E-05 1.56+07 0. 0. 8.436-05 9.596-05 4.806-05

Data from: Ing and Cross (1977)

16 10"

icr -

t 40 10"

-I05 10" -

T- 2 X 10 10"

ui io"7 - -f 2 x I05 Ul CO o £l0"8 - 2 * 10

10 -

10 - r 2

10" -

10"" 10° I01 I02 I03 I04 10s 106 107 ENERGY eV

a R0 2 5 10 15 20 30 50 Rh 0. 573 0. 395 0. 224 0.135 0. 0957 0. 0696 0. 0800 In 0. 134 0. 0909 0. 0533 0.0328 0. 0239 0. 0178 0. 0213 S 0. 0487 0. 0335 0. 0209 0.0131 0. 0103 0. 0085 0. 0118 P 0. 0253 0. 0173 0. 0108 0.00670 0. 00521 0. 0042 0. 00566 Np 1. 074 0: 747 0. 423 0.261 0. 188 0. 140 0. 150 Th 0. 0535 0. 0364 0. 0217 0.0135 0. 0101 0. 0077 0. 0099 U 0. 215 0. 146 0. 0867 0.0538 0. 0398 0. 0302 0. 0374

K 2.38 1.77 1. 06 0.648 0.455 0.315 0.330 D 2.75 2.00 1.19 0.738 0.536 0.397 0.432 D7E7 28.24 21.00 12.47 7.88 5.75 4.28 5.34 57 0.236 0.268 0.312 0.346 0.368 0.392 0.405

77 4.7.

FISSION NEUTRONS THROUGHPOLYETHYLEN E+ 1% BORON SLAB GEOMETRY

4> (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY< EV) C =60 0=4 0 0 = 20 0=10 D=S TH 2.85E-02 1.556-02 5.566-04 4.946-07 2.76E-11 I .88E-01 2.50E-01 2.74E-03 3.51E-C3 3.916-04 8.03E-07 6.79E-11 S.OOE-Ol 2.78E-03 3.706-03 4.6 OF-04 1.316-06 2.15E-1C 1.00E 00 2.81E—03 3.986-03 S.776-04 2.286-06 5.956-10 2. 1 56 0 0 2.82E-03 4.276-03 7.346-04 4.1CE—0 6 1.846-09 4.656 0 0 2.83E-03 4.576-03 9.346-04 7.466-06 5.83E-09 t.OOE 01 2.946—03 5.106-03 1.246-03 1.416-05 1.93E-08 2.15E 01 2.916-03 E.446-03 1.596-03 2.616-05 6.22E-09 4.65E 01 2.846-03 5.736-03 2.01E—03 4.78E-05 I.99E-07 1.006 02 2.796-03 6.116-03 2.606-03 8.S9E-05' 6.496-07 2.1SE 02 2.686-03 6.346-03 3.276-03 I .626-04 2.076-06 4.656 02 2.606-03 6.666-03 4.196-03 3.00E-04 6.726-06 1.006 03 2.51E-03 6.976-03 5.37E-03 S.586-04 2.186-05 2.156 03 2.39E-03 7.186-03 6.806-03 1.036-03 7.036-05 4.656 03 2.24E-03 7. 266-03 8.476-03 1.966-03 2.226-04 1 .006 04 2.09E-03 7.296-C3 1.056-02 3.33E-03 6.886-04 1 .2 66 04 1.91E-03 6.966-03 1.156-02 4.676-03 1.456-03 1.58E 04 1.876-03 6.966-03 1.23E-02 5.596-03 1.95E-03 1.996 04 1.846-03 6.986-03 1•30E-02 6.636-03 2.60E-03 2.5IE 04 1.826-03 7.02E-03 1.38E-02 7.S2E-03 3.416-03 3 . 1 6E 04 1.806-03 7.C66-0 3 1.486-02 9.106-03 4.456-03 3.98E 04 1.966-03 7.796-03 1.686-02 1.106-0 2 5.66E-03 5.016 04 1.956-03 7.846-03 1.786-02 1.286-02 7.336-03 6.316 04 1.936-03 7.896-03 1.906-02 1.506-02 9.646-03 7.94E 04 1.916-03 7.986-03 2.036-02 1 .776-02 1.25E-02 l.OOE 05 1.866-03 7.926-03 2.146-02 2.096-02 1.60E-02 1 . 26E 05 1 .81E-03 7.836-03 2.226-02 2.396-02 2.10E-02 1 . 586 05 1.836-03 8.046-03 2.426-02 2.846-02 2.65E-02 1.99E 0 5 1.866-03 £.276-03 2.596-02 3.276-02 3.346-02 2 . 5IE 05 1.906-03 8.57E-03 2.80E-02 3 .816-02 4.216-02 3.16E 05 1.956-03 e.94E-03 3.06E-02 4.506-02 5.316-02 3.986 05 2.276-03 1.056-02 3.696-02 S.666-02 6.996-02 5.016 05 2.526-03 1.196-02 4.346-02 7.056-02 9.156-02 6.316 05 2.91E-03 1.396-02 5.256-02 8.87E-02 1.196-01 7.946 05 3.07E-03 1.506-02 5.986-02 1.076-01 1.506-01 1.C06 06 3.20E-03 1.61E-02 6.776-02 1.286-01 1•80E—01 I.266 06 3.52E-03 1 .92E-02 8.10E-02 1.586-01 2.286-01 1 . 586 06 3.58E-03 1.896-02 8.816-02 1.776-01 2.546-01 1.996 06 3.79E-03 2.07E-02 1.016-01 2.076-01 2.95E-01 2.516 06 3.006-03 1.68E-02 8.716-02 1.93E-01 2.896-01 3. 166 06 1.656-03 1.01E-02 6.086-02 1.51E-01 2.466-01 3.9 86 06 7.616-04 S.15E-C3 4.006-02 1•16E-C1 2.01E-01 5.016 06 6.716-04 4.38E-03 3.216-02 8.92E-02 1.49E-01 6.316 06 6.14E-04 6.01E-C3 2.896-02 6.596-02 9.97E-02 7.946 06 2.75E-04 2.426-03 1.666-02 4.266-02 6.606-02 l.OOE 07 1.636-04 1.6 6E-05 3.886-04 3.18E-03 1.22E-02 1•26E 07 2.636-05 1.71E-C6 3.906-05 1.29E-04 2.136-04 1 . 58E 07 0.00E-01 0.006-01 O.OOE-Ol 0 .006-01 0.006-01 1.996 07 O.OOE-Ol 0.006-01 O.OOE-Ol 0.006-01 O.OOE-Ol

Data from: Makra (1972}. Pdlfatvi and Koblinger (1976) and Palfatvi {1976}

78 10 -1—|—i 1—|—l 1—|—l 1—|—i 1—|—i 1—|—i i—I—i r

t 60 CM x 10A 10

o 10

-t 10 3

£L -2 10

-3 10 -*

10 0 CM t200

-s 10 • i i i I i i_L TH 10° 101 10* 10® 104 105 10® 107 ENERGY(EV)

\d 5 10 20 40 60

Rh 0.713 0.644 0.456 0.201 0.108 In 0.174 0.154 0.104 0.0426 0.0220 S 0.0716 0.0601 0.0364 0.0126 0.00591 P 0.0280 0.0236 0.0146 0.00521 0.00253 Np 1.31 1.20 0.880 0.412 0.238 Th 0.0703 0.0613 0.0401 0.0156 0.00790 u . 0.284 0.250 0.166 0.0665 0.0341

K 2.78 2.56 1.91 0.912 0.520 D 3.27 3.00 2.20 1.05 0.613 DTS. 32.5 30.3 23.3 11.8 7.22 H 0.184 0.192 0.216 0.231 0.219 4.7.

FISSION NEUTRONS THROUGH POLYETHYLENE+ 1% BORON SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

NERGY(EVI D = 5 D=10 0=2 0 D = 4C 0=60 TH 3.27E-02 4.24E- 02 7.77E- 03 1•OOE—0 4 1.60E-06 1 • 8 BE - 01 2 . 50E- 01 6.436- -03 3.67E- 03 3.44E- 04 3.99E-06 7.156-08 5. 00E- 01 6.656—03 3.6BE- 03 3.45E- 04 4.00E-06 7.17E-08 1 • O0E 00 7.02E-03 3.7 IE— 03 3.45E- 04 4.03E-06 7.23E-08 Z . 15E 00 7.416 -0 3 3.73E- 03 3.45E- 04 4.04E-06 7.26E-08 4 . 65E 00 7.77E-03 3.73E- 03 3.43E- 04 4.04E-06 7.27E-08 1 . OOE 01 e.siE -03 3.906- 03 3.57E- 04 4.21E-06 7.61E-08 1 . OOE 02 9.71E -03 3.88E- 03 3.S2E- 04 4.216-06 7.666-08 Z . 15E 02 1.C1E -02 3.86E- 03 3.49E- 04 4.20E-06 7.666-08 4 . 65E 02 1 .05E -02 3.90E- 03 3.52E- 04 4.256-06 7.766-08 1 .OOE 03 1 . 1 IE -02 3.976- 03 3.59E- 04 4.356-06 7.976-08 Z . 1SE 03 1 . 16E -02 4.03E- C3 3.63E- 04 4.4 3E-06 8.136-08 4 • 6SE 03 1 .23E -0 2 4•12E- 03 3.72E- 04 4.56E-06 8.406-08 1 . OOE 04 1. 31E -02 4.296- 03 3.87E- 04 4.77E-06 8.80E-08 1 .26E 04 1 . 33E -0 2 4.30E- C3 3.88E- 04 4.80E-06 8.88E-08 1 . 58E 04 i .3eE -0 2 4.42E- 03 3.99E- 04 4.94E-06 9.15E-08 1 . 99E 04 1 .43E -02 4.57E- C 3 4.1 3E- 04 5.12E-06 9.49E-08 Z . 51E 04 1 .50E -02 4.75E- 03 4.29E- 04 5.34E-05 9.90E-08 3 . 1 6E 04 1. 586 -02 4.99E- 03 4.51E- 04 5.616-06 1.04E-07 3 . 98E 04 1 .SOE -02 S.66E- C3 5.12E- 04 6.38E-06 1.19E-07 5 . 01E 04 1 . 92E -02 6.03E- 03 5.45E- 04 6.816-0 6 1.276-07 5 • 3 IE 04 2. C7E -02 6.47E- C3 5.85E- 04 7.326-06 1.366-07 7 .94E 04 2.25E -02 6.99E- 03 6.3 3E- 04 7.93E-06 1•48E-07 1 . OOE OS 2.426 -02 7.4SE- 03 6.7SE- 04 8.48E-06 1.58E-07 I . 26E 05 2.60E -02 7.97E- 03 7.23E- 04 9.10E-06 1•70E-07 1 . 59E OS 2.91E -02 8.876- 03 8.05E- 04 1 .026-05 1.90E-07 1 • 99E 05 3. 26E -02 9.90E- 03 8.99E- 04 1.14E-05 2.136-07 z • 51E 05 3.696 -02 1.11E- 02 1•01E- 03 1.296-05 2.40E-07 3 . 1 6E OS 4.22E -02 t•26E- 02 1.15E- 03 1.46E-05 2.746-07 3 • 9SE 05 4.87E -02 1.46E- 02 1•33E- •03 1 .696-05 3.186-07 5 • 01 E 05 S.64E -02 1.67E- 02 1.53E- •03 1.95E-05 3.67E-07 6 . 31E 05 6. E4E -C2 1.92E- 02 1.76E- •03 2.26E-0S 4.26E-07 7 • 94E 05 7.63E -0 2 2.21E- 02 2.02E- •03 2.61E-05 4.94E-07 .1 . OOE 06 8.81E -02 2.E3E- •02 2.326- •03 3.016-05 5.726-07 1 . 26E 06 1 • 01E -01 2.87E- 02 2.54E- 03 3.46E-05 6.59E-07 1 . S8E 06 1 . 1 4E -01 3.27E- •02 3.02E-03 4.OOE—05 7.666-07 1 . 99E 06 1.23E -01 3.52E- 02 3.31E-03 4.46E-05 8.61E—07 Z • 51E 06 1 . 26E -01 3.67E-02 3.51E- •03 4.86E-05 9.49E-07 3 . 1 6E 06 1 . 19E -01 3.E3E- •C2 3.516- •03 5 .09E-05 1.01E-06 3 . 98E 06 1. CSE -01 3. 26E-•02 3.44E-03 5.33E-05 1.08E-06 5 • 01 E 06 8.04E -02 2.66E- •02 3.0 4E-•03 5.15E-05 1.08E-06 6 • 31 E 06 5.54E -02 1. 96E-•C2 2.546-03 4.B8E-05 1.0"'E-06 7 • 94E 0 6 3.61E -02 1.39E- •02 2.01E- •03 4.09E-05 8.18E-07 1 .OOE 07 1 • 2 4E -02 3.79E• •03 6.18E- • 04 2.27E-05 5.72E-07 1 . 26E 07 3. 78E -04 £.45E- •04 6.116-05 3.41E—07 2.67E-07 1 • 58E 07 0.006 -01 O.OOE- •01 O.OOE- •01 0.OOE-Ol 0.OOE-OL 1 . 99E 07 C.OOE -01 0.OOE- •01 0•OOE—01 0.006-01 0.OOE-Ol

Data from: Makra 11972), Pdtfalvi and Koblinger (1976) and Palfahi (1976)

80 10 —r—r T—1—•—"—1 '—' I '—1 I i—' ! '—' I i—r-r

1U TH 10° iol 102 103 10" 10s 106 io7 ENF.RGY(EV)

\d er\ 5 10 20 40 60

Rh 0.469 0.441 0.482 0.558 0.592 In 0.113 0.107 0.119 0.139 0.148 S 0.0512 0.0513 0.0629 0.0828 0.0949 P 0.0200 0.0200 0.0248 0.0333 0.0412 Hp 0.858 0.749 0.843 0.942 1.000 Th 0.0473 0.0460 0.0542 0.0687 0.0769 U 0.187 0.179 0.205 0.251 0.278

K 1.91 1.79 1.93 2.19 2.35 D 2.23 2.10 2.28 2.61 2.81 DTS. 22.2 20.7 21.7 23.8 24.8

Dr 0.209 0.207 0.205 0.203 0.207

81 4.7.

FISSION NEUTRONS THROUGH POLYETHYLENE + 1% BORON SLAB GEOMETRY

4> (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EV) D-5 D=10 0 = 20 0=40 D=60 TH 7.60E-04 3.75E-04 3.84E-05 5.52E-07 1.20E-08 1 . 88E - 01 2.S0E- 01 2.01E-03 V.01E- 03 1.03Et04 1.48E-06 3.23E-08 5.00E- 01 2.SSE-03 1•27E— 03 1•30E-04 1.86E-06 4.06E-08 1 . 00E 00 3.41E-03 1 .67E-C3 I.71E-04 2.45E-06 5.35E-08 2. 1 5E 00 4.37E-03 2. 10E- 03 2.14E-04 3.09E-06 6.T4E-08 4 • 65E 00 S.27E-03 2.46E- C3 2.S1E-04 3.63E-06 7.92E-08 1 . OOE 01 6.3SE-03 2.88E- 03 2.92E-04 4.24E-06 9.27E-08 2. 1SE 01 7.15E-03 3.13E- 03 3.18E-04 4.62E-06 1.01E-07 4.6SE 01 7.80E-03 3.31E- 03 3.34E-04 4.88E-06 1.07E-07 1 .OOE 02 8.S1E-03 3.48E- C 3 3.52E-04 5*1SE—0 6 1.13E-07 2.15E 02 9.04E-03 3.58E- C3 3.61E-04 S.30E-06 1.17E-07 4.65E 02 9.64E-03 3.69E- 03 3.72E-04 5.49E-06 1.21E-07 1 . OOE 03 1.03E-02 3. 83E- 03 3.85E-04 5.71E—06 1.27E-07 2.1SE 03 1.09E-02 3.S3E- 03 3.95E-04 S.89E-06 1.31E-07 4. 65E 03 1.16E-02 4.07E- 03 4.09E-04 6.12E-06 1.36E-07 1 . OOE 04 1.24E-02 4.27E- C3 4.29E-04 6.45E-06 1.44E-07 1 .26E 04 1.27E-02 4.30E- 03 4.32E-04 6.52E-06 1.46E-07 1 . 58E 04 1.31E-02 4.43E- 03 4.46E-04 6.73E-06 1.51E-07 1 • 99E 04 1.37E-02 4.59E- 03 4.62E-04 6.99E-06 1.S6E-07 2.51E 04 1.44E-02 4.79E- 03 4.82E-04 7.30E-06 1.64E-07 3. 1 6E 04 1.52E-02 5.04E- 03 5.08E-04 7.71E-06 1.73E-07 3 .98E 04 1.73E-02 E.73E- 03 5.77E-04 6.77E-06 1.97E-07 5. 01E 04 1.86E-02 6.13E- 03 6.17E-04 9.39E-06 2.11E-07 6. 31E 04 2.01E-02 6.60E" 03 6.65E-04 1.01E—OS 2.28E-07 •7.94E 04 2.19E-02 7.16E- 03 7.22E-04 1.10E-05 2.48E-07 1 . OOE 05 2.36E-02 7.66E- •03 7.73E-04 1.18E-05 2.66E-07 1 . 26E 05 2•56E-02 e.24E- 03 8.33E-04 1.28E-0S 2.87E-07 1 • S8E OS 2.87E-02 9.22E- 03 9.31E-04 1.43E-05 3.22E-07 1.99E OS 3.24E-02 1.03E- 02 1.0SE-03 1.61E-0S 3.63E-07 2.51E 05 3.68E-02 1•17E- •02 1.18E-03 1.82E-05 4.l/=-07 3. 16E OS 4.24E-02 1.34E- •02 1.35E-03 2.09E-05 4.7"E-07 3.98E 05 4.92E-02 1.55E- >C2 1.S7E-03 2.43E-05 5.51E-07 5.01E 05 S.74E-02 1.79E-02 1.82E-03 2.82E-05 6.41E-07 6. 31E OS 6.71E-02 2.08E-C2 2.11E-03 3.29E-05 7.48E-07 7.94E 05 7.89E-02 2.41E-02 2.45E-03 3.83E-0S S.73E-07 1 .OOE 06 9.18E-02 2.78E-02 2.82E-03 4.45E-05 1.02E-06 1 • 26E 06 I.06E-01 3.17E-02 3.24E-03 5.14E-05 1.18E-06 1 . 58E 06 1.21E-01 3.C4E- •02 3.74E-03 S.99E-0S 1.38E-06 1 • 99E 06 1.30E-01 3.95E-02 4.12E-03 6.72E-05 1.56E-06 2 • 51 E 06 1.35E-01 4.14E- •02 4.39E-03 7.37E-0S 1.73E-06 3.16E 06 1.26E-01 3.98E-02 4.41E—03 7.76E-05 1.86E-06 3.98E 06 1.12E-01 3.68E-02 4.33E-03 8.18E-0S 2.00E-06 5.01E 06 e.54E-02 3.00E-02 3.83E-03 7.92E-0S 2.02E-06 6. 31E 06 5.87E-02 2.20E-02 3.19E-03 7.S6E-0S 2.02E-06 7 • 94E 06 3.77E-02 1.SSE-• C2 2.51E-03 6.09E-0S 1.S4E-06 1 .OOE 07 1.31E-02 4.28E- •03 7.46E-04 3.32E-0S 1.07E-06 1 . 26E 07 9.8SE-04 2.63E-04 7.38E-0S 3.29E-06 4.88E-07 1 • 58E 07 O.OOE-Ol O.OOE-Ol 0.00E-01 0.00E-01 0.00E-01 1 . 99E 07 O.OOE-Ol O.OOE-Ol 0.00E-01 0.00E-01 O.OOE-Ol

Data from: Makra 11972), Palfalvtand Koblingcr (1976) and Pdlfalvi (1976)

82 10

10 L 1 1 1 ii ii> iii iii iii III 1 TH 10° 101 102 10s 104 10s 106 107 ENERGY(EV)

d 1-0 20 40 SO

Rh 0.504 0.489 0.532 0.607 0.643 la 0.122 0.119 0.132 0.152 0.161 S 0.0553 0.0573 0.0699 0.0912 0.104 P 0.0217 0.0223 0.0274 0.0369 0.0452 Up 0.918 0.877 0.927 1.02 1.08 Th 0.0509 0.0513 0.0601 0.0752 0.0840 U 0.202 0.200 0.227 0.274 0.303

K 2.04 1.97 2.12 2.38 2.53 2.39 2.32 2.50 2.84 3.04 D.E. 23.7 22.7 23.7 25.6 26.6 0.209 0.210 0.208 0.206 0.209

83 4.7.

FISSION NEUTRONS THROUGHPOLYETHYLENE + 1% BORON SLAB GEOMETRY

3> (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(MEV) 0=30 D=20 0=10 0=5 0=2.5 TH 4.49E-02 2.45E-02 1.47E-03 1.67E-06 1.50E-09 1.8BE-07 2.SOE-07 2.86E-03 4.17E-03 8.08E-04 2.38E-06 4.02E-09 5.00E-07 2.87E-03 4.366-03 9.28E-04 3.49E-06 7.72E-09 1.00E-06 2.876-03 4.626-03 1.12E-03 5.776-06 1.796-08 2.156-06 2.84E-03 4.88E-03 1.38E-03 9.84E-06 4.36E-08 4.65E-06 2.81E-03 £.156-03 1.69E-03 1.706-05 1.09E-07 1.00E-05 2.89E-03 5.66E-03 2.16E-03 3.05E-05 2.846-07 2.15E-05 2.82E-03 5.94E-03 2.656-03 5.326-05 7.22E-07 4.656-05 2.72E-03 6.166-03 3.24E-03 9.206-05 1.82E-06 1.00E-04 2.666-0 3 6.47E-C3 4.01E-03 1.62E-04 4.67E-06 2.1SE-04 2.53E-03 6.62E-03 4.866-03 2.796-04 1.18E-05 4.656-04 2.44E-03 6.866-03 5.98E-03 4.88E-04 3.00E-05 1.00E-03 2.35E-03 7.C9E-03 7.36E-03 8.56E-04 7.68E-05 2.15E-03 2.24E-03 7.23E-03 8.95E-03 1.49E-03 1.95E-04 4.65E-03 2.11E-03 7.26E-C3 1.07E-02 2.546-03 4.86E-04 1.00E-02 1.99E-03 7.26E-C3 1.286-02 4.32E-03 1.20E-03 1.26E-02 1.87E-03 7.08E-03 1.39E-02 5.99E-03 2.16E-03 1.58E-02 1.8SE-03 7.16E-03 1.S0E-02 7.08E-03 2.78E-03 1 .99E-02 1.83E-03 7.19E-03 1.S7E-02 8.19E-03 3.57E-03 2.51E-02 1.61E-03 7.21E-03 1.65E-02 9.60E-03 4.52E-03 ' 3.16E-02 1.79E-03 7.26E-C3 1.75E-02 1.10E-02 5.72E-03 3.98E-02 1.96E-03 8.COE-03 1.98E-02 1.32E-02 7.18E-03 7.94E-02 2.01E-03 e.54E-03 2.44E-02 2.11E-02 1.47E-02 1.00E-01 2.01E-03 e.S7E-03 2.59E-02 2.49E-02 1.90E-02 1.26E-01 1.99E-03 8.71E-C3 2.75E-02 2.92E-02 2.46E-02 1.58E-01 2.12E-03 9.38E-03 3.11E-02 3.56E-02 3.14E-02 1.99E-01 2.36E-03 1.06E-C2 3.65E-02 4.50E-02 4.20E-02 2.51E-01 2.5 0E-03 1.13E-02 4.09E-02 5.49E-02 S.S8E-02 3.16E-01 2.77E-03 1.27E-02 4.77E-02 6.84E-02 7.30E-02 3.98E-01 2.87E-03 1.33E-C2 5.23E-02 8.08E-02 9.14E-02 5.01E-01 2.90E-03 1.36E-02 5.57E-02 9.29E-02 1.11E-01 6.31E-01 2.93E-03 1.40E-C2 6.00E-02 1.08E-01 1.39E-01 7.94E-01 3.26E-03 1.55E-C2 6.70E-02 1.26E-01 1.69E-01 l.OOE 00 3.68E-03 1.74E-02 7.59E-02 1.47E-01 2.04E-01 1.26E 00 4.38E-03 2.C6E-02 9.04E-02 1.83E-01 2.53E-01 1.58E 00 5.27E-03 2.46E-02 1.07E-01 2.07E-01 2.85E-01 1.99E 00. 6.38E-03 2.97E-02 1.28E-01 2.45E-01 3.34E-01 2.51E 00 4.89E-03 2.32E-02 1.05E-01 2.16E-01 3.11E-01 3.16E 00 2.106-03 1.09E-C2 6.03E-02 1.50E-01 2.44E-01 3.98E 00 4.1 IE —04 3.32E-C3 3.09E-02 9.89E-02 1.89E-01 5.0IE 00 4.68E-04 3.48E—03 2.78E-02 7.99E-02 1.446-01 6. 31E 00 6.44E-04 4.09E-03 2.62E-02 7.27E-02 1.06E-01 7.946 00 3.386-04 2.336-03 1.62E-02 4.156-02 6.77E-02 l.OOE 01 7.336-05 3.646-04 1.566-03 3.006-03 4.756-03 1.266 01 7.596-06 3.70E-C5 1.566-04 2.766-04 3.436-04 1.586 01 0.006-01 0.006-01 0.006-01 0.006-01 O.OOE-Ol 1.996 01 0.006-01 0.006-CI 0.006-01 0.006-01 O.OOE-Ol

Data from: Makra (1972). Pdlfatvi and Koblinger (1976) and Palfalvi (1976)

84 0 CM r2000

iU o J I I I I 3 4 7 TM 10° 10l 10- 10 10 105 10s 10 ENERGY(EV) r

d & 2.5 5 10 20 30

Rh 0.683 0.604 0.416 0.211 0.136 In 0.164 0.141 0.0931 0.0455 0.0287 S 0.0640 0.0506 0.0284 0.0109 0.00584 P 0.0251 0.0203 0.0117 0.00476 0.00266 Np 1.27 1.15 0.820 0.439 0.294 Th 0.0652 0.0550 0.0353 0.0164 0.0101 U 0.266 0.228 0.150 0.0722 0.0453

K 2.70 2.45 1.78 0.957 0.629 D 3.16 2.85 2.04 1.10 0.736 DTE. 31.9 29.4 22.0 12.4 8.58 Dy 0.185 0.194 0.218 0.228 0.216

85 4.7.

FISSION NEUTRONS THROUGHPOLYETHYLENE + 1% BORON SLAB GEOMETRY

ENERGY(EV) 0=4 0 0 = 20 0=10 0 = 5 0=2.5 TH 2.86E-10 1.49E-15 3.866-21 2.826-26 4.536-31 1a 886-01 2.506-01 8.33E-10 S.31E-15 4.206-20 1.076-24 6.326-29 5.00E-01 4.20E-09 5.316-14 4.206-19 1.076-2 3 6.326-28 l.OOE 00 1.33E-0E 2.20E-13 3.826-18 1.646-22 1.676-26 2.1SE 00 4.41E-0e 1.726-12 4.00E-17 2.63E-21 3.5SE-25 4.65E 00 1.49E-07 1 .19E-11 5.946-16 8. 186-20 2.276-23 l.OOE 01 5.09E-07 8.49E-11 9.12E-15 2.65E-18 1.506-21 2.15E 01 1.716-06 5.966-10 1.376-13 8.396-17 9.786-20 4 • 6SE 01 5.58E-06 4.106-09 2.046—12 2.636-15 6.31E-18 l.OOE 02 1. 85E-05 2.88E-08 3.096-11 8.406-14 4.14E-16 2.15E 02 5.896-05 1.95E-07 4.566-10 2.626-12 2.666-14 4.656 02 1.90E-04 1.35E-06 6.836-09 8.326—I1 1.746-12 1.OOE 03 6.16E-04 9.34E-06 1.036-07 2•65E-09 1.146-10 2.1SE 03 1.97E-03 6.42E-0S 1.S36-06 8.376-08 7.446-09 4.65E 03 6.176-03 4.34E-C4 2.276-05 2.636-06 4.816-07 l.OOE 04 7.68E-03 1.27E-03 1.55E—04 4 a 06E-05 1.606-05 1.26E 04 5.08E-02 1.276-02 2.67E-03 1.326-03 1.026-03 1.58E 04 6.1OE—02 1.656-02 3a 61E—03 1.84E-03 1.476-03 1 •99E 04 5.58E-02 1.526-02 3.64E-03 1.99E-03 1.726-03 2.5IE 04 3.95E-02 1.246-02 3.51 E —03 2.11E-03 1.996-03 3.16E 04 2.03E-02 9.076-03 3.356-03 2.27E-03 2.33E-03 3.98E 04 1.03E-02 e.056-03 3.94E-03 2.93E-03 3 a 09E-0 3 5.01E 04 1.31E-02 1.136-02 5.98E-03 4.61E-03 4.79E-03 6.31E 04 1.66E-02 1.566—02 8.58E-03 6.98E-03 7.39E-03 7.94E 04 2.04E-02 1.97E-02 1. 15E-02 9.S7E-03 1.01E-02 1.OOE 05 2.02E-02 2.17E-02 1.466-02 1.20E-02 1.30E-02 1.26E 05 1.956-02 2.34E-02 1•82E-02 1.706-02 1.896-02 1.58E 05 2.05E-02 2. 796-02 2 a 2 96 - 0 2 2.226-02 2.49E-02 1.99E 05 2.47E-02 3.67E-02 3.286-02 3.236-02 3.57E-02 2.51E 05 3.OOE—02 4.78E-C2 4.536-02 4.626-02 5.11E-02 3.16E 05 3.67E-02 6.18E-C2 6.106-02 6.316-02 6.95E-02 3.98E 05 3.78E-02 7.06E-02 7.666-02 8.156-02 9.126-02 5.01E 05 3.77E-02 7.856-02 9.326-02 1.086-01 1.236-01 6.31E 05 3.70E-02 8.S5E-C2 1.17E-01 1.396-01 1.596-01 7.94E 0 5 3.96E-02 1.086-01 1.51E-01 1.746-01 1.996-01 l.OOE 06 3.966-02 1.136-01 1.72E-01 2.176-01 2.50E-01 1.2 6E 06 3.7 3E-02 1.266-01 2.07E-01 2.64E-01 3.066-01 I . 58E 06 2.85E-02 1.106-01 2 .05E-01 2 a 82E-01 3.396-01 1.99E 06 1.756-02 9.006-02 1.92E-01 2.83E-01 3.51E-01 2.51E 06 1.30E-02 7.746-02 1.806-01 2.80E-01 3.546-01 3.16E 06 1.C56-02 6.S5E-C2 1.61E-01 2.SEE-01 3.236-01 3.98E 06 7.936-03 5.076-02 1.326-01 2.13E-01 2.73E-01 5.01E 06 5. 236-03 3.57E-02 9.386-02 1•52E-01 1.956-01 6.31E 06 3.076-03 2.18E-02 5.856-02 9.57E-02 1.236-01 7.94E 06 1.566-03 1 a 096-02 3.316-0? 5.52E-02 7.126-02 l.OOE 07 8.616-04 8. 01F-03 1.846-02 2.856-02 3.606-02 1.26E 07 1 a 57E-04 1.09E-03 5.266-05 1•40E-04 2.11E-04 1.58E 07 0.00E-01 C.OOE-Ol 0.006-01 0.006-01 0.006-01 1 . 99E 07 0. COE —0 1 0.00E-01 0. 00E-01 O.OOE-Ol 0.006-01

Data from: Makra (1972), Pdlfalviand Koblinger (1976) and Pdlfalvi (1976)

86 10

-I 10

-2 10

-3 _. 10

X a. -H 10

-5 10

-6 10

-7 10 ENERGYfEV)

\ d 2.5 5 10 20 40 60

Rh 0.724 0.706 0.645 0.485 0.205 0.0707 In 0.175 0.168 0.147 0.0990 0.0332 0.00951

S 0.0736 0.0694 0.0577 0.0343 0.00889 0.00195 V 0.0290 0.0274 0.0228 0.0139 0.00359 0.000797 Np 1.34 1.31 1.23 0.967 0.442 0.170 Th 0.0707 0.0673 0.0575 0.0366 0.0108 0.00275 U 0.285 0.272 0.234 0.151 0.0453 0.0118

K 2.82 2.77 2.60 2.12 1.13 0.524 D 3.33 3.26 3.03 2.42 1.21 0.529 D.E. 33.0 32.7 31.3 26.7 14.7 6.80 0.182 0.183 0.186 0.202 0.249 0.283

87 4.10.

FISSION NEUTRONS THROUGH CONCRETE SPHERICAL GEOMETRY

4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY < EV > P0=lO. R„=20. R0=30. R„=40. R„=60. 1.06+C0 1.06+C1 3.83E-03 2.02E-02 2.05E-02 1.16E-02 2.25E-03 3»06+01 5.666-03 2.47E-02 2.16E-02 1.17E-02 1.996-03 1.06+02 8.60E-03 2.59E-02 2.20E-02 1.09E-02 2.13E-03 3 .0E+02 1.116-02 2.836-02 2.136-02 1.02E-02 1.70E-03 1.06+03 1.S5E-C2 3.056-02 2.14E-02 1.03E-02 1.60E-03 2.06+03 2.01E-02 3.0eE-02 2.02E-02 9.85E-03 1.51E-03 5.0E+03 2.286-02 3.E6E-02 2.0SE-02 8.286-03 1.43E-03 1.06+04 2.90E-02 3.49E-02 1.98E-02 8.34E-03 1.61E-03 2.06+04 3.336—02 3.69E-02 1.996-02 8.44E-03 1.47E-03 4.06+04 4.29E-02 3.S5E-02 2.126-02 9.30E-03 1.S5E-03 6.06+04 S.40E-02 4.626-02 2.33E-02 1.05E-02 1.S4E-03 1.0E+0S 6.08E-02 5.10E-02 2.456-02 1.086-02 1.866-03 1.56+0S 8.68E-02 6.40E-02 2.99E-02 1.39E-02 2.08E-03 2.06+05 S.58E-02 5.64E-02 2.90E-02 1.17E-02 1.79E-03 2.56+05 8.336-02 S.S9E-02 2.34E-02 9.96E-03 2.38E-03 3.0E+C5 1.12E-01 £.666—02 2.996-02 1.27E-02 2.54E-03 3.56+05 1 .27E-01 6.48E-02 3.00E-02 1.16E-02 1.94E-03 4.0E+05 1.036-01 5.256-02 2.316-02 9.07E-03 2.15E-03 4.56+05 7.68E-02 3.83E-02 1.926-02 7.776-03 1.056-03 5.06+05 1.28E-01 6.60E-02 3.14E-02 1.53E-02 1.476-03 S.56+05 2.C0E-C1 1.15E-01 5.29E-02 2.216-02 3.466-03 6.06+05 2.176-01 1.276-01 5.16E-02 2.26E-02 3.146-03 7.0E+05 2.7e6-01 1.E1E-01 6.68E-02 2.64E-02 5.47E-03 8.06+05 3.29E-01 1.56E-01 6.59E-02 2.60E-02 4.77E-03 9.0E+C5 2.39E-01 1.04E-01 3.85E-02 1.97E-02 3.646-03 1.06+06 1.34E-01 4.e5£-02 2.06E-02 8.98E-03 1.76E-03 1.2E+06 2.136-01 1.016-01 4.30E-02 1.856-02 3.34E-03 1.46+06 2.29E-01 1.166-01 4.116-02 1.99E-02 4.75E-03 1.6E+06 2.78E-C1 1.236-01 5.36E-02 2.226-02 5.196-03 1.86+06 2.94E-01 1.576-01 7.27E-02 3.22E-02 6.76E-03 2.06+06 2.48E-01 1.066-01 5.576-02 2.69E-02 6.06E-03 2.3E+C6 2.976-01 2.0C6-01 1.076-01 5.20E-02 1.41E-02 2.6E+06 4.11E-01 2.676-01 1.546-01 8.476-02 1.99E-02 3.06+06 3.43E-01 2.046-01 9.486-02 4.17E-02 8.76E-03 3.56+06 2.24E-01 1.09E-01 4.28E-02 1.83E-02 2.95E-03 4.0E+C6 1.506-C1 6.366-02 2.93E-02 1.26E-02 1.75E-03 4.5E+06 1.496-01 7.496-02 3.436-02 1.32E-02 2.37E-03 5.06+06 1.336-01 5.88E-02 3;41E-02 1.71E-02 3.38E-03 6.06+06 7.8SE-C2 5.11E-02 2.16E-02 9.79E-03 1.75E-03 7.06+06 5.57E-02 2.65E-02 1.24E-02 6.97E-03 1.64E-03 8.06+06 2.426-02 1.27E-02 4.83E-03 1.92E-03 3.406-04 9.06+06 1.126-02 5.81E-03 2.886-03 1.096-03 2.176-04 1.06+07 4.226-03 3.46E-03 9.25E-04 5.586-04 6.856-05 1.16+C7 2.266—03 1.286-03 7.32E-04 5.55E-04 0. 1.2E+C7 1.45E-03 1.02E-03 0. 0. 2.07E-04 1.36+07 3.376-04 3.756-04 6.046-04 0. 0. 1.46+07 0. 4.13E-04 2.026-04 0. 0. 1.5E+C7 0. 0. 2.186-04 0. 0.

Data from: Cross and Ing (1977)

88 a Ro 10 20 30 40 60 Rh 0. 483 0. 329 0. 270 0. 267 0. 306 In 0. 113 0. 0790 0. 0666 0. 0667 0. 0779 S 0. 0396 0. 0275 0. 0229 0. 0227 0. 0248 P 0. 0209 0. 0146 0. 0122 0. 0122 0. 0133 Np 0. 923 0. 631 0. 518 0. 510 0. 581 Th 0. 0449 0. 0314 0. 0265 0. 0265 0. 0310 U 0. 182 0. 128 0. 110 0. 111 0. 131

K 2. 02 1. 40 1. 15 1. 12 1. 24 D 2. 32 1. 62 1. 33 1. 30 1. 45 D.E . 24. 06 16. 77 L3. 78 13. 36 14. 69

DY 0.257 0.301 0.323 0.328 0.322 4.543.

FISSION NEUTRONS THROUGH CONCRETE + 10% Fe SLAB GEOMETRY

$(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY < EV> D=5 D = 10 0 = 20 0=60 0=100 TH 3.98E-04 E.66E-03 2.24E-02 2.48E-03 5.14E-05 I.88E-01 2.S0E-01 2.91E-04 2.31E-03 4.59E-03 1.37E-04 1.68E-06 5.00E-01 3.42E-04 2.S1E-03 4.74E-03 1.36E-04 1.67E-06 l.OOE 00 4.30E-04 2.83E-03 4.96E-03 1.34E-04 1.65E-06 2-.15E 00 6.49E-04 3.21E-03 5.17E-03 1.32E-04 1.61E-06 4.65E 00 6.98E-04 3.63E-03 5.36E-03 1.28E-04 1.56E-06 l.OOE 01 9.26E-04 4. 26E-03 5.77E-03 1.30E-04 1.S8E-06 2.15E 01 1.18E-03 4.81E-03 5.94E-03 1.26E-04 1.53E-06 4.65E 01 1.S0E-03 5.38E-03 6.0SE-03 1.21E-04 1.47E-06 l.OOE 02 1.96E-03 6.17E-C3 6.31E-03 1.19E-04 1.44E-06 2.1SE 02 2.36E-03 6.S3E-03 6.06E-03 1.09E-04 1.32E-06 4.6SE 02 3.13E-03 7.62E-03 6.46E-03 1.10E-04 1.33E-06 l.OOE 03 4.04E-03 8.61E-03 6.62E-03 1.08E-04 1.31E-06 2.15E 03 5.15E-03 9.60E-03 6.71E-03 1.05E-04 1.26E-06 4.65E 03 6.60E-03 1.08E-02 6.8SE-03 1.03E-04 1.24E-06 l.OOE 04 8.51E-03 1.21E-C2 7.00E-03 1.02E-04 1.22E-06 1.26E 04 9.99E-03 1.30E-02 7.12E-03 1.02E-04 1.22E-06 1.S8E 04 1.11E-02 1.38E-02 7.36E-03 1.04E-04 1.25E-06 1.99E 04 1.21E-02 1.45E-02 7.51E-03 1.05E-04 1.26E-06 2.5 IE 04 1.346-02 1.52E-C2 7.66E-03 1.06E-04 1.28E-06 3.16E 04 1.47E-02 1.61E-02 7.87E-03 1.08E-04 1.30E-06 3.98E 04 1.7 IE-02 1 .82E-02 8.79E-03 1 .20E-04 1.44E-06 S.01E 04 1.93E-02 1.98E-02 9.30E-03 1.26E-04 1.51E-06 6.31E 04 2.20E-02 2.16E-02 9.91E-03 1.34E-04 1.60E-06 7.94E 04 2.S4E-02 2. 38E-02 1.06E-02 1.42E-04 1.71E-06 l.COE 05 2.93E-02 2.61E-02 1.13E-02 1.49E-04 1.79E-06 1.26E OS 3.32E-02 2.79E-C2 1.16E-02 1.53E-04 1.83E-06 1.58E 05 3.92E-02 3.14E-02 1.27E-02 1.65E-04 1.97E-06 1.99E 05 4.53E-02 3.41E-02 1.32E-02 1.70E-04 2.03E-06 2.S1E OS 5•21E-02 3.68E-02 1.37E-02 1.75E-0* 2.09E-06 3.16E OS 6•C4E-02 4.01E-02 1.43E-02 1.82E-04 2.17E-06 3.98E 05 7.1SE-02 4.53E-02 1.58E-02 1.99E-04 2.38E-06 5.0IE OS 8.38E-02 5.03E-02 1.70E-0Z 2.15E-04 2.S6E-06 6.31E 05 9.82E-02 E.S9E-02 1.84E-02 2.30E-04 2.746-06 7.94E 05 1.1 EE—01 6.29E-02 2.03E-02 2.54E-04 3.02E-06 l.OPE 06 1•3CE-01 7.20E-02 2.28E-02 2.86E-04 3.40E-06 I.Z6E 06 1.63E-01 8.56E-02 2.73E-02 3.48E-04 4.14E-06 1.58E 06 2.02E-01 1.12E-01 3.78E-02 4.93E-04 5.87E-06 1.99E 06 2.50E-01 1.46E-01 5.11E-02 6.77E-04 8.06E-06 2.51E 06 2.62E-01 1.53E-01 S.29E-02 6.73E-04. 7.90E-06 3.16E 06 J.38E-01 1.36E-01 4.52E-02 5.32E-04 6.11E-06 3.98E 06 1.98E-01 1.12E-01 3.63E-02 4.04E-04 4.55E-06 5.01E 06 1.42E-01 8.C9E-02 2.62E-C2 2.93E-04 3.31E-06 6.31E 06 9.03E-02 5.14E-02 1.67E-02 1.98E-04 2.31E-06 *.94E 06 S.68E-02 3.27E-02 8.99E-03 1.266-04 1.46E-06 l.OOE 07 1.74E-02 9.61E—03 2.42E-03 3.08E-05 3.60E-07 1 .26E OT 2.22E-04 1.43E-C4 2.S9E-03 1.04E-06 1.61E-08 1.S8E 07 0.0CE-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol 1.99E 07 O.OCE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol

Data from: Pdtfatvi and Koblinger (1976/ and Pdlfalvi (19761 —i—i—i—i—\—i—i—i—i—i—r-1—1—i—1—1—i—1 1 i r

5 CM x 2

LU 3 4 s 6 TH 10° 10 1 102 10 10 io io 107 ENERGY1EV)

5 10 20 60 100

Rh 0.640 0.521 0.382 0.310 0.0303 In 0.160 0.131 0^0961 0.0776 0.0754 S 0.0692 0.0565 0.0412 0.0314 0.0301 P 0.0271 0.0222 0.0167 0.0124 0.0120 Np 1.16 0.943 0.702 0.577 0.566 Th 0.0657 0.0539 0.0396 0.0316 0.0307 U 0.265 0.219 0.162 0.130 0.126

K 2.54 2.10 1.57 1.27 1.25 D 2.97 2.45 1.84 1.50 1.47 E7S. 29.0 24.0 18.1 15.1 14.8

Dt 0.197 0.210 0.216 0.210 0.210

91 4.12.

FISSION NEUTRONS THROUGH CONCRETE + 10% Fe SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EV) 0=5 D= 10 D=20 D=60 D=1 00 TH 1.ClE-04 2.65E-03 1.556-02 2.21E-03 4.5SE-05 I .88E-01 2. 5CE-01 9.5CE-05 1.39E-03 4.21E-03 1.39E-04 2.S2E-06 5.OOE-01 1.16E-04 1.546-03 4.39E-03 1.886-04 2.S0E-06 1 . OOF. 00 1.566-04 1.796-03 4.676-03 1 .86E-04 2.45E-06 2 . 15E 0 0 2.126-04 2.106-03 4.946-03 1.82E-04 2.39E-06 4.65E 00 2.886-04 2.446-03 5.196-03 1.776-04 2.32E-06 l.OOE 01 4.C7E—04 2.96E-03 5.686-03 1.79E-04 2.346-06 2.1SE 01 5.586-0 4 3.456-C3 5.936-03 1.736-04 2.25E-06 4 « 65E 01 7.586-04 3.996-03 6.126-03 1.656—04 2.1SE-06 l.OOE 02 1.066-03 4.736-03 6.476-03 1.626-04 2.106-06 2.1SE 02 1.376-03 S.206-03 6.336-03 1.48E-04 1.916-06 1.946-03 6.256-03 4.656 02 6.82E-03 1.50E-04 1.92E-06 2.68E-03 7.31E-C3 7.106-03 1.466-04 1.OOE 03 1.886-06 3.66E-03 8.466-03 7.316-03 1.42E-04 2.1SE 03 1.826-06 5.02E-03 9.826-C3 7.576-03 1.40E-04 1.786-06 4.6SE 03 6.85E-03 1.136-02 7.756-03 1.366-04 1.736-06 1 .OOE 04 8.41E-03 1 .246-02 7.976-03 1.366-04 1.736-06 1.26E 04 9.S3E-03 1.346-02 8.296-03 1.396-04 1.776-06 1.58E 04 1.056-02 1.406-02 8.426-03 1.406-04 1.77E-06 t.996 04 1.176-02 1.47E-C2 8.526-03 1.396-04 1.776-06 2.S1E 04 1.30E-02 1.56E-C2 8.696-03 1.406-04 1.78E-06 3.16E 04 1.S2E-02 1.776-02 9.686-03. 1.556-04 1.96E-06 3.98E 04 1.746-02 1.946-02 1.036-02 1•64E-0 4 2.076-06 5. 0 IE 04 2.02E-02 2.146-02 1.116-02 1.74E-04 2.206-06 5.316 04 2.36E-02 2.396-02 1.206-02 1.866-04 2.356-06 7.94E 04 2.76E-02 2.656-02 1.286-02 1.956-04 2.466-06 1.OOE OS 3.17E-02 2.84E-02 1 .31 6-02 1.99E-04 2.506-06 1.26E 05 3.78E-02 3. 226-02 1 •43E-02 2.14E-04 2.686-06 1.58E 05 4.41E-02 3.526-02 1 .506-02 2.206-04 2.766-06 1 . 996 0 5 5.12E-02 3.836-02 1.56E-02 2.2SE-04 2.826-06 2.51E OS 6•OOE—02 4.196-C2 1.63E-02 2.32E-04 2.916-06 3.16E 05 7.15E-02 4.756-02 1.79E-02 2.53E-04 3.166-06 3.98E OS 8.436-02 5.306-02 1.93E-02 2.716-04 3.386-06 5.01E 05 9.926-02 5.506-02 2.07E-02 2.896-04 3.60E-06 S.31E OS 1.176-01 6.646-02 2.28E-02 3.166-04 3.93E-06 7.94E OS 1.386-01 7.S86-C2 2.54E-0 2 3.S2E-04 4.366-06 l.OOE 06 1.66E-01 8.97E-02 3.00E-02 4.206-04 5.226-06 1.26E 06 2.046-01 1.16E-01 4.046-02 5.776-04 7.166-06 2.51E-01 1.49E-C1 ' 1.S8E 06 5.376-02 7.756-04 9.626-06 2.636-01 1.55E-01 5.506-02 7.556-04 1 .99E 06' 9.186-06 2.38E-01 1.386-01 4.666-02 5.806-04 2.51E 06 6.79E-06 1.986-01 1.136-01 3.706-02 4.256-04 4.79E-06 3.16E 06 1.426-01 8.096-02 2.64E-02 2.986-04 3.32E-06 3.98E 06 e.9SE-02 5.106-02 1.6SE-02 1 .936-04 2.226—06 5.01E 06 5.64E-02 3.226-02 1 .06E-02 1 . 07E—04 1.316-06 6.31E 06 1.746-02 9.57E-C3 3.01E—03 2.736-05 3.186-07 7.94E 06 2.08E-04 1.25E-04 4.30E-05 1.38E-0 5 6.956-09 l.OOE 07 0.OOE—01 0.C0E-01 0.00E-01 0.006-01 0.006-01 1 •2 6E 07 o.eoE-oi 0.00E-01 0.00E-01 O.OOE-Ol 0.006-01 1.58E 07 1 .99E 07

Data from: Pitfahi and Koblingtr (1976) and PalfaWi (1976) 10 -i—r~i 1—|—i 1—i—i r—i—i—i—I—i—i | i I—|—i—r

-I 10

-2 10

-3 „ 10 3

X 0L -4 10

-s 10 Composition atoms/cm^ 0 UXO Si 19.50 -6 1 H 13.30 10 Al 1.689 Fe 2.646 -7 10 i I i ili i I i i I i ill i I i i_I i i L TH 10° 101 10* 103 104 105 10B 107 ENERGY(EV)

\ d 5 10 20 60 100

Rh 0.655 0.537 0.377 0.271 0.257 In 0.163 0.134 0.0940 0.0666 0.0627 s 0.0705 0.0574 0.0392 0.0256 0.0231 P 0.0276 0.0225 0.0154 0.0103 0.00928 Np 1.19 0.974 0.694 0.514 0.492 Th 0.0670 0.0550 0.0384 0.0266 0.0248 U 0.271 0.223 0.157 0.111 0.104

K 2.59 2.17 1.55 1.13 1*08 D 3.04 2.53 1.81 1.33 1.27 29.7 24.9 18.1 13.7 13.2 D-T 0.195 0.209 0.217 0.211 0.211

93 4.547.

FISSION NEUTRONS THROUGH CONCRETE + 10% Fe SLAB GEOMETRY

$(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY < E V ) 0=5 D=10 0=20 D = 60 0=100 TH 2.77E-04 3.616-03 1.08E-02 4.576-04 4.43E-06 1 • 88E-01 2 . 50E-•01 2.3eE-04 2.OOE- 03 4.03E- 03 1.05E-04 9.59E-07 5 •OOErOl 2.81E -04 2.19E- 03 4.21E- 03 1.05E-04 9.62E-07 1 .OOE 00 3 . 58E'-0 4 2.516- C3 4.48E- 03 1.06E-04 9.64E-07 2 . 15E 00 4.62E -04 2.876- 03 4.73E- 03 1.06E-04 9.56E-07 4 • 65E 00 5.92E -04 3.256- 03 4.9 3E- 03 1.04E-04 9.35E-07 1 . OOE 01 7.896 -04 3.83E- 03 5.33E- 03 1.066-04 9.50E-07 2 . 15E 01 1.01E -03 4.34E- 03 5.S2E- 03 1.03E-04 9.24E-07 4 . 6SE 01 1 .29E -03 4.866- C3 5.65E- 03 9.97E-05 8.88E-07 1 .OOE 02 1 .70E--03 5.586- 03 5.92E- 03 9.87E-05 8.77E-07 2 . 15E 02 2.056 -03 5.92E- C3 5.73E- 03 9.05E-05 8. 01E—07 4 • 65E 02 2.74E -03 6.96E- 03 6.17E- 03 9.28E-05 8.20E-07 1 .OOE 03 3.56E- -03 7•566- 03 6.45E- 03 9.24E-05 8.14E-07 2 . 1SE 03 4.63E -03 9.126- 03 6.76E- 03 9.24E-05 8.12E-07 4 . 65E 03 6.066-03 1.056- 02 7.08E- 03 9.26E-05 8.11E—07 1 .OOE 04 7.766 -0 3 1.156- 02 7.03E- 03 8.77E-05 7.65E-07 1 . 2 6E 04 9.446 -03 1. 29E- 02 7.47E- 03 9.11E-05 7.94E-07 1 . 58E 04 1 .OEE -02 1.40E- C2 7.89E- 03 9.50E-05 8.27E-07 1 . 99E 04 1 .146 -02 1•43E- 02 7.81E- 03 9.28E-0S 8.08E-07 2 . 51E 04 1. 236 -02 1.466- 02 7 . 7 86 - 03 9*15E-05 7.95E-07 3 • 1 6E 04 1.336 -02 1.486- 02 7.51E- 03 8.64E-05 7.50E-07 3 • 986 04 1 .546 -02 1.676- 02 8.31E- 03 9.506-05 8.24E-07 5 . 01E 04 1 .78E -02 1.87E- 02 9.16E- 03 1.04E-04 9.01E-07 6 • 3 IE 04 2. 08E -02 2.126- 02 l.026- 02 1.15E-04 9.98E-07 7 . 94E 04 2.4SE -02 2.416- C2 1.14E- 02 1.27E-04 1.10E-06 1 . OOE 05 2.87E -02 2.696- 02 1.23E- 02 1.36E-04 1.17E-06 1 . 2 6E OS 3.306 -02 2.906- 02 1•27E- 02 1.38E-04 1.19E-06 1 .586 05 3.94E -02 3.316- 02 1.406- 02 1.50E-04 1.29E-06 1 . 99E OS 4 .6 IE -02 3.656- 02 1.486- 02 1.55E-04 1.34E-06 2 . 51E 05 5.32E -02 3.946- •02 1.546- >02 1.60E-04 1.37E-06 3 . 16E 05 6.29E -0 2 4.38E- 02 1.62E- 02 1.65E-04 1.41E-06 3 . 98E 05 7.45E -02 4.94E- •02 1.77E-02 1.78E-04 1.53E-06 5 . 01E 05 8. 766 -02 5.49E- 02 1.90E- •02 1.89E-04 1.62E-06 5 . 31E 05 1 .036 -01 6.1 OE->02 2.04E- 02 2•OOE—04 1•71E—06 7 . 94E 05 1.216 -01 6.836- 02 2.2 26-•02 2.17E-04 1.84E-06 1 .OOE 06 1 .436 -01 7.776- 02 2.46E- •02 2.38E-04 2.02E-06 1 . 26E 06 1.736 -01 9.086- 02 2.846- •02 2.78E-04 2.36E-06 1 . 58E 06 2. 036 -0 1 1.13E- 01 3.676-02 3.63E-04 3.09E-06 1 . 99E 06 2.46E -01 1.42E-01 4.726-02 4.72E-04 4.016-06 2 . 51E 06 2.546 -01 1.456-01 4.726-02 4.45E-04 3.70E-06 3 . 1 6E 06 2.28E -01 1•27E- 01 3.906-02 3.29E-04 2.64E-06 3 .986 06 1 . 90E -01 1.03E-01 3.036-02 2.33E-04 1.81E-06 5 . 01E 06 1.366 -01 7.37E- •02 2.16E- •02 1.64E-04 1.27E-06 6 . 31E 06 8.58E -02 4.656- •02 1.36E-02 1.12E-04 9.13E-07 7 . 94E 06 5.40E -02 2.956- •02 7.63E- •03 6.87E-0S 4.72E-07 1 .OOE 07 1 .686 -02 8.916- 03 2.0 4E-•03 1.84E-0S 1.53E-07 1 • 26E 07 2.236 -04 1.436-04 2.29E- •03 7.67E-07 8.60E-09 1 . 58E 07 0. OOE -01 0.OOE- •01 0. OOE-Ol 0.OOE-Ol 0.OOE-Ol 1 • 99E 07 O.OOE -01 O.OOE- •CI 0.OOE-Ol 0.OOE-Ol 0.OOE-Ol,

Data from: Makraand Vertex (197 J). Palfalvi and Koblinger {1976} and PalfaWi (1976) d g \ 5 10 20 60 100

Rh 0.636 0.509 0.360 0.262 0.249 In 0.157 0.125 0.0874 0.0629 0.0592 S 0.0670 0.0528 0.0359 0.0233 0.0211 P 0.0263 0.0208 0.0147 0.00935 0.00854 Np 1.16 0.933 0.670 0.503 0.482 Th 0.0641 0.0512 0.0355 0.0249 0.0231 TJ 0.259 0.208 0.148 0.104 0.0970

K 2.53 2.07 1.50 1.12 1.07 D 2.96 2.41 1.75 1.30 1.24 ETE. 29.2 24.0 17.7 13.6 13.1 TTf 0.196 0.210 0.219 0.214 0.214

95 4.549.

FISSION NEUTRONS THROUGH CONCRETE + 10% Fe SLAB GEOMETRY

4>(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EV) 0=5 0=10 D = 20 0=60 0=100 TH 4.666-05 1.13E-C3 4.87E-03 2.53E-04 2.126-06 1 .886-01 2.50E-01 5.506-05 9.406-04 3.08E-03 1.216-04 9.74E-07 5.00E-01 6.866-05 1.07E-03 3.30E-03 1.25E-04 9.93E-07 l.OOE 00 9.456-05 1.286-03 3.63E-03 1.296—04 1.01E-06 2.1SE 00 1.32E-04 1.536-03 3.96E-03 1.306-04 1 .02E-06 4.656 00 1.836-04 1.816-03 4.236-03 1.29E-04 1.006-06 1.006 01 2.636-04 2.216-03 4.676-03 1.32E-04 1.026-06 2.15E 01 3.686-04 2.606-03 4.956-03 1.306-04 9.93E-07 4 . 6SE 01 5.07E-04 3.026-03 5.166-03 1.256-04 9.516-07 1.006 02 7.19E-04 3.616-03 5.526-03 1.246-04 9.356-07 2 • 1 56 02 9.506-04 4.016-03 5.496-03 1.156-04 8.55E-07 4.996-03 4.656 02 1.366-03 6.046-03 1.186-04 8.74E-07 1.936-03 5.87E-03 6.52E-03 1.196-34 8.74E-07 1.00E 03 2.76E-03 7.186-03 7.18E-03 1.236-04 8.95E-07 2.1SE 03 4.006-03 8.816-03 7.87E-03 1.256-04 9.06E-07 4.65E 0 3 5.416-03 9.786-03 7.646-03 1.126-04 8.046-07 1.006 04 7.186-03 1.176-02 8.63E-03 1.226-04 8.726-07 1.26E 04 8.396-03 1.31E-02 9.36E-03 1 .306-04 9.276-07 1 . 586 04 9.006-03 1.33E-02 9.036-03 1 .236-04 8.726-07 1 . 996 04 9.576-03 1.326-02 8.74E-03 1.166-04 8.26E-07 2.51E 04 1.036-02 1.286-02 7.89E-03 1.016-04 7.116-07 3.16E 04 1.196-02 1.446-02 8.64E-03 1.096-04 7.666-07 3.98E 04 1.436-02 1.686-02 9.93E-03 1.246-04 8.716-07 5.01E 04 1 .746-02 1.996-02 1.166-02 1.43E—04 1.01E-06 6.31E 04 2.13E-02 2.34E-02 1.346-02 1.636-04 1.156-06 7.946 04 2.566-02 2.686-02 1.48E-02 1.766-04 1.236-06 1.006 05 3.056-02 2.976-02 1.55E—02 1.796-04 1 .256-06 1.266 05 3.716-02 3.466-02 1.736-02 1.956-04 1.35E—06 1.586 05 4.476-02 3.896-02 1.85E-02 2.016-04 1.396-06 1.99E 05 5.276-02 4.286-02 1.936-02 2.03E-04 1.40E-06 2.51E 05 6.366-02 4.866-02 2.076-02 2.096-04 1.42E-06 3.166 05 7.586-02 5.526-02 2.256-02 2.216-04 1.506-06 3.986 05 9. 006-02 6.176-02 2.396-02 2.276-04 1.536-06 5.016 05 1.076-01 6.906-02 2.546-02 2.346-04 1.576-06 6.316 05 1.286-01 7.70E-02 2.716-02 2.446-04 1.63E-06 7.946 05 1.516-01 8.726-02 2.946-02 2.56E-04 1.706-06 l.OOE 0 6 1 .836-01 1.026-01 3.346-02 2.866-04 1.896-06 1.266 06 2.07E-01 1.176-01 3.846-02 3.236-04 2.126-06 1 • 58E 06 2.436-0 1 1.40E-01 4.576-02 3.806-04 2.47E-06 1 .99E 06 2.47E-01 1.396-01 4.36E-02 3.336-04 2.09E-06 2.51E 06 2.20E-01 1.196-01 3.47E-02 2.296-04 1.35E-06 3.16E 06 1.826-01 9.516-02 2.606-02 1.466-04 7.63E-07 6.736-02 3.98E 06 1.306-01 1.80E-02 9.666-05 4.926-07 4.176-02 1.09E-02 6.566-05 3.696-07 5.01E 06 8.126-02 5.106-02 2.636-02 7.77E-03 2.96E-05 1•74E—07 6.31E 06 8.266-03 2. 146-03 9.94E-06 7 . 94E 0 6 1.616-02 2.86E-08 2.11E-04 1.26E-04 4.126-05 3.806-07 2.886-09 l.OOE 07 0.C0E-01 O.OOE-Ol 0.006-01 0.006-01 0.006-01 1 .266 07 O.OOE-Ol O.OOE-Ol 0.006-01 0.006-01 0.006-01 1 .586 07 1 .996 07

Data from: Palfalvi and Koblinger (1976) and Palfalvi (1976) —r—|—i—r—i—i—i |—i—r i i | i i | i r

-1 Composition atoms/cm"^ 10

-2 10

-a 10

x 0- -4 10

10

-6 10

IU J I I 1 I I I I I I J L 10° 101 102 103 10* ios io6 107 TH ENERGY (EV)

\ d 5 10 20 60 100

Rh 0.648 0.517 0.335 0.184 0.160 In 0.158 0.124 0.0781 0.0407 0.0346 S 0.0663 0.0503 0.0295 0.0128 0.00990 P 0.0260 0.0198 0.0117 0.00520 0.00410 Np 1.19 0.962 0.641 0.374 0.333 Th 0.0640 0.0498 0.0308 0.0151 0.0126 U 0.260 0.203 0.127 0.0645 0.0544

K 2.58 2.13 1.45 0.850 0.758 D 3.02 2.47 1.67 0.978 0.872 D71. 30.0 25.0 17.5 10.9 9.91 0.193 0.208 0.222 0.221 0.220

97 4.15.

COMPARISON OF SPECTRA OF FISSION NEUTRONS THROUGH CONCRETE WITH DIFFERENT CONCENTRATIONS OF Fe SLAB GEOMETRY (D = 100 cm)

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY( 6V 1 OX FE 30X FE 70X FE 90X FE 100X FE TH 1.09E-04 4•43E-06 6.676-07 5.68E-07 1.02E-06 1 .886- •01 2 •50E-01 1 .84E -06 9.S9E- 07 6.21E-07 1.38E-06 9.56E-06 S .006- •01 1 .82E--06 9.62E- 07 6•586—07 1 .6 3E--06 1•68E-05 1 . OOE 00 1.79E -06 9.646- 07 7. 05E--07 2. 06E--06 3.54E-05 2 . 1 5E 00 1 .75E -06 9.56E- 07 7.386- -07 2.49E- -0 6 6.51E-05 4 . 65E 00 1 .69E -06 9.3SE- 07 7 . 40E--0-> 2.73E -06 9.55E-05 1 .OOE 01 1.72E-06 9.S0E- C7 7.57E-07 2.94E- -0 6 1.26E-04 2 . 15E 01 1.66E-06 9.24E- 07 7.486- -07 3.12E -06 1.63E-04 4 . 65E 01 1 .596 -06 8.88E- 07 T.l 7E -07 3 • 08E--0 6 1•76E-04 1 . OOE 02 1. 566--0 6 8.77E- 07 7.07E-07 3.1 2E--06 1.93E-04 2 . 1 SE 02 1 .426 -06 e.oiE- C 7 6.51E- -07 3.026 -06 2.10E-04 4 . 65E 02 1 .446 -06 8.20E- 07 6.676 -07 3.09E- -0 6 2.0SE-04 I . OOE 03 1 .4 IE -06 8.14E- 07 6.76E -OT 3.22E -06 2.27E-04 3.63E-04 2 . 1 5E 03 1 .366 -06 8.12E- 07 7.2 46--07 3.85E -06 6.69E-04 4 . 65E 03 1.33E -06 8.11E- 07 646—07 4.70E -06 3.23E-04 1 .OOE 04 1 .32E -06 7.65E- 07 6.166 -07 3. 096 -06 9.02E-04 1 .2 66 04 1 .31E -06 7.94E- 07 7.266- -07 4 .59E -06 1.07E-03 1 . 58E 04 1.33E -06 8.276- 07 8.02E-07 5.56E- -06 9.2BE-04 1 . 99E 04 1 .366 -06 8.08E- 07 7.47E -07 4.96E -06 6.42E-04 2 . 51E 04 1.38E -06 7.95E- 07 6. 45E -07 3.81E -06 2.81E-04 3 .1 6E 04 1 a 41 E -06 7•506- 07 4.806 -07 2.36E -06 6.50E-05 3 . 98E 04 1 a S7E -06 -07 . a 8.24E- 07 4.956 1 72E-0 6 1.31E-04 9.01E- S . 0 IE 04 1. «4E -06 07 6. 006 -07 2. 31E -06 2.88E-04 5 . 3IE 04 1 • 72E -06 9.986- 07 7.436 -C 3.54E -06 4.13E-04 7 . 94E 04 1.82E -06 1.10E- 06 8.87E -07 4.64E -0 6 5.01E-04 1 .OOE 05 1 .91E -06 1.17E- 06 9.73E -07 5.27E -06 5.01E-04 1 . 26E 05 1 .95E -06 1.19E- 06 9.78E -0 -r 5.21E -06 S.91E-04 1 . S8E OS 2. 1 CE -06 1.29E- 06 1.076 -06 5.82E -06 6.20E-04 1 . 99E 05 2.17E -06 1 a 34E- 06 1 .096 -06 5 . 876 -06 5.S8E-04 2 . 51E 05 2.23E -0 6 1a37E- 06 1 .076 -06 5.39E -0 6 S.3SE-04 3 . 16E 05 2.32E -06 1 a 41E- 06 1 .076 -06 5.08E -06 4.S9E-04 3 . 98E 05 2.54E -06 l.53E- 06 1 .08E -06 4.6 5E -06 2•94E-04 5 . 01E OS 2.74E -06 1.62E- 06 1. 03E -06 3.606 -0 6 8.666-0 5 6 a 3 1 E OS 2.94E -06 1.71E- 06 9.706 -07 2.286 -06 5.78E-05 7 . 94E 05 3.256 -06 1.84E- 06 9.3 5E -07 1 .79E -06 2.8SE-05 1 . OOE 06 3.6 6E -06 2.02E- 06 8.93E -07 1 . 20E -06 I.66E-06 1 . 2 6E 06 4.49E -0 6 2.36E- 06 8 .446 -07 5.94E -07 1•02E-06 1 . 58E 06 6.43E -06 3.09E- 06 B. 32E -07 3.99E -07 2.15E-07 1 . 99E 06 8.886 -06 4 a 01E- 06 7.37E -07 1 . 536 -07 7.75E-09 2 . 516 06 8.796 -06 3.70E-06 5.68E -0' 6.76E -08 3.30E-09 3 .166 06 6.876 -06 2.64E- 06 3. 236 -07 3.18E -08 S.73E-10 3 . 98E 06 5.1 6E -06 1.816- •06 1 .376 -0"7 9.48E -09 2.80E-10 5 . 01E 06 3 . 776 -06 1.27E-06 8.26E -08 4.30E -0 9 7.22E-11 2•36E—11 6 .316 06 2.63E -06 9.13E- 07 7.096 -08 1 . 51 E -09 1.42E-11 7 . 94E 06 1.67E -06 4.72E- •07 3.01E -08 1 .21E -09 3.48E-12 1 .006 07 4. 02E -07 1.53E-07 7.126 -09 5.02E -10 0.00E-01 1 .2 66 07 1 .73E -0 8 6.606- •09 7.376 -10 5.17E -1 1 0.OOE-Ol 1 .586 07 C.COE -01 0.006-01 0 . OOE -01 O.OOE -01 1 • 99E 07 OaOOE -01 O.OOE- 01 O.OOE -01 0. OOE -01

Data from: Makra and Vertes (1973) and Pdlfalvi {19761 10* CONCRETE • Fe Transmitted Fission Spectra ' d-100cm Parameter: Fe content (wt°/o)

Q01 03 1 10 100fV 1 10 100keV 1 10MeV ENERGY

concrete + iron

6 cone. 10 % 30 % 50 % 70 % 90 % iron

Rh 0.310 0.257 0.249 0.160 0.0846 0.0221 0.0142 In 0.0775 0.0627 0.0592 0.0346 0.0147 0.00125 0.000211 S 0.0313 0.0231 0.0211 0.00990 0.00305 0.0 0.0 P 0.0124 0.00928 0.00854 0.00410 0.00132 0.0 0.0 Np 0.576 0.492 0.482 0.333 0.194 0.0643 0.0418 Tb 0.0317 0.0248 0.0231 0.0126 0.00479 0.000212 0.0 U 0.130 0.104 0.0970 0.0544 0.0213 0.000971 0.0

K 1.27 1.08 1.07 0.758 0.496 0.288 0.297 D 1.49 1.27 1.24 0.872 0.550 0.297 0.280 DTS. 15.0 13.2 13.1 9.91 6.96 4.19 3.97 0.209 0.211 0.214 0.220 0.229 0.252 0.279

8lab thickness: 100 cm

99 4.16.

FISSION NEUTRONS THROUGH Fe SPHERICAL GEOMETRY 4JTR2E0(E) (1 NEUTRON EMITTEt

E NERGY(EV) R0=S. H0=10. "o -20. Rq =30 . R0=50. 1•OE + CO E.OE+CO 0. 0. 1 .40E-05 0. 6.83E-05 1.0E+01 0. 0. 1 .116-05 0. 2.08E-04 4.0E +01 0. 0. 1.716-04 2.60E-04 2.93E-04 8.0E+01 0. 0. 1.756-04 3.13E-04 3.37E-04 1•0E+02 0. 0. 1.406-05 3.62E-04 4.01E-04 2.0E+02 0. 0. 2.386-04 3•40E-04 4.68E-04 3.0E+02 0. 0 . 2.396-04 3.84E-04 6.09E-04 4•0E+ 02 0. 1.946-04 3.556-04 6.83E-04 6.23E-04 5•0E + 02 0. 2.526-04 4.666-04 S.83E-04 6.83E-04 6.0E+02 0 . 0. 2.71E—04 5.93E-04 6.37E-04 8.0E+02 1 .9SE- C4 0. 4.8SE-04 8.21E-04 8.74E-04 1.0E+03 1 .9SE- CE 0. 9.726-04 S.61E-04 8.04E-04 2.0E+03 9.01E- 05 2.686-04 7.046-04 1.18E-03 1.30E-03 3.0E+03 1.99E- 05 4.516-04 2.OOE—03 I .57E-03 1 .67E-03 4• 0E+ 03 1.99E- 05 1.076-03 1.43E-03 J.78E-03 1.72E-03 E•0E+03 5.33E- C4 1.626-03 2.91E-03 3.02E-03 3.67E-03 6.0E+03 1•37E- C3 2.96E-03 3.02E-03 2.07E-03 2.36E-03 8.0E+03 6.49E- C4 4.12E-04 2.846—04 4.67E-04 7.7JE-04 1.0E+04 8.13E- 04 5.26E-04 7.196-04 1.45E-03 9.61E-04 I.5E+04 1 • 9 EE - 03 2.70E-03 2.726-03 3.82E-03 3.93E-03 2.26+04 2.43E- 03 4•12E-03 8.40E-03 1.40E-02 1.68E-02 2.6E+C4 1 .6EE-02 4.50E-02 1.216-01 1 .446-01 1.29E-01 3•0E + 04 3.35E- 03 2.23E-03 1 .38E-03 1.13E-03 2*1 IE—04 3.SE + 04 2.44E- 03 2.256-03 2.96E-03 1.S0E-03 5.89E-04 4•OE+04 7.926- 03 5.596-03 5•74E-03 4.44E-03 1.07E-03 5•0E+04 9.53E- 03 9.746-03 7.23E-03 4.47E-03 1.72E-03 6.0E+04 e.SSE- 03 6.796-03 4.90E-03 3.38E-03 1.71E-03 8.0E+C4 1•59E— 02 1.24E-02 9.28E-03 7.57E-03 3.7SE-03 1.0E+05 1.476- 02 1.50E-02 1.64E-02 1.62E-02 9.07E-03 1•5E + 0 5 3.946- C2 4•996—02 7.16E-02 7.09E-02 4.37E-02 2.0E+05 7.44E- 02 9.98E-02 1 .42 E—01 1 .45E-01 8.68E-02 2.5E+C5 8.99E- 02 1.26E-01 1.78E-01 1.74E-01 9.52E-02 3.0E+05 1.30E- 01 1.85E-01 3.04E-0I 3.28E-01 1.72E-01 3.5E+0S 2.11E- 01 3.86E-01 6.25E-01 6.20E-01 2.77E-01 4•OE + 05 2.38E- 01 3.136-01 3.49E-01 2.65E-01 7.48E-02 4.5E+05 1.736- 01 1 .726-01 1.49E-01 9.87E-02 2.79E-02 5.0E+05 2.346- CI 3.086-01 3.07E-01 2.06E-01 5.61E-02 5.5E+05 2.426- CI 3.036-01 3.15E-01 2.06E-01 4.62E-02 e.0E+05 3.086- 01 3.466-01 3.76E—01 2.63E-01 6.05E-02 7.0E+05 3.97E- 01 5.136-01 4.72E-01 2.85E-01 ' 5.65E-02 8.0E+05 3.016- 01 2.756-01 1.59E-01 7.09E-02 9.34E-03 9.0E+0S 3.E4E- 01 3.49E-01 2.226-01 1.07E-01 1.64E-02 1.0E+06 3.S1E- 01 4.14E-01 2.686-01 1.35E-01 2.03E-02 1.2E+06 3.97E- 01 3.52E-01 1 .80E-01 6.63E-02 7.06E-03 1.4E+C6 3.SEE- 01 3.18E-01 1.416—01 4.40E-02 3.65E-03 1.6E+06 4.12E- 01 3.26E-01 1.31E-01 4.366-02 3.57E-03 1.8E+06 4.39E- 01 3.35E-01 1.41E-01 4.36E-02 2.62E-03 2.0E+06 4.1EE- 01 3.13E-01 1 .046-01 2.87E-02 1.35E-03 2.3E+C6 3.4SE- 01 2.30E-01 7.26E-02 1.61E-02 8.01E-04 2.6E+06 3.306- 01 1.98E-01 5.35E-02 1.29E-02 3.01E-04 3.0E+C6 2 .916-•01 1.59E-01 4.54E-02 9.6SE-03 3.14E-04 3.5E+06 2 .296- 01 1.34E-01 3.19E-02 5.48E-03 1.43E-04 4.0E+06 1 .876- 01 9.06E-02 2.35E-02 4.46E-03 S.26E-05 4.5E+06 1 .276-01 6.12E-02 1.65E-02 2.32E-03 6.52E-05 5.0E+06 1.116- 01 5.45E-02 1.18E-02 3•OOE—03 6.96E-0S 6.0E+06 7.286-02 3.58E-02 6.64E-03 1.70E-03 3. 91E—05 7.0E+06 3.856- •02 2.746-02 4.01E-03 8.25E-04 0. 8.0E+C6 2.7 5E —02 1.13E-02 2.40E-03 6.20E-04 0. 9.0E+06 1.54E-02 4.40E-03 1.466—03 2.20E-04 5.36E-05 1•0E+ 07 4.S2E- •C3 2.83E-03 4.846-04 1.1OE— 04 0. 1.1E+07 3.66E-03 3 • C1E—03 5.69E-04 1.09E-04 0. 1 • 2E + C 7 1.336- •03 0. 3.16E-04 0 . 0. 1.3E+07 0 . 0 . 0 . 0. 0. 1.4E+C7 0. 0. 0. 0. 0. 1•5E + C 7 0 . 0. 0. 0. 0.

Data from: Ing and Cross (1975b) ENERGY (eV)

a Ro 5 10 20 30 50 Rh .0. 591 0. 477 0. 290 0. 185 0. 0941 In 0. 129 0. 0909 0. 0398 0. 0168 0. 00363 S 0. 0370 0. 0211 0. 00644 0. 00180 0. 00012 P 0. 0198 0. 0115 0. 00356 0. 00102 0. 00007 Np 1. 174 0. 996 0. 644 0. 411 0. 185 Th 0. 0487 0. 0324 0. 0124 0. 00443 0. 00056 U 0. 199 0. 134 0. 0521 0. 0187 0. 00238 ic 2. 45 2. 15 1. 67 1. 39 1. 06 D 2. 83 2. 43 1. 79 1. 41 1. 01 D.E. . 30. 59 28. 02 22. 54 18. 6 13. 64 D7 0. 230 0. 245 0. 271 0. 287 0. 305

101 4.17.

FISSION NEUTRONS THROUGH Cu SPHERICAL GEOMETRY 4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY(EV) R0=10. R0=20. R0=30. R0=50. 1 •06 + 00 5.06+00 0. 0. 1 .47E-06 1.68E-05 6.67E-05 1.06+01 0. 0. 9.68E-06 7 .986-05 2.81E-04 4.06+01 0. 0 . 4.94E-05 2.006-04 4.896—04 8.06+01 0. 0. 3.826—05 4.386-04 9.41E-04 1.0E+C2 0. 0. 7.246-05 4.356-04 1.26E-03 2.0E+02 0. 0. 1.586-04 5.666-04 1.546-03 3 . OE + 02 0. 5.436-05 1.88E-04 1.48E-03 2.536-03 4.0E+02 0. 0. 5.16E-04 2.146—03 3.516-03 5.0E+02 0. 1.66E-04 3.82E-04 2.69E-03 4.56E-03 6.0E+C2 0. 0 . 6.726—04 3.98E-03 5.346-03 8.0E+C2 0. 0. 1.506-03 6.926-03 1.10E-02 1• OE+ 03 0 . 0 . 2.876-03 1.216-02 1.56E-02 2.0E+03 7.246-03 2.466-02 2.49E-02 7.39E-05 7.25E-04 3.06+03 2.976-03 9.986-03 6.44E-03 1 .49E-C4 4.1IE— 04 4•0E+03 1 .356-02 3.326-02 2.446-02 3.816-04 9.40E-04 5.06+03 1.666-02 3.636-02 2.15E-02 1.03E-03 1 .966-03 6.0E+03 1 .606-02 2.766-02 2.17E-02 1•17E-03 1.286-03 8.0E+03 5.326-02 9.64E-02 5.88E-02 1.02E-03 6.89E-03 1.0E+04 2.306-02 3.81E-02 1 .49E-02 1.1EE-03 4.76E-03 1.56+04 2.956-02 4.1 2E-02 1 .69E-02 3.2EE-03 6.356-03 2.2E+04 3.616-02 4.53E-02 1.80E-02 S.32E-03 1.066-02 2.6E+04 2.156-02 3.30E-02 1.17E-02 3.45E-03 6.26E-03 3.0E+04 2.526-02 2.446-02 1.066-02 1.23E-03 S.18E-03 3.5E+04 5.446-02 6.896-02 2.306-02 6.81E-03 1.6SE-02 4•0E + 04 5.886-02 6.506-02 2.34E-02 1.11E-02 1•74E-02 5.0E +04 9.396-02 9.616-02 3.296-02 1.1EE-02 3.32E-02 6•0E+04 1 .116-01 1 .1 46-01 3.896-02 1.90E-02 4.59E-02 8•0E + 04 1 .226-01 1.19E-01 3.32E-02 2.89E-02 5.95E-02 1.0E+C5 1.256-01 1.10E-01 3.03E-02 3.47E-02 7.166-02 1•5E + 05 1.68E-01 1.39E-01 3.13E-02 5.856-02 1.066-01 2.0E+C5 2.37E-01 1.61E-01 3.43E-02 1.05E-01 1.646-01 2.5E+05 2.45E-01 1 .70E-01 3.10E-02 1.38E-01 2.06E-01 3.0E+05 2.66E-01 1 .72E-01 3.18E-02 1.676-01 2.256-01 3.5E + C5 2.85E-01 1.616-01 3.096-02 1.846-01 2.64E-01 4.06+05 3.57E-01 1.936-01 2.856-02 2.466-01 3 .48E-01 4.5E+C5 3.74E-01 1.74E-01 1.59E-02 3.006-01 4.15E-01 5.0E+05 2.95E-01 1.47E-01 1 . 55E —02 2.676-01 3.596— 01 5.5E+C5 3.226-01 1 .40E-01 1.366-02 2.976-01 3.706-01 6. 0E + 05 2.86E-01 1 .456-01 1 a 62E-02 3.406-01 4.086-01 7•OE + O 5 2.69E-01 1.036-01 6.97E-03 3.546-01 4.076-01 8•0E+ 05 2.37E-01 9.60E-02 7.28E-03 3.79E-C1 4.22E-01 9.0E+05 2.02E-01 7 .826- 02 2.916-03 4.04E-01 3.86E-01 1 .0E+06 1.77E-01 6.366-02 3.346-03 3.986—01 3.76E-01 1.2E+06 1.336-01 4.266-02 1.256-03 4.166-01 3.32E-01 1.4E+C6 8.916-02 1.58E-02 7.426-04 3.836-C1 2.64E-01 1 * 66 + C6 6.C9E-02 1 .216-02 1 .286-03 3.E6E-C1 2.226-01 1•8E + 06 4.736—02 1.476-02 4.856-04 3.23E-01 1.996-01 2.0E+06 4.956-02 1.316-02 0. 3.366-01 1.97E-01 2.3E+06 4.546-02 7.256-03 3.066-01 1 . 72E-01 2.66+06 3.15E-02 6.256-03 2.82E-01 1 . 53E-01 4.276-04 3.0E+C6 2.82E—02 4.12E-03 2.54E-01 1.35E-01 0. 3.5E+06 2.296—02 4.17E-03 2.06E-01 9.99E-02 0. 4.0E+06 1.656-02 2.206-03 1.516-01 e.18E-02 0. 4•5E + 06 1.566-02 2.416-03 1.376-01 5 • 316—02 5.0E+06 7.796-03 0 . 4.416-04 1.CeE-Cl 4.12E-02 6 * OE + 06 5.146-03 0. 7.136-02 2.80E-02 7•0E+06 3 .366-03 0. 3.836-02 1.456-02 8•0E + 06 2.146-03 3.086-04 0. 1.976-02 7.086-03 9.0E+06 9.766-04 7.586-C4 0. 1 .346-02 2.536-03 1•OE+07 9.816-04 0. 0. 7 .416-03 2.846-03 1.1E+07 6.026-04 0. 0. 3.216-03 3.096-03 0 . 0. 1.2E+C7 0 . 0 . 0. 0. 0. 1.3E+C7 0 . 0. 0. 0. 1 • 4E + C 7 0. 0. 1 •5E + 07 1 .31E-03 0. 0. 0. 0 . 0. 0. 0. 0 . 0. 0.

Data from: Ing and Cross {1976)

102 a Ro 5 10 20 30 50 Rh 0. 540 0. 386 0. 187 0. 0947 0. 0278 In 0. 112 0. 0655 0. 0213 0. 00715 0. 0011 S 0. 0331 0. 0155 0. 00406 0. 00080 0. 00008 P 0. 0174 0. 00844 0. 00215 0. 00044 0. 00005 Np 1. 08 0. 821 0. 419 0. 220 0. 0707 Th 0. 0412 0. 0221 0. 00610 0. 00159 0. 00021 U 0. 169 0. 0917 0. 0255 0. 00694 0. 00081

K 2. 31 1. 89 1. 28 0. 890 0. 467 D 2. 64 2. 09 1. 32 0. 863 0. 424 D.E. . 29. 21 24. 98 17. 00 11. 54 5. 85 Dy 0. 238 0. 259 0. 292 0. 313 0. 338

103 4.19.

FISSION NEUTRONS THROUGH U-238 SPHERICAL GEOMETRY 4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

:NERGY

Data from: Ing and Cross (unpublished) -e- LU tx t=

1 u 10° 10' 1 0 2 103 10' 10 106 10' ENERGY eV

a R0 5 10 20 30 50

Rh 0. 660 0. 600 0.478 0. 371 0. 212

In 0. 152 0. 129 0.0868 0. 0558 0. 213

S 0. 0469 0. 0326 0.0143 0. 00583 0. 00104

P 0. 0250 0. 0178 0.00819 0. 00339 0. 00063

Np 1. 28 1. 21 1.03 0. 844 0. 515

Th 0. 0586 0. 0479 0.0290 0. 0169 0. 00506

U • 0. 240 0. 198 0.123 0. 0721 0. 0217

K 2. 62 2. 45 2.12 1. 85 1. 39

D 3. 07 2. 84 2.41 2. 04 1. 46 D.E. 32. 02 31. 07 28.45 25. 44 19. 21

57 0. 222 0. 229 0.245 0. 260 0. 285

105 4.19. FISSION NEUTRONS THROUGH U-238 SPHERICAL GEOMETRY 4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

E NERGY < EV ) S0=S. RQ = 10 • L%=20. R0 =30. RO=S0. 1 .OE + OO S.OE+OO 0. 0. 0. 0. 0. 1.OE + Ol 0. '0. 0. 0. 0. 4.OE+Ol 0. 0. 0. 0. 0. 8.OE+Ol 0. 0. 0. 0. 0. 1.0E+02 0. 0. 0. 0. 0. 2.0E+02 0. 0. 0. 0. 5.78E-06 3.0E+C2 0. 0. 0. 0. 0. 4.0E+C2 0. 0. 0. 0. 0. 5.0E+02 0. 0. 1.49E-07 0. 0. 6.0E+C2 0. 0. 9.40E-04 0. 0. 8.0E+C2 0. 0. 0. 3.12E-05 0. 1.0E+C3 0. 0. 0. 1.08E-05 1.04E-05 2.0E+C3 0. 0. 4.22E-06 4.99E-06 3.836-06 3.0E+03 0. 0. 2.13E-04 4.28E-0S 6.88E-07 4.0E + 03 1 .87E-C4 4.01E-0S 1 .38E-04 7.26E-0S 3.47E-0S S.0E+C3 0. 1.E7E-03 8.64E-04 4.91E-04 2.86E-04 6.06+03 0. 1.26E-03 1.S1E-03 4.216-04 1.2EE-04 e.0E+03 4.83E-C4 3.10E-04 1.86E-03 7.25E-04 3.75E-04 1•OE + 04 1.65E-03 7.056-04 1.02E-03 2.45E-03 3.17E-04 1.5E+04 l.EEE-03 2.61E-03 4.11E-03 3.91E-03 1.57E-03 2.2E+04 3.46E-03 7.14E-03 1.38E-02 1.39E-02 3.62E-03 2.66+04 2.9EE-03 1.62E-02 2.21E-02 2.39E-02 4.87E-03 3.0E+04 8.28E-03 1.50E-02 2.97E-02 3.24E-02 7.64E-03 3.5E + C4 9 .31E-03 2.346-02 4.86E-02 4.26E-02 1.29E-02 4.0E+04 1.7CE-02 2.08E-02 5.86E-02 5.61E-02 1.10E-02 S.0E+04 1.136-02 4.eeE-02 8.22E-02 6.34E-02 1.31E-02 6.0E + 04 2.436 —C2 5.97E-02 8.UE-02 7.77E-02 1.60E-02 8.0E+04 3.11E-C2 6.92E-02 1.10E-01 1.06E-01 1.92E-02 1.0E+05 3.92E-C2 1.01E-01 1.46E-01 9.6SE-02 1.35E-02 l.EE+05 7.8EE-C2 1.27E-01 1.56E-01 1.00E-01 1.75E-02 2.0E+05 1.13E-C1 2.07E-01 2.00E-01 1.34E-01 1.S6E-02 2.5E+05 1.52E-C1 2.61E-01 2.73E-01 1.46E-01 1.42E-02 3.OE + 05 2.22E-C1 2.9eE-01 3.13E-01 1 .47E-01 1.30E-02 3.5E+05 2.78E-C1 3.74E-01 3.11E-01 1.46E-01 1.97E-02 4.0E+05 3.36E-01 3.65E-01 3.10E-01 1.45E-01 1.14E-02 4.SE+OS 3.17E-C1 4.12E-01 3.16E-01 1.27E-01 1.S7E-02 5.0E+05 3.846-01 4.64E-01 3.116-01 1.276-01 1.34E-02 5.5E+C5 4.19E-01 S.C1E-01 3.21E-01 1.05E-01 3.64E-03 6.0E+05 4.25E-01 4.S7E-01 2.97E-01 8.63E-02 5.15E-03 7.0E+C5 4.41E-01 4.77E-01 2.22E-01 8.90E-02 5.64E-03 8.0E+05 3.93E-C1 3.90E-01 1.60E-01 S.46E-02 4.39E-03 9.0E+05 4.09E-01 3.70E-01 1.47E-01 4.23E-02 9.80E-04 1.0E+06 4.20E-01 3.69E-01 1.38E-01 3.20E-02 6.41E-03 1.2E+06 4.17E-01 2.e8E-01 8.33E-02 2.20E-02 0. 1.4E+06 3.23E-01 1.96E-01 6.46E-02 1.04E-02 0. 1.6E+C6 2.9EE-01 1.936-01 4.776-02 8.45E-03 0. 1.86+06 2.916-C1 1.82E-01 4.38E-02 6.78E-03 9.51E-04 2.0E+C6 2.83E-01 1.566-01 2.86E-02 7.84E-03 1.85E-03 2.3E+06 2.79E-C1 1.S4E-01 2.57E-02 9.34E-03 0. 2.6E + 06 3.27E-01 l.eiE-01 3 .S3E-02 1.06E-03 2.52E-03 3.0E+C6 2.36E-01 1.43E-01 2.18E-02 4.48E-03 0. 3.SE+06 2.47E-01 1.24E-01 3.77E-02 8.87E-03 0. 4.0E+C6 1.696—01 1.07E-01 1.01E-02 4.54E-03 0. 4.5E+06 1.44E-C1 7.2e6"02 1.506-02 2.196-03 0. 5.0E+06 1.09E-C1 4.106-02 1.27E-02 1.39E-03 0. 6.0E+C6 9.00E-C2 4.25E-02 8.38E-03 9.38E-04 0. 7.06+06 3.936-02 1.816-02 8.59E-03 2.81E-03 0. 8.0E+06 3.616-02 2.24E-02 4.86E-03 1.46E-03 0. 9.0E+06 1.E4E-C2 1.46E-03 0. 3.63E-04 0. 1.0E+07 2.37E-03 S.29E-03 1.15E-03 0. 0. 1.1E+07 0. 2.62E-03 1.82E-03 0. 0. 1.2E+C7 0. 0. 0. 0. 0. 1.3E+C7 0. 0. 0. 0. 0. 1.4E+C7 0. 0. 0. 0. 0. 1.5E+07 0. C. 0. 0. 0.

Data from: Ing and Cross (unpublished) ENERGY eV

a Ro 5 10 20 30 50 Rh 0. 506 0.357 0. 183 0. ,109 0. 0644 In 0. 103 0.0608 0. 0213 0. .00919 0. 00463 S 0. 0331 0.0177 0. 00551 0. .00223 0. 00054 P 0. 0173 0.00936 0. 00284 0. ,00116 0. 00035 Np 1. 01 0.748 0. 399 0. ,238 0. 140 Th 0. 0383 0.0216 0. 00681 0. .00279 0. 00120 U 0. 155 0.0875 0. 0273 0. ,0110 0. 00604

K 2. 24 1.83 1. 33 1. .06 0. 843 D 2. 54 2.01 1. 36 1. .02 0. 771 D.E. 28. 2 23.8 17. 4 13. .5 10. 2 57 0. 242 0.263 0. 290 0. .304 0. 315

107;

5

SPECTRA OF H2OMODERATED FISSION NEUTRONS THROUGH SHIELDING

5.1. HjO-moderated fission neutrons through Be

5.2. H20-moderated fission neutrons through Al

5.3. H20-moderated fission neutrons through concrete

5.4. H20-moderated fission neutrons through Fe 5.5. HjO-moderated fission neutrons through Cu

5.6. H20-moderated fission neutrons through Pb 5.1.

H20-M0DERATED FISSION NEUTRONS THROUGH Be SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

EN 6RGY C EV > 0= 2.5 D = 5 D= 10 D= 20 0=0 TH 4.886 -02 4.19E- 02 3.63E -02 4. 04E -02 6.646- 02 1 . 88E -01 2 . SOE--01 9. 1 26 -03 6.476- 03 4.44E -03 3. 0 2E -03 2.06E- 02 5 . OOE--01 9.SOE -0 3 6.68E- 03 4.56E -03 3.06E -03 2.19E- 02 1 . OOE 00 9.866 -03 6. 89E- 03 4.73E -03 3.HE -03 2.29E- 02 2 • 1SE 00 1 .OlE -02 7.046- 03 4.88E -03 3.13E -03 2.37E- 02 4 • 65E 00 1 . 02E -02 7.196- 03 5.07E -03 3.16E -03 2.41E- 02 1 . OOE 01 1.086 -02 7.696- 03 5. SOE -03 3.32E -03 2 .47E- 02 2 .15E 01 1 . 1 2E -02 7.966- 03 5.73E -03 3.33E -03 2.596- 02 4 • 65E 01 1 . 1SE -02 8.146- 03 5.93E -03 3.30E -03 2.66E- 02 1 .OOE 02 1 . 1 SE -02 8.44E- 03 6.24E -03 3.326 -0 3 2.78E- 02 2 . 15E 02 1 .18E -02 8.57E- 03 6.46E -03 3.2 SE -03 2.776- 02 4 • 65E 02 1.2 2E -02 8. 93E- 03 6.83E -03 3.24E -03 2.866- 02 1 .OOE 03 1 .2 5E -02 9.376- 03 7.26E -03 3.226 -03 2.936- 02 2 . 1 5E 03 1 . 28E -02 9.E5E- 03 7.68E -03 3.16E -03 2.976- 02 4 . 6SE 03 1.31E -02 1.046- 02 8.07E -03 3. 07E -03 3. 04E- 02 1 .OOE 04 1 . 38E -02 1.126- C2 8.50E -03 2.98E -03 3.11E- >02 1 . 2 6E 04 1 .41E -02 1.16E- 02 8.60E -03 2 *85E -0 3 3.10E- 02 1 . 58E 04 1. 47E -02 1.21E- 02 8.88E -03 2.8SE -03 3.17E- 02 1 . 99E 04 1 . 52E -02 1.26E- 02 9.0 6E -03 2.84E -03 3.246- 02 2 .S1E 04 1.58E -02 1.30E- 02 9.25E — 03 2.83E -03 3.33E- 02 S . 16E 04 1 . 66E -02 1.36E- 02 9.49E -03 2.83E -03 3.456- 02 3 . 98E 04 1 .876 -02 1.54E- 02 1 . 06E-0 2 3.10E -03 3.88E- 02 5 . 0 IE 04 1.99E -02 1.62E- 02 1.09E -02 3. 14E -03 4.106- 02 6 . 3 IE 04 2.13E -0 2 1.726- 02 1.1 4E -02 3.18E -03 4.356- 02 7 . 94E 04 2.3 OE -02 1.856- 02 1 .1 9E -02 3.246 -03 4.656- 02 1 .OOE 05 2.46E -02 1.96E- 02 1 .23E -02 3.27E -03 4.886- 02 1 . 26E 05 2.63E -02 2.07E- 02 1 . 27E -02 3 . 266 -03 5.156- 02 1 . S8E 05 2.98E -0 2 2.34E- 02 1.39E -02 3.486 -03 5.66E- 02 1 . 99E 05 3 • 5 IE -02 2.74E- 02 1 .59E -02 3.90E -03 6.266- 02 2 . 51E 05 4.02E -02 3.08E- 02 1 . 74E -02 4.166 -03 6.96E- 02 3 . 16E 05 4.76E -02 3.61E- 02 1 • 99E -02 4.636 -03 7.80E- 02 3 . 98E 05 5.41E -0 2 4.026- 02 2.13E -02 4.826 -03 8.89E- 02 5 • OlE 05 6. 05E -02 4.366- 02 2.21E -02 4. 88E -03 1.006- 01 6 . 31E 05 6.76E -02 4.746- 02 2.31E -02 4. 97E -03 1.13E- 01 7 . 94E- 05 7.58E -02 5.256- 02 2.54E -02 5.48E -03 1.26E- 01 1 . OOE 06 8.S1E -02 5.876- 02 2.83E -02 6 . 1 SE -0 3 1.396- 01 1 . 26E 06 9.97E -02 6.94E- 02 3.38E -02 7 . 276 -03 1.51E- 01 1 . 58E 06 1.086 -01 7.67E- 02 3.81E -02 8.626 -03 1.63E- 01 1 . 99E 06 1 . 22E -01 8.86E- 02 4.51E -02 1 .046 -02 1.66E- 01 2 . 51E 06 1.11E -01 7.66E- 02 3.67E -02 8.076 -0 3 1.64E- 01 3 . 16E 06 8.S2E -02 S.25E- 02 2.07E -02 3.756 -03 1.47E- 01 3 . 98E 06 6.39E -02 3.326- 02 1 .03E -02 1 . 08E -03 1.20E- 01 5 . OlE 06 4.75E -02 2.626- 02 9.05E -03 1 . 1 IE -0 3 8.35E- 02 6 . 31E 06 3.38E -02 2.36E- 02 8.42E -03 1 . 3 2E -03 5.05E- 02 7 • 94E 06 2.19E -02 1•33E- 02 5.16E -03 7 . 346 -04 2.87E- 02 1 . OOE 07 1. 43E -03 7.15E- 04 3.78E -04 9.896 -05 1.52E- 02 1 • 26E 07 5.88E -OS 5.61E- 05 3.77E -OS 1 .016 -05 2.85E- 05 1 . S8E 07 O.OOE -01 O.OOE- 01 O.OOE -01 0 .OOE -01 0.OOE- 01 1 . 99E 07 O.OOE -01 O.OOE- 01 O.OOE -01 O.OOE -01 O.OOE- 01

Data from: Palfalviand Koblinger (1976) and Palfalvi (1976) 10 ~r—|—i—i—|—i—i—[—i—i—|—i—r—i—r—i—|—i—i—i—i—i—i

-I 10

-2 10

-3 10 5

r Q- -1 10

-s 10

-6 10

-7 10 i—I i i I i i I i i I i i i ' iii iii i .1 TH 10° 101 10* 10S 10H 10S 10® 107 ENERGY(EV)

X 0 2.5 5 10 20 Rh 0.329 0.383 0.355 0.276 0.167 In • 0.0757 0.0882 0.0802 0.0605 0.0357 S 0.0303 0.0327 0.0274 0.0176 0.00823 P 0.0120 0.0129 0.0110 0.00730 0.00361 Np 0.630 0.735 0.692 0.555 0.353 Th 0.0299 0.0343 0.0307 0.0225 0.0128 0 0.122 0.142 0.128 0.0964 0.0565 t 1.41 1.61 1.52 1.22 0.767 D 1.63 1.87 1.75 1.40 0.888 "O. 17.1 19.6 18.7 15.4 10.2

Dr 0.216 0.211 0.215 0.223 0.222

111; 5.2.

H20-M0DERATED FISSION NEUTRONS THROUGH Al SLAB GEOMETRY

$(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGYC EV) 0=2.S 0=5 D=10 0=20 D=0 TH 5.46E-02 4.56E-02 3.29E-02 1.83E-02 6.64E-02 1 . 88E —01 2.50E-01 1.75E-02 1.53E-C2 1.19E-02 8.03E-03 2.06E-02 5.OOE-01 1.87E-02 1.62E-02 1 .27E-02 8.57E-03 2.196-02 l.OOE 00 I.S7E-02 1.71E-02 1.36E-02 9.336-03 2.296-02 2.15E 00 2.C4E-02 1.78E-C2 1.42E-02 9.97E-03 2.37E-02 4.65E 00 2.086-02 1.82E-02 1.46E-02 1.03E-02 2.416-02 l.OOE 01 2.13E-02 1.87E-02 1.51E-02 1.07E-02 2.47E-02 2.156 01 2.246-02 1.976-02 1.596-02 1.14E-02 2.59E-02 4.65E 01 2.30E-02 2.03E-02 1.63E-02 1.18E-02 2.66E-02 l.OOE 02 2.40E-02 2.12E-02 1.71E-02 1.24E-02 2.78E-02 2.15E 02 2.40E-02 2.11E-02 1.71E-02 1.246-02 2.776-02 4.65E 02 2.48E-02 2.186-02 1.77E-02 1.28E-02 2.86E-02 l.OOE 03 2.54E-02 2.24E-02 1.816-02 1.326-02 2.936-02 2.15E 03 2.5eE-02 2.28E-02 1.856-02 1.366-02 2.976-02 4.65E 03 2.67E-02 2.39E-02 1.996-02 1.52E-02 3.04E-02 l.OOE 04 2.356-02 1.86E-02 1.286-02 7.946-03 3.116-02 1.26E 04 2.81E-02 2.63E-02 2.40E-02 2.37E-02 3.10E-02 1 .58E 04 3.14E-02 3.13E-02 3.23E-02 3.31E-02 3.17E-02 1.99E 04 2.97E-02 2.876-02 2.82E-02 4.49E-02 3.24E-02 2.516 04 2.63E-02 2.36E-02 2.16E-02 4.56E-02 3.33E-02 3.16E 04 2.206-02 1.72E-02 1.34E-02 5.396-02 3.4SE-02 3.98E 04 2.15E-02 1.486-02 9.52E-03 5.86E-02 3.88E-02 5.0IE 04 2.41E-02 1.73E-02 1.176-02 4.62E-02 4.10E-02 6.31E 04 2.736-02 2.04E-02 1.45E-02 3.06E-02 4.3SE-02 7.94E 04 3.10E-02 2.39E-02 1.76E-02 1.45E-02 4.656-02 1.006 05 3.22E-02 2.476-C2 1.81E-02 1.456-02 4.88E-02 1.266 05 3.36E-02 2.54E-02 1.84E-02 1.47E-02 5.15E-02 1.58E 05 3.69E-02 2.80E-02 2.046-02 1.56E-02 5.66E-02 1.99E 05 4.306-02 3.376-02 2.566-02 1.946-02 6.266-02 2.516 05 4.95E-02 3.99E-02 3.11E-02 2.41E-02 6.966-02 3.16E 05 S.83E-02 4.82E-02 3.86E-02 3.00E-02 7.80E-02 3.98E 05 6.66E-02 5.546-02 4.40E-02 3.306-02 8.89E-02 5.01E 05 7.576-0 2 6.31E-02 4.96E-02 3.54E-02 1.00E-01 6.316 05 8.596—02 7.186-02 5.576-02 3.786-02 1.136-01 7.946 05 9.926-02 8.446-02 6.63E-02 4.336-02 1.266-01 1.006 06 1.126-01 9.266-02 7.12E-02 4.42E-02 1.39E-01 1.266 06 1.24E-01 1.05E-01 8.056-02 4.74E-02 1.51E-01 1.58E 06 1.316—01 1.08E-01 7.70E-02 4.06E-02 1.63E-01 1.99E 06 1.316-01 1.04E-01 6.986-02 3.21E-02 1.66E-01 2.51E 06 1.286-01 9.99E-02 6.38E-02 2.72E-02 1.64E-01 3.16E 06 1.14E-01 8.91E-02 5.58E-02 2.26E-02 1.47E-01 3.98E 06 9.2 86-02 7.236-02 4.456-02 1.70E-02 1.20E-01 5.01E 06 6.49E-02 5.05E-02 3.10E-02 1.176-02 8.356-02 6.316 06 3.946-02 3.07E-02 1.87E-02 6.98E-03 5.05E-02 7.94E 06 2.25E-02 1.72E-02 9.656-03. 3.36E-03 2.876-02 l.OOE 07 1.15E-02 9.69E-03 5.95E-03 2.80E-03 1.52E-02 1.26E 07 1.50E-05 4.89E-06 9.56E-04 3.36E-04 2.856-05 1.58E 07 0.006-01 0.006-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol 1.99E 07 0. C 06-01 0.006-01 O.OOE-Ol O.'OOE-Ol O.OOE-Ol

Dam from: Makra (1972), Patfahiand Koblinger (1976) and Palfalvi (1976)

112 d ^ 2.5 5 10 20

Rh 0.326 0.312 0.278 0.176 In 0.0748 0.0708 0.0606 0.0345 S 0.0296 0.0277 0.0226 0.0114 P 0.0117 0.0110 0.00908 0.00462 Np 0.625 0.604 0.551 0.369 Th 0.0294 0.0276 0.0231 0.0125 U 0.120 0.113 0.0951 0.0519

* 1.38 1.32 1.21 0.866 D 1.60 1.54 1.40 0.973 DTE. 16.8 16.3 15.2 11.2 D f 0.215 0.215 0.219 0.237 5.3.

H20-M0DERATED FISSION NEUTRONS THROUGH CONCRETE SPHERICAL GEOMETRY

4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

NERGYtEV) 1R o-M0 « • R0 -30 R0 -40 . R0=60. F0 =20 . 1.0E+00 1.0E+01 3 • 5 26- C2 2.78E- 02 1.60E- 02 7 .326-03 1.23E-03 3.0E+01 3 .336- 02 2.76E- 02 1.47E- 02 5.986-03 9•96E-04 1.0E+02 3 .456- C2 2.66E- 02 1.36E- 02 S.976-03 8.22E-04 3.0E+02 3 • 56E — C2 2.68E- 02 1.39E- 02 5.756-03 8.19E-04 1 .0E4-03 3 .556- C2 2.60E- 02 1.31E- 02 4.77E— 03 7.46E-04 2 . 0E + 03 3 • 566— 02 2.S8E- 02 1•10E- 02 5.42E-03 7.83E-04 5•0E+03 3 • 5 1E- C2 Z.E2E- 02 1.11E- 02 4.576-03 6.76E-04 1 .0E+04 3 • 76E- C2 2.33E- 02 1.18E- 02 3.986-03 6.65E-04 2.06+04 3 . 83E- 02 2.39E- 02 1•06E- 02 3.616-03 6.97E-04 4.06+04 4 • 1 IE— 02 2.EOE- 02 1.01E- 02 3.946-03 6.92E-04 6.06+04 4 .7 2E- C2 2•82E— 02 1•1OE- 02 4.966-03 8.49E-04 1.0E+05 S • 06E- C2 3.03E- 02 1.20E- 02 4.306-03 1.02E-03 1 .5E+05 6 • 41E-02 3.4SE- 02 .1 .47E- 02 6 .306-03 9.09E-04 2.06+C5 6 • 60E-02 3.35E- 02 1•34E- 02 5.10E-03 8.77E-04 2•56+C5 5 • 1OE- 02 2.71E- 02 9.18E- 03 4.97E-03 4.906-04 3.06+05 7 • 04E- 02 3.33E- 02 1.38E- 02 5.556-03 1.62E-03 3•56+0 5 7 • 11E- 02 2.E2E- 02 1.57E- 02 5.196-03 9.33E-04 4.0E+05 5 .83 E- 02 2.96E- 02 1 .21 E-02 4.676-03 1.016-03 4.5E + 05 3 • 4 CE— 02 1.91E- 02 8.55E- 03 3.256-03 7.58E-04 S.0E+C5 6 • 5 3E- 02 3.e2E- 02 1.346- •02 6.48E-03 1.31E-03 5.SE+05 1 • 06E- 01 5.89E- 02 2.82E- 02 1.2 4E —02 1 1.72E-03 6.0E+C5 1 • 16E- 01 4.76E- 02 3.01E- •02 1 .216-02 8.14E-04 7•0E + 05 1 • 25E- 01 7.47E- 02 3.24E- •02 1•27E—02 2.29E-03 8.0E+ 05 1 • 62E- 01 6.30E- 02 2.94E-02 1.27E-02 3.00E-03 9•06 + 05 1 .UE- 01 4.?7E- 02 1.74E- •02 9.426-03 1.446-03 1.06+06 5 • 83E-•02 2 • 37E- 02 1.09E-02 4.536-03 7.85E-04 1.2E+06 9 •84E-02 4.2SE- 02 1.98E-02 9.29E-03 2.07E-03 1.46+06 1 .09E- •01 4.83E- 02 2.11E- •02 9.73E-03 1 .84E-03 1•66 + 06 1 • 18E-•01 5.S1E- •02 2.63E-02 1.186—02 1.80E-03 1.86+06 1 • 34E- 01 6.C6E- 02 3.25E-02 1.486-02 2.93E-03 2.06+06 1 .1 0E-•01 5.40E-02 2.90 E—02 1.36E—02 2.45E-03 2.36+06 t •E3E-C1 8.83E- 02 5.10E-02 2.726-02 6.41E-03 2.66+06 1 .5SE- •01 1.18E- 01 7.416-02 4.27E-02 9.52E-03 3.06+06 1 .57E-01 8.88E- •02 4.80E- •02 2.016—02 4.26E-03 3•5E+06 1 • C7E-•01 S.19E-02 2.32E- •02 8.626-03 1.78E-03 4.0E+C6 a • 3 2E-•02 3.96E- •02 1 .496-•02 7.80E-03 1.13E-03 4.5E+06 7 • 22E--02 3.78E- •02 1.82E-02 8.106-03 1.67E-03 5.0E+C6 6 .38E- •02 4.oeE- •02 2.116- •02 9.446-03 2.07E-03 6.0E+06 4 •44E-C2 2.31E- •02 1.18E—02 7.006-03 1.35E-03 7.0E+06 3 • 06E-- C2 1 . E5E-02 8.98E- -03 5.796-03 9.166-04 8.0E+06 1 .97E- •02 1.C7E- •02 4.37E- -03 1 .94E-03 6.25E-04 9.0E+06 9 • 6 EE--C3 4.ceE-•03 2.37E- -03 4.806-04 7.31E-05 1.0E+ 07 5 .566- •03 3.E0E-03 1.536- -03 1.05E-03 1.656-04 1• 1E + 07 1 • 2eE--03 2 • 26E-•03 3.936- -04 2 .59E-04 1.56E-04 1.2E+C7 3 •83E-04 3.40E- •04 0 . 1.56E-04 0. 1.36+07 0 • 0 . 0. 0. 0. 1.46+C7 c « 0. 0. 0. 0. 1.56+07 0 • 0 . 0. 0. 0.

Data from: Cross and Ing (1977)

114 10"

10''

10'2

1 0 3

- 10"

t= 3- 1 0 5

10"

1 0'

1 u 1 1 1 s I0 10' I0 I0 10' 10 1 o' 10'

ENERGY (eVI

0 R0 10 20 30 40 60 Rh 0. 278 0. 235 0 243 0. 272 0 318 In 0. 0649 0. 0566 0 0603 0. 0684 0 0809 S 0. 0242 0. 0216 0 0223 0. 0257 0 0301 P 0. 0125 0. 0112 0 0117 0. 0133 0 0156 Np 0. 535 0. 449 0 463 0. 511 0. 587 Th 0. 0264 0. 0232 0 0246 0. 0280 0 0332 U 0. 105 0. 0933 0 101 0. 115 0 137

K 1. 21 1. 02 1 03 1. 12 1 28 D 1. 39 1. 1 20 1. 32 1 50 D.E 14. 63 12. 3 12 32 13. 27 14 92 Dy 0. 318 0. 333 0 336 0. 332 0 322

115 5.4.

H20-M0DERATED FISSION NEUTRONS THROUGH Fe SPHERICAL GEOMETRY 4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY (EV) F0=5. R„=10. R0=20. Pr-=30. R0 -SO. 1 .06 + C0 5 .06+00 3 48E-02 3.39E-03 1 .88E-04 l.OE+Cl 3 48E-02 8.36E-03 4.80E-04 4.0E+01 3 48E-C2 1.07E-02 7.S8E-04 8.0E+01 3 78E-02 9.69E-0 3 9.85E-04 1.06+C2 3 03E-02 8.85E-03 6.59E-04 2.06+Q2 2 65E-02 9.306-0 3 7.23E-04 3.06+C2 34E-C2 1 .08E-02 9.11E-04 4.06+02 4 0 IE- 02 8.83E-03 1.36E-03 5.06+02 3 38E-C2 9.57E-03 1.21E-03 6.06+02 2 97E-02 1.02E-02 1.44E-03 8 . 06 + C 2 3 30E-C2 1.15E-02 1.16E-03 1 .06 + 03 3 90E-C2 1.31E-02 1.18E-03 2.06 + 0 3 3 67E-C2 1.58E-02 1.69E-03 3.0E+C3 3 S3E-C2 1.92E-02 2.66E-03 A.OE + 03 3 45E-02 1.68E-02 2.946-03 5.OE+03 3 36E-02 1.83E-02 S.93E-03 6.0E+03 4 7 6E-C2 1.15E-02 3.44E-03 8.0E+C3 3 63E-02 3.59E-03 1.77E-03 1 . OE+ 04 2 49E-C2 3.50E-03 1.S2E-03 1. 5E + 04 3 78E-C2 1.19E-02 6.81E-03 2.26+04 4 08E-C2 3.20E-02 2.56E-02 2•6E + C4 e 41E—02 2.85E-01 1.80E-01 3.06+04 l 62E-C2 2.12E-03 2.00E-04 3 • 56 + 04 2 68E-02 2.87E-03 9.446-04 4.06+04 3 46E-C2 7.44E-03 7.68E-04 5•0E + 0 4 3 9EE-C2 8.26E-03 9.08E-04 6.OE+04 3 S6E-02 4.91E-03 7.38E-04 8.0E+C4 4 70E-C2 7.55E-03 2.066-03 1.06+05 3 70E-C2 1.30E-02 4.65E-03 1 . 56 + C5 5 94E-02 S.0SC-02 2.41E-02 2.06+05 7 31E-C2 9.1 1E-02 4.64E-02 2•56+05 8 32E-C2 1.02E-01 4.81E-02 3.0E+C5 e 57E-C2 1.73E-01 8.746—02 3.5E+C5 l 096-01 3.43E-01 1.40E-01 4.06+OS I 046-01 1•83E-01 3.80E-02 4•5E + 05 l 17E-01 8.29E-02 I.236-02 5.OE+05 l 48E-CJ 1.69E-01 2.756-02 5.5E+05 I 11E-C1 1.46E-01 2.60E-02 6.36+05 I 49E-C1 2.08E-01 3.16E-02 7.06+C5 I S1E-C1 2.41E-01 2.70E-02 8.06+C5 I 45E-01 7.58E-02 _ S.56E-03 9.06+05 I 66E-C1 1.07E-01 8.31E-03 1.06 + 06 i e7E-Cl 1.22E-01 8.46E-03 1.26+06 l e2E-Cl 8.74E-02 2.576-03 1.4E + C6 2 06E-01 6.76E-02 2.746-03 1.6E+C6 1 86E-01 5.75E-02 2.416-03 1 . 86 + C 6 2 41E-01 5.526-02 1.236-03 2.06+06 2 C3E-01 4.06E-02 1.736-03 2.26+06 1 8IE-01 3.17E-02 0. 2.6E+06 1 21E-01 2.37E—02 4.976-04 3.0E+06 1 81E-01 2.03E-02 2.176-04 3.5E+06 1 26E-C1 1.33E-02 0. 4.0E+C6 1 31E-01 1.03E-02 2.286-04 4. 5E + C6 9 15E-02 7.75E-03 0. 5.06*06 1 05E-01 6.10E-03 2.726-04 6.OE + 06 5 E3E-C2 5.60E-03 0. 7.06+06 3 14E-C2 2.06E-03 0. 3.0E+06 2 34E-C2 1.72E-03 1.87E-04 9.OE+O6 1 53E-C2 2.36E-04 0. 1.0E+C7 1 '40E-C2 0. 0. 1 .lE + O"1 1 S3E-C3 0. 0. 1.2E+C7 2 10E-C3 0. 0. 1.3E + 07 0 0. 0. 1.46+C7 C 0. 0. 1.56+07 C 0. 0.

Data from: Ing and Cross (1975b)

116 a Ro 2 20 50 Rh 0. 329 0.193 0.0715 In 0.0738 0.0249 0.00308 S 0.0258 0.00436 0.00020 P 0.0133 0.00235 0.00012 Np 0. 641 0.434 0.146 Th 0.0295 0.00763 0.00061 U 0.117 0.0318 0.00255

K 1. 42 1.20 0.851 D 1. 64 1.27 v 0. 890 D.E. 17.46 16.22 10.80 D? 0.304 0.302 0.315

117; H20-M0DERATED FISSION NEUTRONS THROUGH CU SPHERICAL GEOMETRY 4 jt R2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY(EV » R0-5. R0=10. R„=20. R0=30. R0=50. 1•OE+CO 5.0E+00 2.4 IE— 02 1.13E-02 3.03E-03 8.24E-04 9.77E-05 1.OE+Ol 2.71E—02 1.9eE-02 7.196-03 2.186-03 3.196-04 4.OE+Ol 2.8eE-02 2.21E-02 8.46E-03 2.316-03 5.70E-04 8•OE + 01 3^16E-02 2.606-02 7.596-03 2.476-03 8.4IE—04 I.06*02 3.38E-C2 2.396-02 5.936-03 2.406-03 1.136-03 2•0E+C2 3.16E-02 1.S4E-02 6.146-03 2.746-03 1.216-03 3.06+02 3.03E-02 1.94E-02 7.076-03 4.046-03 2.046-03 4.06+02 3.25E-02 2.03E-02 8.556-03 5.576-03 3.05E-03 5.06+02 3.25E-C2 1.77E-02 9.066-03 6.12E-03 3.08E-03 6.0E+02 2.01E-C2 1.546-02 9.516-03 8.34E-03 4.03E-03 8.0E+02 2 .806-02 2.17E-02 1.606-02 1.456-02 8.06E-03 1.06+0 3 2.856-02 2.83E-02 2.196-02 2.09E-0 2 8.94E-03 2.06+03 4.S46-C2 4.17E-02 3.566-02 2.88E-02 1.49E-02 3.06+03 1 .62E-02 1.13E-02 9.32E-03 8.62E-03 4.19E-03 4.06+03 3.51E-02 3.85E-02 3.33E-02 3.146-02 1 .486-02 5.0E+03 3 .086-02 3.30E-02 3.19E-02 2.816-02 1.246-02 6.0E+C3 2.71E-C2 2.78E-02 2.366-02 2.146-02 1.08E-02 8.06+03 5.36E-02 6.96E-02 8.256-02 7.176-02 3.19E-02 J.06+04 3.SEE-C2 3.09E-C2 2.58E-02 2.386-02 8.40E-03 1.56+04 3.57E-02 3.206-02 2.836—02 2.726-02 7.88E-03 2.26+04 4.40E-02 3.56E-02 3.19E-02 2.756-02 8.81E-03 2.6E+C4 2.23E-C2 1.756-02 2.166-02 1.82E-02 3.84E-03 3.06+04 1.eCE-02 1 .S7E- 02 2.02E-02 1.706-02 3.57E-03 3.56+C4 3.6SE-02 3.22E-02 4 .296-02 4.006-02 1.27E-02 4. 06+04 3.56E-02 3.OOE—02 4.69E-02 4.566-02 1.1OE-02 5.06+04 4.106-02 4.78E-02 6.86E-02 5.236-02 1.596-02 6.06+04 5.14E-02 5.486-02 7.596-02 6.416-02 1.856-02 8.36+04 5.88E-02 6.676-02 7.736-02 6.29E-02 1 .506-02 1.0E+05 5.89E-02 6.S4E-02 8.76E-02 5.56E-02 1.836-02 l.SE+CS e.176-02 8.28E-02 9.94E-02 7.45E-02 1.69E-02 2.0E+05 9 .196-02 1.136-01 1.28E-01 8.52E-02 1.31E-02 2.5E+05 1.056-01 1.316-01 1.22E-01 7.53E-02 1.30E-02 3.0E+05 1.126-01 1.486-01 1.426-01 8.936-02 1.03E-02 3.5E+05 1.376-01 1.536-01 1 .536-01 8.836-02 1.29E-02 4.06+05 1.536-01 1.93E-01 1.846-01 9.166-02 1.10E-02 4.56+05 1 .666-01 2.37E-01 1.826-01 9.946-02 1.22E-02 5.06+05 1.586-01 1.88E-01 1 .45E-01 7.136-02 9.04E-03 5.SE+05 1.686-01 1.95E-01 1.446-01 7.306-02 4.09E-03 6.0E+05 2.03E-01 2.2eE-01 1 .686-01 5.856-02 1.246-02 7.0E+05 1.816-01 1.916-01 1.246-01 5.196-02 4.136-03 8.0E+C5 1 .90E-01 1.956-01 1.186-01 3.87E-02 2.576-03 9.0E+05 2.04E-01 1.826-01 1 .09E-01 3.266—02 2.47E-03 1.0E+06 1.89E-01 1.78E-01 7.43E-02 2.646-02 2.21E-03 1.2E+06 1.72E-01 1.56E-01 5.66E-02 2.056-02 6.516-04 1.4E+06 1 .91 E—01 1 .34E-01 4.006-02 9.79E-03 3.906-04 1.6E + 06 1 .SOE-01 9.416-02 3.02E-02 9.89E-03 0. 1•8E+06 1.576-01 1.C1E-01 2.58E-02 6.04E-03 0. 2.OE + 06 1.486-01 9.OOE-O2 2.81E-02 4.576-03 0. 2.3E+06 1 .306-C1 7.87E-02 1.60E-02 5.176-03 0. 2.6E+06 9.28E-02 5.49E-02 1.576-02 4.276-03 0. 3.0E+06 1 .206-01 6.S5E-02 9.31E-03 2.866-03 0. 3.5E+06 9 .316-02 4.12E-02 1.01E-02 1 .536- 03 4. OE + 06 9.616-02 3.97E-02 8.41E—03 4.556-04 4.5E+06 6.89E-02 2.996-02 5.05E-03 4.386-04 3.786-04 5.0E+C6 5.79E-02 3.42E-02 5.64E-03 4 .946-04 0. 6.OE + 06 3.C6E-02 1.73E-02 4.116-03 9.186-04 0. 7.0E+06 2.54E-02 1 .02E— 02 1.906-03 7.39E-04 0. 8.0E+06 1.61E-02 7.S8E-03 1.716-03 3.956-04 2.976-04 9.0E+06 7.34E-03 2.05E-03 0. 4.09E-04 3.666-04 1.0E+07 3.97E—03 1 .65E-03 0 . 0. 1.1E+C7 1.2EE-C3 0. 0. 0. 1.2E+C7 6.39E-C4 C. 1.64E-03 0. 0. 1.3E+C7 0. 0. 0. 0 . 0. 1.4E+C7 0. 0. 0 . 0. 0. . 1.5E+07 0 . 0. 0. 0. 0. 0. 0. 0. 0.

Datafrom: Ing and Cross (I9761 a R0 5 10 20 30 50 Rh 0.283 0.230 0.132 0.0768 0.0245 In 0.0569 0.0383 0.0147 0.00626 0.00070 S 0.0182 0.0100 0.00283 0.00088 <0.00001 P 0.0094 0.0053 0.0015 0.00047 <0.00001 Np 0.573 0.492 0.302 0.180 0.0691 Th 0.0215 0.0131 0.00428 0.00162 0.00001 U 0.0863 0.0537 0.0178 0.00666 0.00009

K 1.32 1.21 0.964 0. 748 0.418 D 1.49 1.32 0.984 0.726 0.383 D7E7 16.81 16.03 12.80 9.72 5.35 Dy 0.305 0.306 0.314 0.323 0.342

119; 5.6.

H20-MODERATED FISSION NEUTRONS THROUGH Pb -SPHERICAL GEOMETRY 4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY < EV ) R0=E. R0=10. R0 =30. R0=50. 1.0E+00 5.0E+00 3.6SE-02 3.45E-02 ' 3.06E-02 2.32E-02 1.OE+Ol 3.77E-C2 3.38E-02 3.046-02 2.43E-02 4.06+01 3.63E-02 3.67E-02 3.13E-02 2.5 IE-02 8.06+01 3.56E-02 3.66E-02 3.09E-02 2.53E-02 1.06+02 3.42E-02 3.53E-02 3.39E-02 2.88E-02 2.06 + 02 3.67E-C2 3.74E-02 3.C6E-02 2.84E-02 3.0E+02 3.48E-02 3.40E-02 2.87E-02 2.946—02 4.06+02 3.78E-02 3.64E-02 3.086-02 3.296-02 5.06+C2 3.10E-C2 3.40E-02 3.656-02 3.266-02 6.06+02 2.90E-C2 2.S5E-02 2.926-02 3.936-02 8 • 06+0 2 3.36E-02 3.02E-02 3.556-02 3.486-02 1.0E + 03 3.67E-02 3.63E-02 3.826-02 3.606-02 2.0E+03 3.62E-02 3.84E-02 3.396-02 3.386-02 3.0E+03 3.72E-C2 3.60E-02 3.11E-02 3.44E-02 4.0E + 03 3.56E-C2 3.47E-02 3.706-02 3.52E-02 5.0E+C3 4.26E-02 3.50E-02 3.43E-02 3 . 91E— 02 6.0E+03 3.36E-02 3.496-02 3.48E-02 3.82E-02 8.0E+03 3.58E-C2 3.62E-02 3.90E-02 4.05E-02 1.0E + 04 3.66E-02 3.616-0 2 3.E8E-02 4.246-02 J.5E + 04 3.73E-02 3.576-02 3.77E-02 4 .6 86-02 2 .26+04 4.33E-02 4 • C06-02 4.31E— 02 5.666-02 2.6E + C4 4.37.E-02 3.506-02 4.956—02 6.46E-02 3.0E + 0 4 4.14E-02 4.COE-02 6.436-02 7.146-02 3.5E+04 3.S7E-02 4.48E-02 6.986-02 8.196-02 4«0E + 04 5.J3E-02 5.156-02 6.16E-02 7.52E-02 5.0E+04 4.14E-02 4.386-02 3.91 E-02 5.00E-02 £.OE + 04 E.24E-02 5.406-02 6.17E-02 7.62E-02 8.06+04 4.75E-C2 5.066-02 5.47E-02 6.02E-02 1.0E+C5 5.03E-02 6.C36-02 7.33E-02 7.79E-02 1. 5E + 05 6.54E-02 6.816-02 8.13E-02 8.8 86-02 2.06+05 7.18E-02 8.35E-02 1.C5E-01 1 .146-01 2•5E + 05 6.76E-02 9.476-02 1.25E-01 1.336-01 3. 0E + 05 6.S8E-02 9.616-02 1.30E-01 1 .29E-D1 3.5E+05 1.11E-01 1.186-01 1.52E—01 1.59E— 01 4.06+C5 9.31E-02 9.S9E-02 1.28E-01 1.426-01 4.56+05 1.10E-01 1.196-01 1.84E-01 2.38E-01 5.06+05 1.54E-01 1.696-01 2 . 876—01 3.88E-01 5.56 + 05 1.30E-01 1.716-01 3.226-01 3.166-01 6.0E+C5 1.49E-01 1.666-01 2.356-01 2.256-01 7.OE+05 1.72E-01 2.036-01 2.626-01 1.826-01 8.06+05 1.60E-01 1.98E-01 2.386-01 1.576-01 9 .OE + 05 1.9SE-01 1.986-01 1.856-01 1.056-01 1•06 + 06 2.09E-0J 2.206-01 2.01E-01 1.236-01 1.26+06 1.91E-01 2.0SE-01 1.816-01 9.556-02 1.4E+C6 2.I7E-01 2.20E-01 1.576-01 6.89E-02 1 .66+06 1.72E-01 1•88E-01 1.40E—01 5.40E-02 1 .86+06 2.13E-01 1.966—01 9.96E-02 2.96E-02 2.0E+06 2.28E-01 2.136-01 1.14E-01 3.64E-02 2.3E+06 1.9EE-01 1.876-01 6.65E-02 1.936-02 2.6E+06 1.59E-C1 1 .51E—01 4.76E-02 1.096-02 3.OE + 06 1.74E-01 1.33E-01 2.75E-02 2.84E-03 3.5E+06 1.2EE-01 1.C3E-01 1.56E-02 1.016-03 4.0E+06 1.40E-01 8.00E-02 9.836-03 1.64E—03 4.5E+06 6.12E-02 4.67E-02 7.166-03 7.96E-04 E.0E+06 8.13E-02 5.10E-02 5.046-03 2 . 976-04 6.0E+06 4.56E-C2 3.05E-02 2.916-0 3 3.43E-04 7.0E+C6 3.C4E-02 2.516-02 2.436-0 3 6.086-04 8.OE+06 2.53E-02 1•40E-02 1.876-03 0. 9.0E+C6 1.06E-02 8.496-03 1.C6E-03 2 .65E-04 1•0E+07 1.13E-02 4.15E-03 8.906-04 0. 1.1E+C7 3.28E-03 6.566—04 0. 0. 1.2E+07 7.ieE-C4 1.446-03 0. 0. 1.3E+07 C . 0. 0. 0. I.4E+07 0. 0. 0. 0. 1.5E+C7 C. 0. 0. 0.

Data from: Ing and Cross (unpublished) 1 0 i 11 rrn 1—i i 11 mi 1—i i 11 mi7 i i i 111 rri i—ttttttti i i .ti run i ttttttt

10'

10 " * 10 10 CM

I 0 ' 4-100 30 CM

1000

10'

10" III

10'

J 1—i i i mil 1—i il i 10" _i l i mill 10° 101 10: 103 104 1 0 10' 10' ENERGY eV

a 5 10 30 50 Rh 0. 324 0.297 0.192 ,118 In 0.0718 0.0616 0.0274 ,113 S 0.0238 0.0168 0.00310 .00056 P 0.0125 0.00903 0.00177 ,00033 Np 0. 636 0. 608 0. 448 , 295 Th 0.0281 0. 0229' 0.00913 , 00257 U 0.113 0.0944 0.0348 .0112

K 1. 39 1. 32 1.05 0.344 D 1. 61 1.51 1.15 0. 880 D.E. 17. 32 16.92 14.59 11.76 67, 0.305 0.307 0. 319 0. 329

121;

SPECTRA OF D ^-MODERATED FISSION NEUTRONS THROUGH SHIELDING

6.1. D20-moderated fission neutrons through concrete

6.2. D20-moderated fission neutrons through Fe

6.3. D20-moderated fission neutrons through Cu

6.4. D20-moderated fission neutrons through Pb 6.1.

D20-M0DERATED FISSION NEUTRONS THROUGH CONCRETE SPHERICAL GEOMETRY

4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY < EV ) R =lO R =20 Ro=30. R =40 R =60. 0 0 . 0 0 1 • OE + OO . . 1.OE+Ol 5.876- 02 3.31E- 02 1.20E-02 3.716- 03 2.976-04 3.OE+Ol 5.7CE- 02 3.0SE- 02 9.84E-03 2.766- 03 2.72E-04 1.OE+02 5.576- C2 2.70E- 02 8.736-03 2.546- 03 2.676-04 3.0E+02 S.366- 02 2.39E- 02 7.68E-03 1.98E— 03 2.S9E-04 1.0E+03 5.226- 02 1.97E- 02 6.22E-03 1.70E- 03 2.22E-04 2.0E+03 4.976- 02 1.906- 02 5.356-03 1.676- 03 1.55E-04 5.0E+03 4.E2E- C2 1.39E- 02 4.23E-03 1.40E- 03 2.43E-04 1.0E+04 4_.226- 02 1.S3E- 02 4.10E-03 1.266- 03 2.36E-04 2.0E+04 3.996- 02 1.326- 02 4.00E-03 1.14E- 03 2.09E-04 4.0E+04 3.426- 02 1.07E- 02 3.73E-03 1.176- 03 2.056-04 6.0E+04 3 .3eE-02 1iOSE- 02 3 .35E-03 1 .136-03 3.13E-04 1.0E+05 3.15E- 02 1.16E- 02 3.306-03 1.24E- 03 1.97E-04 1.5E+05 3.87E- 02 1.20E- 02 4.416-03 1 .65E-03 1.65E-04 2.0E+05 2.82E- 02 9.09E- 03 3.466-03 1.07E- 03 3.08E-04 2.5E+05 2.11E- C2 8.99E- 03 3.20E-03 9.61E- 04 1.72E-04 3.0E+05 2.S4E- 02 1.C4E- 02 3 .1SE-03 1 .63E-03 1.486-04 3.5E + 05 2.24E- 02 e.96E- 03 3.366-03 1.466- 03 1.85E-04 4.0E+0S 2 .2SE-02 e.S9E- 03 3.95E-03 1.81E- 03 2.11E-04 4.SE+OS 1.26E- 02 5.596- 03 1.96E-03 1.69E- 03 1.99E-04 5.0E+0S 1.90E- 02 9.93E- 03 3.56E-03 1.02E- 03 2.216-04 5.5E+05 3.29E- 02 1•86E- 02 5.38E-03 2.08E- 03 7.85E-04 6.0E+05 4.1CE- 02 1.716- 02 7.956-03 2.29E- 03 7.04E-04 7.0E+0S 4.5CE- C2 1.826- 02 9.176-03 3.26E- 03 3.69E-04 8.0E+05 4.23E- 02 1 .94E-02 5.83E-03 2.86E- 03 4.33E-04 9.0E+C5 3 .34E- 02 1.32E- 02 3.83E-03 1.79E-•03 4.45E-04 1.0E+06 1.526- 02 S.24E- 03 2.40E-03 8.6SE- 04 7.3SE-05 1.2E+C6 2.30E- 02 1.106- 02 5.636-03 1 .5 36-03 6.276-04 1.4E+06 2.79E- C2 1.13E- 02 3.97E-03 2.49E- 03 3.75E-04 1.6E+06 2.e4E- 02 1.11E- 02 5.486-03 3.146- 03 5.366-04 1.8E+06 2.956- 02 1.28E- 02 7.36E-03 2.60E-03 5.43E-04 2.0E+06 3 .2 56-02 1.136- 02 6.12E-03 2.95E- 03 4.826-04 2.3E+06 3.866-•C2 1.956-02 1.11E-02 4.11E-03 1.64E-03 2.6E+06 3.726- 02 2.E7E- 02 1.71E-02 8.96E-03 2.09E-03 3.0E+06 3.29E-02 1.946-02 9.516-03 3.80E-•03 5.14E-04 3.5E+06 1.786- 02 9.48E- 03 4.66E-03 1.98E-03 1.50E-04 4.0E+06 1.616-02 7.81E- 03 3 .32E-03 1 .83E-03 2.79E-04 4.5E+06 1.42E-02 1•10E-02 3.34E-03 3.04E-03 2.47E—04 5.0E+06 1.64E- 02 1.CtE-02 4.216-03 1.91E-03 3.61E-04 6.0E+06 8.496-03 4.E9E-03 2.89E-03 1.84E-•03 3.13E-04 7.0E+06 5.9CE-C3 3.30E-03 1.86E-03 9.92E-04 1.766-04 .8.0E+06 2.41E-C3 1.6CE-03 1 .18E-03 5.266-04 9.79E-05 '9.0E+06 2.1 3E-03 1.306-03 3 .66E-04 1.186- 04 0. 1.0E+C7 1.21E-•03 2.33E-•04 4.13E-04 0. 0. 1.1E+07 3.S0E-04 2.73E-04 0. 0 . 0. 1.2E+C7 0. 0. 0. 0. 0. 1.3E+C7 0 . 0. 0. 0. 0. 1.4E+C7 0. 0 . 0 . 0. 0. 1.SE + C7 c. 0. 0. 0 . 0.

Data from: Cross and Ing (1977)

124 ENERGY < eV)

a Ro 10 20 30 40 60 Rh 0.0772 0. .0872 0. ,124 0.177 0.256 In 0.0169 0. , 0202 0. ,0301 0.0443 0.0639 S 0.00573 0. 00775 0. ,0110 0.0179 0.0215 P 0.00300 0. .00397 0. ,00576 0.00897 0.0112 Np 0.169 0. ,183 0. ,248 0.337 0.491 Th 0.00664 0. .00809 0, .0123 0.0180 0.0256 U 0.0271 0. . 0328 0, . 0500 0.0732 0.107

K 0.394 0.410 0.542 0.750 1.06 D 0.464 0.497 0.654 0.894 1.24 D.E. 5.424 5.590 7.022 9.214 12.76 Dy 0.379 0.386 0.380 0.365 0.333

125; 6.2.

D20-M0DERATED FISSION NEUTRONS THROUGH Fe SPHERICAL GEOMETRY 4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY(EV) R0=2. R0=20. R0=50. 1 a OE +00 5.0E+00 7.61E-02 7.33E-03 2.266-04 l.OE+Ol 7.70E-C2 1.65E-02 7.526-04 A a 0E + 01 7.86E-02 1.91E-02 9. 106-04 8.0E401 7.43E-02 1.88E-02 1.07E-03 1.0E+02 7.04E-02 1 a 84E-02 1.03E-03 2.0E+02 7 a 28E-02 1.64E—02 1.116-03 3.0E+02 6.S9E-02 1.77E-02 1.586-03 4.0E+02 7a10E-02 1 a 77E— 02 1.886-03 5.06*02 6 a 64 E-02 1.92E-02 1.876-03 6a 0E + 02 6.28E-02 1.87E-02 1.39E-03 8.0E+02 6.93E-02 2.13E-02 1.136-03 1.0E+O3 6.90E-02 2.09E-02 1.456-03 2.0E+03 6.83E-02 2.45E-02 2.506-03 3 a 06+03 7.08E-02 2.79E-02 2.426-03 4•OE•C3 6.26E-02 2.11E-02 3.326-03 S.06+03 6.39E-02 3.01E-02 3.746-03 6.06+03 1.03E-01 1 .86E-02 5.076-03 8.06+03 6.4SE-C2 3.82E-03 1 .19E-03 1 .06+04 4.20E-02 S.33E-03 1.15E-03 1.56+04 6.00E-02 1.73E-02 7.35E-03 2.2E+C4 6a15E-C2 3.80E-02 2.76E-02 2 a 6E+04 1.326-01 3.13E-01 1.65E-01 3.0E + 04 3.06E-C2 1.28E-03 1.92E-05 3.5E+04 4.14E-C2 2.47E-03 4.156-05 4 a 0E + 04 E a S2E-02 4 a 89E-03 1.546-04 S.0E+04 4.96E-02 5.00E-03 2.35E-04 6.0E+04 3.73E-02 2 a 43E-03 2 a 05E-0 4 e.oe+04 3.8SE-02 2.53E-03 3.69E-04 1.0E+05 2 a I3E-C2 4.38E-03 I a12E-03 i.se+cs 3.6JE-02 1.81E-02 4.35E-03 2.0E+05 3.14E-C2 2.04E-02 8a40E-03 2 a 56+05 2.3EE-C2 2 a 20E —02 9.76E-03 3a 06 + 05 2.21E-C2 3.S3E-02 1.63E-02 3.56+C5 2 a 53E-C2 6 a 67E-02 3.24E-02 4 a 06 + 05 1.60E-02 3.S9E-02 6.32E-03 4. 56+05 1.14E-C2 1.50E-02 2.98E-03 E.0E+C5 1.3SE-C2 3 a 33E-02 4.08E-03 S.56+C5 1•97E-02 2.S7E-02 5.11E-03 6.06+05 2 a 77E— 02 3.S7E-02 ' 7•07E-03 7.06+05 3.57E-02 4.776-02 6.68E-03 e.0E+0s 2.e3E-C2 1•49E-02 6.13E-0 4 9 a0E+05 2.S3E-C2 2.11E-02 1.296-03 1.0E+06 2 * C7E-02 1.79E-02 I.946-03 1•2E + 06 2.1SE-02 1.66E-02 1 .116-03 J•4E + C6 3.40E-02 1 .356- 02 1.936-04 1.6E+06 2.99E-02 >•446-02 6.306-04 1.8E+06 3.48E-02 1.49E-02 4.296-04 2.0E+06 4 a 26E-C2 1.05E-02 2.906-04 2.3E + 06 4.C6E-C2 9. 086-03 0. 2.66+06 4.17E-C2 5.246-03 0. 3.06+06 5.10E-02 3.85E-03 0. 3.5E+C6 3.36E-C2 2*19E-03 0. 4•0E+06 3.55E-02 2.776-03 0. 4a 5E+C6 2.17E-02 7.886-04 0. S.0E+06 2.37E-C2 1.436-03 0. 6.06+06 1.C1E-02 1.50E-03 0. 7.06 + 06 7.64E-03 7.60E-04 0. e.06+C6 8.86E-C3 4.31E-04 0. 9.0E+06 4.20E-03 0. 0. 1.0E+07 0. 2.44E-04 0. 1.1E+07 1.93E-03 0. 0. 1.26+07 0. 0. 0. 1.36+07 0. 0. 0. 1.46+07 Oa 3.63E-04 0. 1.56+07 0. 0. 0.

Data from: Ing and Cross (1975b)

126 102 10® 104 ENERGY (eV)

a R0 2 20 50 Rh 0.0734 0.0685 0.0303 In 0.0178 0.00961 0. 00124 s 0.00709 0.00165 <10"5 p 0.00370 0.00090 <10"5 Np 0.153 0.166 0.0757 Th 0.00739 0.00319 0.00021 U 0.0293 0.0132 0.00088

K 0. 359 0.474 0.450 D 0.431 0.507 0.412 D.E. 4.82 6.60 5.59 d7 0. 381 0. 354 0.336 6.3.

D20-M0DERATED FISSION NEUTRONS THROUGH CU SPHERICAL GEOMETRY 47tR2E0(E) (1 NEUTRON EMITTED AT CENTER)

6NERGY

Data from: Ing and Cross f 1976)

128 | ill I mil | I I I 111 il | | I l_ULUli . j_j0jilij[ I .1 LLi.iill j-i.lliulll. 10° I01 I02 I03 I04 I05 I06 I07 ENERGY (eV)

a Ro 5 10 20 30 50 Rh 0. .0677 0. .0597 0. 0496 0. 0428 0. 0194 In 0. .0147 0. .0109 0. 00580 0. 00363 0. 00070 S 0. .00510 0. .00335 0. 00113 0. 00044 <0. 00001 P 0. 00267 0. ,00177 0. 00061 0. 00028 <0. 00001 Np 0. 149 0. ,140 0. 127 0. 111 0. 0586

Th 0. 00585 0, ,00395 0. 00178 0- 00087 <0. 00001 U 0. 0235 0. .0162 0. 00742 0. 00396 0. 00006

K 0. 359 0. .367 0. 400 0. 410 0. 290 D 0. ,422 0. ,414 0. 422 0. 414 0. 279 D.E, 4. ,97 5. .20 5. 69 5. 72 4. 02 dy 0. ,378 0. .370 0. 359 0. 353 0. 355 \

129; 6.4.

D20-M0DERATED FISSION NEUTRONS THROUGH Pb SPHERICAL GEOMETRY 4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY(EV) R0=5. R0=10. R0=30. R0 =50 . 1 .0E+00 S.06+00 6.746-02 8.58E-02 7.05E-02 5.576-02 1.06+01 8.04E-02 7.98E-02 7.26E-02 5.306-02 4.06+C1 8.41E-02 7.976-02 6.97E-02 5.136-02 8.06+01 7•536-02 7.1AE-02 6.28E-02 5.296-02 I.06*02 6.556-02 7.53E-02 6.38E-02 5.276-02 2.06+02 7.46E-02 7.63E-02 6.59E-02 5.536-02 3.06*02 7.40E-02 7.01E—02 •6.776-02 5.716-02 A.06+02 7•OOE-02 7.2 EE-02 6.23E-02 5.596-02 5.06*02 6.97E-02 6.9AE-02 6.52E-02 6.076-02 6.06*02 5.40E-02 7.04E-02 6.416-02 5.996-02 8.06*02 6.50E-C2 6.41E-02 6.65E-02 5.916-02 1 .0E*03 6.86E-02 6.46E-02 7.27E-02 5.57E-02 2.0E+C3 7.OOE—02 7.58E-02 6. 50E-02 5.17E-02 3.06*03 7.24E-02 7.12E-02 5.70E-02 4.86E-02 A.06*03 6.S2E-C2 6.02E-02 5.45E-02 5.20E-02 5.06*03 6.7EE-C2 6.21E-02 6.37E-02 5.29E-02 6.06*03 6.86E-C2 6.266-02 5.55E-02 4.66E-02 8.0E+03 6. 25E-02 6.786-02 5. 97E-02 4.60E-02 J.06*04 5.61E-02 5.946-02 5.476-02 4.21E-02 1.56+04 6.73E-02 6.496-02 5.026-02 4.27E-02 2.26*0 4 6.29E-02 5.986-02 5.57E-02 4.13E—02 2. 66*04 6.09E-02 6.266-02 5.076-02 4.00E-02 3.06*04 6.5CE-C2 6.226-02 5.606-02 3.926-02 3.56*04 6.696-C2 6.26E-02 6.3S6-02 3.396-02 4.06*04 6.856-02 7.42E-02 4.936-02 2.636-02 5.0E+04 4.646-02 4.75E-02 2.96E-02 1.876-02 6.0E*04 4.386-02 4.516-02 3.61E-02 2.326-02 8.0E+C4 3.976-02 4.336-02 2.99E-02 1.576-02 1 . OE*C 5 3.586-02 3.24E-02 2.99E-02 2.376-02 1 .5E+05 3.976-02 3.66E—02 2.89E-02 2.286-02 2.06*05 3.346-02 2.96E-02 2.956—0 2 2.446-02 2.56*05 2.69E-C2 2.65E-02 2.646-02 2.55E-02 3.06*05 2.506-02 2.67E-02 2.566-02 2.22E-02 3.56*05 2.156-02 2.47E-02 3.016-02 2.796-02 4.06+05 1.546-02 1.356-02 2.20E-02 2.206-02 4 » 56*0 5 1.64E-02 1.856-02 3.046-02 3.92E-02 5.06+05 2.07E-02 2.846-02 4.87E-02 7.25E-02 S.S6+C5 1 .83E-02 2.el6-02 6.46E-02 5.71E—02 6.06+05 2.80E-02 2.726-02 5.3SE-02 4.68E-02 7.06+C5 3.8 IE—02 4.626-02 4.36E-02 3.886-02 e.oE+cs 2.8EE-C2 3.506-02 A.166-02 2.76E-02 9.06+05 3.346-02 3.296-02 2.996-02 2.06E-02 1.06+06 2.25E-02 3.26E-02 3.226-02 2.09E-02 I.26+06 2.47E-02 2.67E-02 3.026-02 1.79E-02 1.46+06 3.24E-02 3.77E-02 2.856-02 1.47E-02 1 .66 + 06 3. 60E-C2 3.69E-02 2.926-02 1 .19E —02 1.86+06 4.09E-02 3.98E-02 2.416-02 7.946—03 2.0E+06 5.04E-02 3.68E-02 2.49E-02 7.99E-03 2.3E+06 4.92E-02 3.6 46 — 02 1.726-02 3.34E-03 2.6E+06 S. 056-02 3.S7E-02 1.356-02 1.53E-03 3.0E+C6 4.196-02 4.1 IE—02 6.996-03 8.73E-04 3.56+06 3.AEE-02 2.55E-02 3.446-03 0. 4.06+C6 2.116-02 1.64E-02 1.876-03 7.02E-04 4.56+06 1.806-02 8.49E-03 2.126-03 0. E.06+06 1.666-02 1.72E-02 1.786-03 0. 6.06+06 1.3A6-02 6.86E-03 1.036-03 0. 7.06+06 9.736-03 8.116-03 6.086-04 2.03E-04 8.06+06 7.A9E-03 1.876-03 0. 2.34E-04 9.06+C6 2.126-03 2.656-03 0. 0. I .06 + C7 0. 0 . 8.906-04 0. J.1E+07 c. 0. 0. 0. 1.26+C7 0. 0. 0. 0. 1.36+C7 c. 7.816-04 0. 0. 1.46*07 c. 0. 0. 0. 1•5E+07 0. 0. 0. 0.

Data from: Ing and Cross (unpublished)

130 0 R0 5 10 30 50 Rh 0.0701 0.0632 0. 0425 0. 0292 In 0.0166 0.0140 0. 00667 0. 00294 S 0.00582 0.00431 0. 00091 0. 00014 P 0.00305 0. 00235 0. 00051 0. 00009 Np 0.150 0.142 o. 115 0. 0901 Th 0.00676 0.00543 0. 00214 0. 00072 U 0.0273 0.0222 0. 00918 0. 00308

K 0. 349 0. 327 0. 269 0. 232 D 0. 418 0.391 0. 317 0. 270 D.E. 4.77 4. 64 4. 23 3. 83 57 0. 383 0.384 0. 386 0- 388

131;

7

REFLECTED SPECTRA FROM VARIOUS MATERIALS

7.1. Fission neutrons reflected from H20 7.2. Fission neutrons reflected from graphite 7.3. Fission neutrons reflected from polyethylene 7.4. Fission neutrons reflected from polyethylene + 1% boron 7.5. Fission neutrons reflected from Be 7.6. Fission neutrons reflected from Al 7.7. Fission neutrons reflected from concrete 7.8. Fission neutrons reflected from concrete + 1% Fe 7.9. Fission neutrons reflected from concrete + 10% Fe 7.10. Fission neutrons reflected from concrete + 30% Fe 7.11. Fission neutrons reflected from concrete + 50% Fe 7.12. Fission neutrons reflected from Fe

7.13. H20-moderated fission neutrons reflected from Be

7.14. H20-moderated fission neutrons reflected from Al 7.1.

FISSION NEUTRONS REFLECTED FROM H20 SLAB GEOMETRY

4>(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGYCEVI 0=5 D=1 0 D=20 TH 2.42E-02 5.206-02 5.756-02 t .88E-01 2.SOE-Ot S.61E-03 7.6SE-03 7.80E-03 5.00E-01 5.88E-03 7.89E-03 8.03E-03 1 .OOE OO 6.32E-03 8.29E-03 8.43E-03 2. 1SE OO 6.81E-03 8.726-03 8.86E-03 4.65E OO 7.31E-03 9.156-03 9.28E—03 l.OOE 01 8.18E-03 1.OOE—02 1.02E-02 2.15E 01 8.796-03 1.06E-02 1.07E-02 4.65E 01 9.37E-03 1.11E-02 1.12E-02 1 .OOE 02 1 .026-02 1 .1 8E-02 1.196-02 2.15E 02 1.08E-02 1.236-02 1.246-02 4.6SE 02 1.186-02 1.33E-02 1.34E-02 1 .OOE 0.3 1.296-02 1.43E-02 1.45E-02 2.1SE 03 1.40E-02 1.546-02 1.S5E-02 4.6SE 03 1 .S3E-02 1.67E-02 1.686-02 1 .OOE 04 1 .696-02 1.82E-02 1.83E-02 1 .26E 04 1.746-02 1.87E-02 1.88E-02 1 . 58E 04 1 .826-02 1.946-02 1.956-02 1 . 99E 04 1.89E-02 2.02E-02 2.03E-02 2. S1E 04 1.98E-02 2.11E-02 2.12E-02 3.16E 04 2.08E-02 2.226-02 2.23E-02 3.98E 04 2.36E-02 2.52E-02 2.53E-02 5.01E 04 2.51E-02 2.67E-02 2.68E-02 6 . 3 IE 04 2.67E-02 2.84E-02 2.86E-02 7.94E 04 2.86E-02 3.04E-02 3.06E-02 1 .OOE OS 3.OOE-02 3.19E-02 3.21E-02 1 .26E OS 3.1 3E-02 3.33E-02 3.356-02 1.S8E OS 3.42E-02 3.64E-02 3.666-02 1 . 99E OS 3.71E-02 3.95E-02 3.98E-02 2. S1E OS 4.046-02 4.28E-02 4.30E-02 3.1 6E OS 4.416-02 4.70E-02 4.73E-02 3.9BE OS 4.976-02 5.28E-02 5.32E-02 5. 0 IE OS 5.276-02 5.60E-02 5.64E-02 6.31E 05 S.86E-02 6.22E-02 6.26E-02 7.94E OS 6.09E-02 6.47E-02 6.51E—02 1 . OOE 06 6.13E-02 6.54E-02 6.58E-02 1 . 2 6E 06 5.80E-02 6.246-02 6.296—02 1 . 58E 06 5.116-02 S.576-02 5.636-02 1 . 99E 06 4.236-02 4.73E-02 4.80E-02 2. StE 06 3.606-02 4.07E-02 4.14E-02 3. 166 06 2.946-02 3.3SE-02 3.42E-02 3.98E 06 2.1IE—02 2.436-02 2.496—02 S. OlE 06 1 .23E-02 1.43E-02 1.47E-02 6. 31E 06 5.286— 0 3 6.316-03 6.55E-03 7.94E 06 2.18E-03 2.656-03 , 2.77E-03 1 . OOE 07 1.58E-03 1.82E-03 1.86E-03 1 . 26E 07 2.17E-04 2.63E-04 2.75E-04 1 . 58E 07 0.006-01 O.OOE-Ol O.OOE-Ol 1 . 99E 07 O.OOE-Ol O.OOE-Ol 0.00E-01

Data from: Makra (1972j, Pdlfalvi and Koblinger (1976} and Pdlfalvi (1976) 10

-z 10

-3 10

-4 _ 10 ZD »—« X O- -5 10

-6 10

-7 10

-e

10 TH 10° 101 102 103 10" 105 106 107 ENERGY(EV)

V d 5 10 20

Rh 0.218 0.218 0.219 In 0.0412 0.0418 0.0422 S 0.0119 0.0124 0.0127 P 0.00480 0.00501 0.00509 Np 0.459 0.456 0.457 Th 0.0141 0.0145 0.0147 U 0.0603 0.0618 0.0625

K 1.08 1.07 1.08 D 1.21 1.20 1.20 DTE. 14.2 14.0 14.0

Dt 0.233 0.231 0.230

135; 7.2. FISSION NEUTRONS REFLECTED FROM GRAPHITE SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY«EV> 0=60 D=30 D=20 D=JO D=5 TH 3.286-02 S.856-03 5.566-04 4.946-07 2.766-11 1 .88E-01 2* SOE-01 4.49E-03 2.18E-03 3.91E-04 8.03E-07 6.79E-11 S.OOE-Ol 4.71E-03 2.38E-C3 4.60E-04 1.31E-06 2.15E-10 l.OOE 00 S.036-03 2.70E-03 S.78E-04 2.28E-06 5.956-10 2.15E 00 S.37E-03 3.07E-03 7.34E-04 4.10E-06 1.84E-09 4.6SE 00 5.77E-03 3.S0E-03 9.356-04 7.46E-06 5.836-09 l.OOE 01 6.S0E-03 4.17E-03 1.246-03 1.41E-05 1.93E-08 2.15E 01 7.04E-03 4.786-03 1.596-03 2.61E-0S 6.22E-08 4 . 656 01 7.606-0 3 5.43E-C3 2.036-03 4.78E-05 1.99E-07 l.OOE 02 8.386-03 6.306-03 2.626-03 8.906-05 6.496-07 2.156 02 9.136-03 7.18E-03 3.336-03 1.626-04 2.076-06 4.65E 02 1.026-02 8.376-03 4.306-03 3.01E-04 6.73E-06 l.OOE 03 1.166-02 9.e56-03 5.606-03 5.62E-04 2.196-05 2.156 03 1.326-02 1.166-02 7.296-03 1.056-03 7.13E-05 4.6SE 03 1.53E-02 1.396-02 9.516-03 1.946-03 2.326-04 . l.OOE 04 1.846-02 1.71E-02 1.286-02 3.776-03 8.23E-04 1.26E 04 2.056-02 1.946-02 1.536-02 5.76E-03 1.77E-03 1 .58E 04 2.23E-02 2.12E-02 1.726-02 7.066-03 2.396-03 2.OOE 04 2.426-02 2.316-02 1.926-02 8.63E-03 3.23E-03 2.51E 04 2.65E-02 2.S4E-02 2.17E-02 1.05E-02 4.29E-03 3.166 04 2.936-02 2.836-02 2.446-02 1.28E-02 5.646-03 3.986 04 3.4IE—02 3.30E-02 2.886-02 1.576-02 7.226-03 5.016 04 3.806-02 3.706-02 3.286-02 1.916-02 9.40E-03 6.316 04 4.296-02 4.186-02 3.776-02 2.34E-02 1.24E-02 7.946 04 4.896-02 4.79E-02 4.376-02 2.876-02 1.616-02 l.OOE 05 5.58E-02 5.49E-02 5.086-02 3.54E-02 2.07E-02 1.266 05 6.276-02 6.18E-02 5.786-02 4.24E-02 2.666-02 1.586 05 7.34E-02 7.256-02 6.856-02 5.21E-02 3.40E-02 2.OOE 05 8.356-02 8.266-02 7.86E-02 6.186-02 4.19E-02 2.51E 05 9.576-02 9.486-02 9.086-02 7.296-02 5.04E-02 3.16E 05 1.11E-01 1.10E-01 1.06E-01 8.69E-02 6.196-02 3.986 05 1.336-01 1.32E-01 1.276-01 1.056-01 7.55E-02 5.016 05 1.S2E-01 1.51E-01 1.466-01 1.216-01 8.736-02 6.316 05 1.826-01 1.806-01 1.746-01 1.466-01 1.056-01 7.94E 05 2.056-01 2.046-01 1.98E-01 1.67E-01 1.21E-01 1.006 06 2.26E-01 2.25E-01 2.19E-01 1.866-01 1.326-01 1.266 06 2.506-01 2.486-01 2.426-01 2.066-01 1.496-01 1.58E 06 2.63E-01 2.62E-01 2.S5E-01 2.176-01 1.55E-01 2.OOE 06 2.54E-01 2.E3E-01 2.476-01 2.106-01 1.506-01 2.516 06 2.176-01 2.166-01 2.116-01 1.826-01 1.316-01 3.16E 06 1.546-01 1.546-01 1.516-01 1.336-01 9.856-02 3.986 06 9.756-02 9.746-02 9.67E-02 8.80E-02 6.64E-02 5.016 06 5.64E-02 5.63E-02 5.58E-02 5.036-02 3.756-02 6.316 06 2.376-02 2.37E-02 2.33E-02 2.06E-02 1.486-02 7.94E 06 1.406-02 1.376-02 1.246-02 8.656-03 6.036-03 l.OOE 07 4.806-03 4.85E-03 5.OOE-03 5.236-03 4.58E-03 1.266 07 1.07E-03 1.066-03 1.036-03 8.586-04 6.006-04 1.586 07 0.OOE-Ol 0.OOE-Ol 0.006-01 0.OOE-Ol 0.OOE-Ol 2.OOE 07 0.OOE-Ol O.OOE-Ot 0.OOE-Ol 0.OOE-Ol 0.006-01

Data from: Palfalvi and Koblinger {J 976] and Pdlfalvi (1976) \ d 10 20 Ci 5 30 40 60

Rh 0.538 0.515 0.465 0.437 0.426 0.423 In 0.116 0.110 0.0988 0.0925 0.0903 0.0896 S 0.0335 0.0313 0.0275 0.0257 0.0250 0.0248 P 0.0137 0.0128 0.0113 0.0105 0.0103 0.0102 Np 1.08 1.04 0.941 0.886 0.866 0.859 Th 0.0410 0.0389 0.0349 0.0327 0.0319 0.0317 U 0.177 0.169 0.151 0.141 0.138 0.137 f K 2.28 2.20 2.01 1.89 1.85 1.84 5 2.61 2.51 2.29 2.16 2.11 2.10 ' U7E. 28.7 27.7 25.4 23.4 23.5 23.3 0.195 0.199 0.207 0.210 0.210 0.210

137; 7.3. FISSION NEUTRONS REFLECTED FROM POLYETHYLENE+ 1% BORON SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY ( EV ) 0=5 D=1 0 0=20 TH 3.33E-02 6.186-02 6.55E-02 1.88E' -01 2. 50E -01 6.74E-03 8.1SE—03 8.21E-03 5. OOE -01 7.01E-03 8.396-03 8•456—03 1 .OOE 00 7.45E-03 8.796-03 8.846-03 2.I5E 00 7.94E-03 9.22E-03 9.27E-03 4.65E 00 8.42E-03 9.64E-03 9.696-03 1 . OOE 01 9.33E—03 1.05E-02 1.06E-02 2.15E 01 9.92E-03 1 .1 IE- 02 1.11E-02 4.65E 01 1.05E-02 1.15E-02 1.16E-02 l.OOE 02 1.12E-02 1 .23E-02 1.23E-02 2.1SE 02 1•19E-02 1 .29E-02 1.29E-02 4. 65E 02 1.29E-02 1.38E-02 1.38E-02 1 .OOE 03 1.40E-02 1.49E-02 1.49E-02 2. 1 SE 03 1.51E—02 1.60E-02 1.60E-02 4.6SE 03 1.65E-02 1.736-02 1.74E-02 1 .OOE 04 1.81E—02 1.906-02 1.90E-02 1 • 26E 04 1•8SE—02 1.966-02. 1.96E-02 1 . 58E 04 1.96E-02 2.046-02 2.04E-02 1 . 99E 04 2.04E-02 2.126-02 2.13E-02 2. 51E 04 2.14E-02 2.22E-02 2.23E-02 3.1 6E 04 2.26E-02 2.346-02 2.3SE-02 3.98E 04 2.57E-02 2.666-02 2.67E-02 S. 01E 04 2.73E-02 2.836-02 2.84E-02 6.31E 04 2.92E-02 3.03E-02 3.036-02 7. 94E 04 3.13E-02 3.24E-02 3.25E-02 1 .OOE 05 3.296-02 3.416-02 3.42E-02 1 . 26E OS 3.43E-02 3 .566-02 3.57E-02 1.S8E 05 3.746-02 3.88E-02 3.89E-02 1 • 99E 05 4.04E-02 4.20E-02 4.21E-02 2. S1E 05 4.29E-02 4.46E-02 4.47E-02 3.16E 05 4.67E-02 4.86E-02 4.88E-02 3.98E OS S.08E-02 5.29E-02 S.31E-02 5. 0IE OS 5.396-02 5.63E-02 5.65E-02 6 * 31E 05 S.666-02 5 .926-02 S.94E-02 7.94E OS 5.886-02 6.186-02 6.206-02 1 .OOE 06 6.006-02 6.326-02 6.3SE-02 1 .2 66 06 6•05E-02 6.406-02 6.42E-02 1 . 58E 06 5.89E-02 6.256-02 6.286-02 I . 99E 06 3.386-02 S.746-02 5.776-02 2 • 5 IE 06 4.63E-02 4.976-02 5.006-02 3. 16E 06 3.59E-02 3.876-02 3.896-02 3.98E 06 2.46E-02 2.676-0.2 2.69E-02 S. OlE 06 1.40E-02 1.53E-02 1.55E-02 6 . 31E 06 5•63E— 03 6.31E-03 6.41E-03 7.94E 06 2.286-03 2.59E-03 2.65E-03 1 .OOE 07 1.93E-03 2.08E-03 2.1OE—03 1 . 2 66 07 2.276-04 2.59E-04 2.64E-04 1 • 58E 07 0.00 E—01 O.OOE-Ol O.OOE-Ol 1.99E 07 O.OOE-Ol O.OOE-Ol O.OOE-Ol \

Data from: Pilfalvi and Koblinger (1976) and Palfalvi (1976)

138 TH 10 10 to ENERGY(EV)

i \ d 5 10 20

Rh 0.224 0.225 0.225 In 0.0447 0.0451 0.0452 S 0.0128 0.0131 0.0132 P 0.00523 0.00534 0.00536 Np 0.466 0.466 0.467 Th 0.0156 0.0158 0.0158 U 0.0673 0.0680 0.0682

K 1.10 1.09 1.09 D 1.22 1.22 1.22 DTI. 14.1 14.1 14.1 V 0.232 0.230 0.230

139; 7.4. FISSION NEUTRONS REFLECTED FROM POLYETHYLENE + 1% BORON SLAB GEOMETRY

4>

6N6R6Y(EV) 0=5 D = 1 0 0=20 0=40 TH 8a27E-04 9.41E-04 9.466-04 9.46E-04 1 .886-01 2.S06-01 2. 18E-03 2.496-03 2.516-03 2.S1E-03 5.00E-01 2.77E-03 3.156-03 3.176-03 3.176-03 i .ooe 00 3.71E-03 4.216-03 4.246-03 4.246-03 2. 15E CO 4.79E-03 5.416-03 5.446-03 5.446-03 4 • 65E 00 S.836-03 6.536-03 6.S76-03 6.576-03 1 • OOE 01 7.09E-03 7.886-03 7.926-03 7.926-03 2.1SE 01 8.10E-03 8.926-03 8.976-03 8.976-03 4.6SE 01 8.996-03 9.826-03 9.86E-03 9.866-03 l.OOE 02 9.99E-03 1.C8E-02 1.09E-02 1.09E-02 2.15E 02 1.C9E-02 1.17E-02 1.17E-02 1.17E-02 4.65E 02 1 . 196-02 1.276-02 1.276-02 1.276-02 1 .OOE 03 1.31E-02 1.386-02 1.396-02 1.396-02 2.15E 03 1.42E—02 1 .496-0 2 1.506-02 1.506-02 4.6SE 03 1.55E-02 1.626-02 1.636-02 1.63E-02 1 .OOE 04 1.70E-02 1.776-02 1 .786-02 1.78E—02 1 . 26E 04 1.75E-02 1.826-02 1.836-02 1.836-02 1 .58E 04 1.626-02 1.89E-02 1.90E-02 1.906-02 1 . 99E 04 1.89E-02 1 .976-02 I.97E-02 1.976-02 2.S1E 04 1.97E-02 2.056-02 2.066-02 2.066-02 3.166 04 2.08E-02 2.166-02 2.166-02 2.16E-02 3.986 04 2.366-02 2.466-02 2.456-02 2.45E-02 5. 016 04 2.50E-02 2.666-02 2.606-02 2.606-02 5. 31E 04 2.66E-02 2.876-02 2.776-02 2.776-02 7.94E 04 2,836—02 3.076-02 2.956-02 2.95E-02 1 .OOE OS 2.976-02 3.176-02 3.096-02 3.09E-02 1 . 2 6E OS 3.07E-02 3.256-02 3,206-02 3.206-02 1.S6E 05 3.336-02 3.476-02 3.486-02 3.486-02 1 . 99E OS 3.596-02 3.736-02 3.756-02 3.75E-02 2.S1E 05 3.796-02 3.956-02 3.976-02 3.97E-02 3. 16E OS 4.116-02 4.306-02 4.316-02 4.31E-02 3 . 96E OS 4.466-02 4.676-02 4.686-02 4.68E-02 5.01E 05 4.726-02 4,966-02 4.986-02 4.98E-02 5.316 05 4.956-02 5.216-02 5.23E-02 5.23E-02 7.94E 05 S.146-02 5.436-02 5.456-02 5.45E-02 l.OOE 06 5.246-02 5.566-02 5.596-02 5.59E-02 1 . 2 6E 06 5.296-02 S. 636-02 5.666-02 S.66E-02 1 . S8E 06 5.186-02 5,546-02 5.586-02 5.58E-02 1 . 99E 06 4.7SE-02 5.126-02 S.156-02 5.1SE-02 2 . 51E 06 4.10E-02 4.446-02 4.486-02 4.486-02 3.1 6E 06 3.17E-02 3,446-02 3.47E-02 3.476-02 3.98E 06 2.16E-02 2.386-02 2.40E-02 2.406-02 5 a 01 E 06 1.22E-02 1.356-02 1.37E-02 1.376-02 6. 31E 06 4.85E-03 5.526-03 S.626-03 5.636-03 7.94E 06 1.96E—03 2.27ES-03 2.32E-03 2.326-03 1.006 07 1.616-03 1,766-03 1.77E-03 1.786-03 1 . 26E 07 1.9S6-04 2.266-04 2.316-04 2.316-04 1 . 58E 07 0.006-01 0,006-01 O.OOE-Ol 0.006,-01 1 a 99E 07 0.006-01 0.006-01 0,OOE-01 0.006-01

Data from: Palfalvi and Koblinger (1976) and Pdlfalvi (1976}

140 -1

\ d * \ 5 10 20 40

Rh 0.227 0.229 0.231 0.231 In 0.0453 0.0461 0.0464 0.0465 S 0.0130 0.0134 0.0135 0.0135 P 0.00528 0.00544 0.00550 0.00550 Np 0.471 0.474 0.477 0.477 Th 0.0158 0.0161 0.0163 0.0163 U 0.0682 0.0696 0.0701 0.0701

K 1.11 1.11 1.12 1.12 D 1.24 1.24 1.25 1.25 O!. 14.3 14.3 14.4 14.4 % 0.238 0.237 0.237 0.237

141 7.5. FISSION NEUTRONS REFLECTED FROM Be SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EV) 0=2.5 0=5 0=10 D=20 TH 1. 50E-C9 1.67E-06 1.47E-03 2.536-02 1 .886 -01 2.506-01 4.02E-09 2.39E-06 8.08E-04 4.746-03 5.006- -01 7.72E-09 3.49E-06 9.29E-04 5.026-03 1 .OOE 00 1.79E-08 5.77E-06 1.13E-03 S.436-03 2. 1SE CO 4.36E-08 S.85E-06 1.38F-C3 5.886-03 * .65E 00 1.09E-07 1.70E-05 1.69E-C3 6.416-03 1 . OCE 01 2.84E-07 3.05E-05 2.17E-03 7.306-03 2. 1SE 01 7.22E-07 S.32E-05 2.68E-03 7.996-03 4.65E 01 I.82E-06 9.21E-0S 3.28E-C3 8.716-03 1 • OOE 02 4.67E-06 1.62E-04 4.09E-03 9.706-03 2.1 SE 02 1.18E-0S 2.80E-04 S. OOE-03 1.06E-02 4.65E 02 3.01E-05 4.91E-04 6.23E-03 1.19E-02 l.OOE 03 7.72E-05 8.65E-04 7.83E— 03 1.36E-02 2.1SE 03 1 .97E-04 1.52E-03 9.83E-03 1.55E-02 4.65E 03 5.05E-04 2.67E-03 1.24E-02 1.79E-02 1 .OOE 04 1.38E-03 4.89E-03 1 .60E-02 2.13E-02 1 .266 04 2.57E-03 7.1 6E-03 1.90E—02 2.40E-02 1 . S8E 04 3.37E-03 8.67E-0 3 2.11E-02 2.61E-02 1 .99E 04 4.40E-03 1.04E-02 2.32E-02 2.81E-02 2.S1E 04 5.68E-03 1 .24E-02 2.59E-02 3.05E-02 3. 1 6E 04 7.28E-03 1.48E-02 2.87E-02 3.3S6-02 3 . 98E 04 9.20E-03 1 .80E-02 3.36E-02 3.886-02 S.OIE 04 1.17E-02 2. 16E-02 3.79E-02 4.31E-02 6 .3IE 04 1.48E-02 2.60E-02 4.32E-C2 4.84E-02 7.94E 04 1.89E-02 3.14E-02 4.96E-02 5.48E-02 1 . OOE OS 2.40E-02 3.79E-02 5.67E-02 6.19E-02 1 . 26E OS 3.06E-02 4.S8E-02 ' 6.49E-02 6.98E-02 1 . S8E OS 3.89E-02 5.64E-02 7.77E-02 8.29E-02 1 .99E 05 4.91E-02 7.09E-02 9.57E-02 1 . 01E—01 2.S1E OS 6.27E-02 8.60E-02 1.12E-C1 1.18E-01 3. 16E OS 7.54E-02 1.07E-01 1.36E-01 1.436-01 3.98E OS 9.7SE-02 1.28E-01 1 .59E-01 1.656-01 S.OIE 05 1.C8E-01 1.39E-01 1.70E-01 1.77E-01 6.31E OS 1.28E-01 1.6IE—01 1.93E-01 1.99E-01 7.94E OS 1.3SE—01 1.70E-01 2.04E-01 2.106-01 1 . OOE 06 1.38E-01 1.75E-01 2.09E-01 2.166-01 1 .266 06 1.41E-01 1.79E-01 2.1 5E - 01 2.24E-01 1 . 68E 06 1.39E-01 1.79E-01 2.19E-01 2.246-01 1.99E 06 1. 24E-01 1.60E-01 1.96E-01 2.046-01 2.51E 06 5.82E-02 1.26E-01 1.536-01 1.596-01 3.16E 06 6.096-0 2 7. 55E-02 8.88E-02 9.176-02 3.98E 06 3.19E-02 3.63E-02 3.89E-02 3.886-02 S.OIE 06 1.70E-02 1 .96E-02 2.13E-02 2.136-02 6.31E 06 8.01E-03 1. 12E-02 1.466-02 1.536-02 7.94E 06 4.19E-04 1 .14E-03 2.376-03 2.716-03 1 .OOE 07 9.80E-04 1.33E-03 1.656-03 1.706-03 1 • 26E 07 1.78E-04 2.45E-04 3.116-04 3.236-04 1 . S8E 07 0.00E-01 0.00E-01 0.006-01 0.006-01 1.99E 07 0.00E-01 0.00E-01 0.OOE—01 O.OOE-Ol

Data from: Palfaiviand Kobiinger 11916) and Pdlfahi {19761

142 \ d 2.5 5 10 20

Eh 0.447 0.421 0.369 0.337 In 0.0852 0.0800 0.0698 0.0638 S 0.0181 0.0165 0.0140 0.0127 P 0.00766 0.00708 0.00609 0.00556 Np 0.943 0.890 0.782 0.717 Th 0.0276 0.0259 0.0226 0.0207 U 0.124 0.116 0.102 0.0931

K 2.03 1.94 1.72 1.58 D 2.28 2.17 1.93 1.77 DTE. 26.6 25.4 22.6 20.8 0.199 0.205 0.214 0.216 7.6. FISSION NEUTRONS REFLECTED FROMPOLYETHYLENE + 1% BORON SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EV) C=2.S D=5 0=10 D=20 TH 4.S7E-31 2.82E-26 3.86E-21 1.49E-15 1 . 88E -01 2. 50E-01 6.37E-29 1.06E-24 4.20E-20 5.32E-15 5•OOE-01 6.37E-28 1 .06E-23 4.20E-19 5.32E-14 1 .OOE 00 1.69E-26 1 .63E-22 3.82E-18 2.20E-13 2.1SE CO 3.58E-25 2.61E-21 4.OOE—17 1.72E-12 4 .65E 00 2.29E-23 8.21E-20 S.94E-16 1 .19E-1 1 1 . OOE 01 1.S3E-21 2.63E-18 9.11E—15 8.49E-11 2. 15E 01 9.85E-20 8.39E-17 1.37E-13 5.96E-10 4.65E 01 6.35E-18 2.63E-15 2.C4E-12 4.10E-09 1 . OOE 02 4.22E-16 8.34E-14 3.08E-11 2.87E-08 2.15E 02 2 a 68E-14 2a64E-l2 4.56E-10 1.95E-07 4.65E 02 1.75E-12 8.37E-11 6.83E-09 1.35E-06 I. OOE 03 1.16E-10 2.65E-09 1.03E-07 9.3SE-06 2.15E 03 7.62E-09 8 a 41E-08 1 .S4E-06 6•43E-05 4.65E 03 4.e5E-07 2.65E-06 2.29E-0S 4.38E-04 l.OOE 04 1 a 67E-05 4.27E-0S 1.64E-04 1.32E-03 1 • 2 6E 04 2.68E-04 6.23E-04 2.25E-03 1.32E-02 1 . 58E 04 4.33E-04 1.01E-03 3. 2SE-03 1.75E-0 2 2 .OOE 04 7.83E-04 1.52E-03 3.86E-03 1.68E-02 2.51E 04 1.18E-03 2.1SE-03 4.S3E-03 1.S2E-02 3.1 6E 04 1.83E-03 2.96E-03 S.37E-03 1.31E-02 3 .98E 04 2.45E-03 3.97E-03 6.89E-03 1.36E-02 5.01E 04 3.3SE-03 5.6CE-03 9.88E-03 1.92E-02 6 . 3 IE 04 4.72E-03 7.93E-03 1.38E-02 2.63E-02 7.94E 04 6.32E-03 1.06E-02 1.84E-02 3.40E-02 1 . OOE OS e.60E-03 1.41E-02 2.32E-C2 4.05E-02 1 • 26E OS 1.17E-02 1.90E-02 3.04E-02 4.8SE-02 1 . 58E OS 1.54E-02 2.48E-02 3.88E-02 5.90E-02 2. OOE 05 1.98E-02 3.26E-02 S.11E-02 7.71E-02 2.51E 05 2 a 53E-02 4.23E-02 6.79E-02 9.95E-02 3.1 6E OS 3.23E-02 5.46E-02 8.72E-02 1.28E-01 3 .98E 05 4.14E-02 6.91E-02 1.11E-01 1.S7E-01 5 a 01 E OS S.27E-02 8.73E-02 1.33E—01 1.80E-01 6. 3IE OS 6.71E-02 1.10E-01 1.6SE-01 2.16E-01 7.94E OS 7.80E-02 1.30E-01 1.94E-01 2•50E-01 1 .OOE 06 8.13E-02 I.3SE-01 2.01E-01 2.56E-01 1 . 26E 06 9.C4E-02 1.51E-01 2.23E-01 2.80E-01 1 .58E 06 8.76E-02 1.44E-01 2.07E-01 2.51E-01 2. OOE 06 7.82E-02 1.26E-01 1.77E-01 2.08E-01 2.51E 06 6.64E-02 1.C7E-01 1.47E-01 1.70E-01 3.1 6E 06 5.00E-02 8 a 02E—02 1.10E-01 1.27E—01 3.98E 06 3.35E-02 5.36E-02 7.28E-02 8.24E-02 5.01E 06 1 a 89E—0 2 3.03E-02 4.12E-02 4.66E-02 6 . 31E 06 7.48E-03 1.20E-02 1.64E-02 1.86E-02 7.94E 06 3.08E-03 4.97E-03 6.57E-03 7.18E-03 1 . OOE 07 2.38E-03 3.75E-03 5.93E-03 7.87E-03 1 . 26E 07 3.06E-04 4.94E-04 6.56E-04 7.21E-04 1 . 58E 07 O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol 2. OOE 07 O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol

Data fron1 Pdlfalvi and Koblinger (1976! and Pdlfalvi 11976)

144 d 2.5 5 10 20

Rh 0.541 0.537 0.518 0.474 In 0.112 0.110 0.104 0.0923 S 0.0310 0.0302 0.0280 0.0242 P 0.0127 0.0123 0.0115 0.00994 Np 1.11 1.10 1.07 0.983 Th 0.0387 0.0379 0.0355 0.0311 U 0.168 0.164 0.154 0.135

K 2.30 2.29 2.23 2.10 D 2.64 2.62 2.55 2.38 O. 29.4 29.3 28.8 27.2 0.190 0.190 0.192 0.198 7.7. FISSION NEUTRONS REFLECTED FROMPOLYETHYLEN E+ 1% BORON SLAB GEOMETRY

0 (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY

Data from: Palfalvi and Koblinger (1976} and Pdlfalvi (1976}

146 10 T i 1 | i - i | i 1 | ' 1"T ' I i ' I 1 1 T

21 3 Composition (-10 atoms/cm ) -I 10 0 45.87 Si 20.15 H 15.75 Al 1.743 10

5 CM -a 10

O- -4 10

-s 10

10

I I I 1 I I J i i I i i I i i I i i L i I 10 ,2 _ 8 , -1 5 rH io° 10* 10 10 10 10 io" 10 ENERGY(EV)

d 5 10 20 40

Rh 0.412 0.373 0.351 0.349 In 0.0837 0.0772 0.0733 0.0729 S 0.0234 0.0219 0.0210 0.0209 P 0.00954 0.00895 0.00855 0.00851 Np 0.845 0.762 0.715 0.711 Th 0.0290 0.0270 0.0258 0.0256 U 0.126 0.117 0.112 0.0111

K 1.85 1.68 1.58 1.57 B 2.09 1.90 1.79 1.78 DTE. 23.7 21.4 20.1 20.0

TTr 0.212 0.217 0.218 0.218

147 7.8. FISSION NEUTRONS REFLECTED FROM CONCRETE + 1% Fe SLAB GEOMETRY

$(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(M EV) 0=5 D = 10 0 = 20 0=60 D=100 TH 3.98E-04 5.70E-03 2.476-02 3.34E-02 3.34E-02 1.BSE—07 2.50E-07 2.S2E -04 2.346-03 5.74E- 03 6.33E -0 3 6.33E- 03 5.00E-07 3^42E -04 2.556-03 6.02E- 03 6.61E -03 6 . 616-03 1 . OOE-06 4 . 3 IE -0 4 2.896 -03 6.46E- 03 7.036 -03 7.03E- 03 2. 156-06 S.51E -04 3.306 -03 6.94E- 03 7.506 -03 7.506- 03 4.656-06 7.01E -0 4 3.756 -03 7.44E- 07 7.986 -03 7.98E- 03 1 . 006-05 9.31E -04 4.446 -03 8.33E- 03 8.876 -0 3 8.87E- 03 2. 156-05 1.196-03 5.066-03 8.97E- 03 9.496 -03 9.49E- 03 4.65E-05 1 .526 -03 5.736 -03 9.61E- 03 1 .016 -02 1.016- 02 1.OOE-04 1.996 -03 6.686-03 1.06E- 02 1.116 -02 1.116- 02 2.15E-04 2 . 4 IE -0 3 7.216-03 1.09E- 02 1 .1 36 -02 1.136- 02 4.65E-04 3.21E -03 8.626-03 1.246- 02 1 .296 -02 l.296- 02 1 . 00E-0 3 4.1 6E -03 1.006 -02 1.386- 02 1.43E -02 1.436- 02 2.156-03 5.33E -0 3 1 .16E -02 1.536- 02 1 .57E -02 1 .576-02 4.656-03 6.87E -03 1 .36E -02 1.736- 02 1 a 77E -0 2 1.776- 02 1.006-02 8.e9E -03 1.616 -02 1. 97E- 02 2.01E -02 2.016- 02 1.26E-02 1 . 04E -02 1 .796 -02 2.156- 02 2.1 96 -02 2.196- 02 1.586-02 1. 156 -02 1.93E -02 2.316- 02 2.346 -02 2.346- 02 1 .996-02 1 .26E -02 2.06E -02 2.44E- 02 2.476 -02 2.476- 02 2.516-02 1 . 39E -02 2.22E-02 2.596- 02 2.626' -0 2 2.626- 02 3.166-02 1.53E -02 2. 39E -02 2.786- 02 2.816 -02 2.81E- 02 3.986-02 1 .786 -02 2.75E -02 3.176- 02 3.216 -02 3.21E- 02 5.016-02 1 .996 -02 3.02E -02 3.476- •02 3.516 -0 2 3.51E- 02 6.31E-02 2.266 -02 3. 37E -02 3.84E- 02 3.88E -02 3.88E- 02 7.946-02 1.OOE-01_ 2.606 -02 3.80E -02 4.30E- 02 4.35E -02 4.35E- 02 2.986 -02 1.26E-0I 4.286 -C2 4.80E- •02 4.84E -02 4.84E- 02 1 .586 -01 3.436 -02 4.766 -02 5.30E- 02 5.35E -02 5.35E- 02 1.99E-01 4.076 -02 5.566 -02 6.12E- 02 6.17E -0 2 6.17E- 02 2.51E-01 4.80E -02 6. 376 -02 6.956- 02 7.00Er02 7.00E- 02 3.16E-01 5.E9E -02 7.256 -02 7.83E- 02 7. BSE -02 7.88E- 02 3.986-01 6 • 626 -02 8.366 -02 8.956- 02 9.OOE -02 9.00E- 02 5.016-01 7.986 -02 9.906 -02 1.05E- •01 1 .06E -01 1.06E- 01 6.316-01 8.916 -02 1 .096 -01 1 .1 6E-01 1 . 16E -01 1.166- 01 7.946-01 1.05E -01 1.276 -01 1.34E-01 1 .34E -01 1.346- 01 1.006 00 1 .13E -01 1 . 36E -01 I.43E- 01 1 . 43E -01 1.436- 01 1.26E 00 1.1 8E -01 1 .42E -01 1 .49E-01 1 .50E -01 1.SOE- 01 1.58E 00 1.226 -01 1 .47E -01 1 .S6E-01 1 .57E -01 1.576- •01 1.996 0 0 1 .206 -01 1.516 -01 1.62E-01 1 . 64E -01 1 .646- 01 2.516 00 1. 106 -01 1.426 -01 1. 55E-01 1.576 -01 1.576-01 3.16E 00 9.36E -02 1 .236 -01 1•35E- •01 1 .366 -01 1.36E- •01 3.98E 00 7.06E -02 9.196 -02 1 .01E-•01 1 .026 -01 1.026-01 5.01E 00 4.72E -02 6. 166 -02 6.75E-02 6.816 -02 6.81E-02 6.31E 00 2.66E -02 3.486 -02 3.82E-02 3.856 -02 3.e5E- •02 7.94E 00 1 . 04E -02 1.38E -02 1.52E-02 1 . 546 -02 1.54E- •02 l.OOE 01 4.186 -0 3 5.576 -C3 6.17E- •03 6.256 -03 6.25E-03 1.26E 01 3.22E -03 4.126 -03 4.44E- •03 4 .476 -03 4.47E- 03 1.58E 01 4.1 6E -04 5.53E -C4 6.14E-04 6.216 -04 6.21E-04 1.99E 01 O.OOE -01 O.OOE -01 O.OOE- •01 0.006 -01 0.00E-01 0 . OOE -01 O.OOE -01 0.00E-01 0.006 -01 0.00E-01

Data from: Pdlfalvi and Kobiinger (1976) and Pdlfalvi (1976) 11 ii iii 1 1 L i 1—J i i i i i i i i 10 o' ' 1 s S TH 10 10 * 10* 10 10* 10 io6 io7 ENERGY(EV)

KJ 5 10 20 60 100 Rh 0.413 0.374 0.351 0.349 0.349 In 0.0838 0.0772 0.0731 0.0727 0.0727 s 0.0234 0.0219 0.0209 0.0208 0.0208 p 0.00953 0.00892 0.00851 0.00847 0.00847 Np 0.846 0.763 0.716 0.711 0.711 Th 0.0290 0.0270 0.0257 0.0256 0.0256 U 0.126 0.117 0.111 0.111 0.111

K 1.86 1.68 1.58 1.57 1.57 D 2.09 1.90 1.79 1.78 1.78 DTE. 23.7 21.4 20.1 20.0 20.0 0.212 0.217 0.218 0.218 0.218

149; 7.9. FISSION NEUTRONS REFLECTED FROMPOLYETHYLEN E+ 1% BORON SLAB GEOMETRY

(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(MEV) 0=5 D=10 D=20 0=60 0=100 TH 1*0 IE—04 2.66E-03 1.65E-02 2.42E-02 2.42E-02 1.88E-07 2.50E-07 9.496-05 1.39E-03 4.80E-03 5.64E-03 S.64E-03 5.006-07 1.16E-04 1.55E-C3 5.07E-03 S.90E-03 5.906-03 1 .OOE —06 1.56E-04 1.80E-03 5.49E-03 6.30E-03 6.306-03 2.15E-06 2.12E-04 2.12E-03 5.95E-03 6.74E-03 6.74E-03 4.65E-06 2.87E-04 2.47E-03 6.42E-03 7.19E-03 7.19E-03 1 .OOE-05 4.07E-04 3.01E-03 7.24E-03 8.02E-03 8.02E-03 2.15E-0S 5.57E-04 3.54E-03 7.85E-03 8.59E-03 8.59E-03 4.6SE-05 7.S7E-04 4.12E-03 8.47E-03 9.17E-03 9.17E-03 1.OOE—04 1.06E-03 4.94E-03 9.42E-03 1.01E-02 1.01E-02 2.15E —04 1.37E-03 E.50E-03 9.77E-03 1.04E-02 1.04E-02 4.65E-04 1.94E-03 6.75E-03 1.12E-02 1.18E-02 1.18E-02 1.00E-03 2.69E-03 8.10E-03 1.26E-02 1.32E-02 1.32E-02 2.15E-03 3.68E-03 9.68E-03 1.42E-02 1.48E-02 1.48E-02 4.65E-03 5.05E-03 1.17E-02 1.62E-02 1 .68E-02 . 1.68E-02 1.00E-02 6.92E-03 1.42E-C2 1.87E-02 1.92E-02 1.92E-02 1.26E-02 8.47E-03 1.62E-02 2.07E-02 2.12E-02 2.12E-02 1.58E-02 9.59E-03 1.78E-02 2.24E-02 2.29E-02 2.29E-02 1.99E-02 1.06E-02 1.91E-02 2.38E-02 2.43E-02 2.43E-02 2.51E-02 1.19E-02 2.07E-02 2.S3E-02 2.S8E-02 2.58E-02 3.16E-02 1.33E-02 2.24E-02 2.71E-02 2.76E-02 2.766-02 3.98E-02 1.56E-02 2.58E-02 3.106-02 3.15E-02 3.15E-02 5.01E-02 1.78E-02 2.87E-02 3.42E-02 3.48E-02 3.48E-02 5.3IE —02 2.05E-02 3.24E-02 3.83E-02 3.89E-02 3.89E-02 7.94E-02 2.39E-02 3.71E-02 4.33E-02 4.39E-02 4.39E-02 1.006-01 2.806-02 4.22E-02 4.87E-02 4.94E-02 4.94E-02 1.26E-01 3.29E-02 4.78E-02 5.446-02 5.506-02 5.506-02 1.586-01 3.956-02 5.616-02 6.326-02 6.396-02 6.396-02 1.996-01 4.756-02 6.516-C2 7.236-02 7.306-02 7.30E-02 2.51E—01 5.62E-02 7.486-02 8.226-02 8.296-02 8.29E-02 3.16E-01 6.77E-02 8.75E-02 9.50E-02 9.57E-02 9.57E-02 3.98E-01 8.29E-02 1.05E-01 1.13E-01 1.14E-01 1.14E-01 5.01E-01 9.39E-02 1.17E-01 1.26E-01 1.266-01 1.26E-01 6.316-01 1.126-01 1.38E-01 1.466-01 1.476-01 1.476-01 7.946-01 1.23E-01 1.496-01 1.586-01 1.596-01 1.596-01 l.OOE 00 1.306-01 1.576-01 1.676-01 1.686-01 1.68E-01 1.266 00 1.35E-01 1.65E-01 1.75E-01 1.776-01 1.776-01 1.58E 00 1.33E-01 1.68E-01 1.82E-01 1.83E-01 1.83E-01 1.99E 00 1.21E-01 1.57E-01 1.736-01 1.756-01 1.756-01 2.516 00 1.046-01 1.376-01 1.526-01 1.536-01 1.536-01 3.166 00 8.026-02 1.056-01 1.156-01 1.166-01 1.16E-01 3.98E 00 5.49E-02 7.17E-02 7.87E-02 7.94E-02 7.94E-02 5.016 00 3.136-02 4.116-02 4.516-02 4.556-02 4.556-02 6.316 00 1.28E-02 1.69E-02 1.866-02 1.886-02 1.88E-02 7.94E 00 E.286-03 7.01E-03 7.76E-03 7.35E-03 7.856-03 1.006 01 3.88E-03 4.97E-03 5.37E-03 5.41E-03 5.41E-03 1.26E 01 5.25E-04 6.96E-04 7.71E-04 7.806-04 7.806-04 1.586 01 O.OOE-Ol 0.006-01 0.006-01 0.006-01 0.006-01 1.996 01 O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol 0.006-01

Datafrom: Pdlfalvi and Koblinger (19761 and Pdlfalvi (19761

150 10 —I—|—I—I—|—I—rq—I—I—|—I—I—|—I—I—|—I—I—|—I—I—R

10 • ' ' • —1 1 J 1 i_ iii ii L L —L 1 J i J i 0 1 2 3 H s 6 7 TH 10 10 io to io 10 10 10 ENERGY(EV)

K 5 10 20 60 100 Rh 0.449 0.407 0.378 0.374 0.374 In 0.0920 0.0848 0.0792 0.0785 0.0785 S 0.0264 0.0247 0.0232 0.0230 ' 0.0230 P 0.0107 0.0100 0.00942 0.00934 0.00934 Np 0.914 0.826 0.766 0.758 0.758 Th ,0.0321 0.0299 0.0280 0.0277 0.0277 U 0.139 0.129 0.121 0.120 0.120

K 1.98 1.81 1.68 1.66 1.66 D 2.25 2.05 1.91 1.89' 1.89 DTE. 25.2 22.9 21.3 21.1 -21.1 0.207 0.213 0.215 0.215 0.215

151 7.10. FISSION NEUTRONS REFLECTED FROM CONCRETE + 30% Fe SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY c=5 D=10 0=20 0=60 0=100 TH 2.77E-04 3.64E-03 1.25E-02 1.47E-02 1.476-02 1•88E-07 2•SOE-07 2.396-04 2.046-03 5.09E-03 S.61E-03 5.61E-03 5* OOE-07 2.82E-04 2.24E-03 5.40E-03 5.926-03 5.92E-03 1•OOE-06 3.60E-04 2.S7E-C3 5.886-03 6.396-03 6.396-03 2.156-06 4.656-04 2.966-03 6.39E-03 6.90E-03 6.90E-03 4.65E-06 E.96E-04 3.38E-03 6.88E-03 7.386-03 7.38E-03 1.00E-05 7.97E-04 4.01E-03 7.73E-03 8.236-03 8.23E-03 2.15E-05 1.03E-03 4.S9E-C3 8.35E-03 8.84E-03 8.846-03 4.656-05 1.326-03 5.216-03 8.976-03 9.436-03 9.43E-03 1.00E-04 1.74E-03 6.09E-03 9.936-03 1.046-02 1.04E-02 2.1SE-04 2.11E-03 6.596-03 1.02E-02 1.066-02 1.066-02 4.656-04 2.846-03 7.94E-03 1.17E-02 1.216-02 1.216-02 1.00E-03 3.72E-03 9.35E-03 1.32E-02 1.366-02 1.36E-02 2.15E-03 4.84E-03 1.11E-02 1.50E-02 1.54F-02 1.54E-02 4.65E-03 6.376-03 1.326-02 1.726-02 1.766-02 1.766-02 1.OOE —0 2 8.256-03 1.546-02 1.92E-02 1.966-02 1.966-02 1.266-02 9.94E-03 1.776-02 2.176-02 2.216-02 2.216-02 1.586-02 1.126-02 1.956-02 2.366-02 2.406-02 2.406-02 1.99E-02 1.21E—02 2.05E-02 2.46E-02 2.50E-02 2.506-02 2.516-02 1.33E-02 2.16E-02 2.56E-02 2.60E-02 2.60E-02 3.16E-02 1.46E-02 2.29E-02 2.67E-02 2.70E-02 2.706-02 3.986-02 1.696-02 2.616-02 3.03E-02 3.066-02 3.066-02 5.01E-02 1.91E-02 2.92E-02 3.38E-02 3.426-02 3.42E-02 6.3IE—02 2.196-02 3.326-02 3.836-02 3.876-02 3.876-02 7.946-02 2.556-02 3.816-02 4.37E-02 4.426-02 4.426-02 1.006-01 2.95E-02 4.346-02 4.926-02 4.986-02 4.986-02 1.26E-01 3.43E-02 4.88E-02 5.47E-02 5.53E-02 5.536-02 1.586-01 4.096-02 5.716-02 6.366-02 6.416-02 6.416-02 1.996-01 4•e66-02 6.606-02 7.266-02 7.326-02 7.326-02 2.516-01 5.706-02 7.54E-02 8.22E-02 8.286-02 8.286-02 3.166-01 6.796-02 8.75E-02 9.456-02 9.506-02 9.506-02 3.986-01 8.256-02 1.046-01 1.126-01 1.126-01 1.126-01 5.016-01 9.256-02 1.15E-01 1.23E-01 1.236-01 1.236-01 6.31E-01 1.106-01 1.34E-01 1.426-01 1.436-01 1.436-01 7.946-01 1.186-01 1.446-61 1.526-01 1.526-01 1.526-01 l.OOE 00 1.24E-01 1.506-01 1.586-01 1.596-01 1.596-01 1.266 00 1.286-.01 1.556-01 1.656-01 1 .656-01 1.65E-01 1.586 00 1.256-01 1.576-01 1.696-01 1.706-01 1.70E-01 1.99E 00 1.14E-01 1.476-01 1.S96-01 1.60E-01 1.60E-01 2.51E 00 9.74E-02 1.25E-01 1.37E-01 1.38E-01 1.38E-01 3.166 00 7.316-02 9.366-02 1.016-01 1.026-01 1.026-01 3.98E 00 4.e46-02 6.196-02 6.686-02 6.736-02 6.736-02 5.016 00 2.686-02 3.44E-02 3.72E-02 3.74E-02 3.74E-02 6.31E 00 1.01E—02 1.31E—02 1.42E-02 1.43E-02 1.43E-02 7.94E 00 3.98E-03 5.176-03 5.646-03 5.69E-03 5.69E-03 l.COE 01 3.386-03 4.236-03 4.506-03 4.526-03 4.S2E-03 1.26E 01 3.97E-04 5.15E-04 5.62E-04 5.666-04 5.666-04 1.586 01 0.OOE-Ol 0.006-01 0.006-01 0.006-01 0.OOE-Ol 1.99E 01 0.OOE-Ol 0.OOE-Ol 0.00E-01 0.006-01 0.006-01

Data from: Palfalvi and Koblinger {] 976) and Palfalvi (1976)

152 10

-J 10

10

10

Q- 10

-5 < 10

10

-7 10 ENERGY(EV)

d 5 10 20 60 100

Rh 0.421 0.379 0.355 0.352 0.352 In 0.0853 0.0776 0.0730 0.0725 0.0725 S 0.0234 0.0215 0.0203 0.0201 0.0201 P 0.00957 0.00879 0.00828 0.00823 0.00823 Hp 0.864 0.777 0.727 0.721 0.721 Th 0.0294 0.0269 0.0254 0.0252 0.0252

U 0t128 0.117 0.110 0.110 0.110

K 1.89 1.71 1.60 1.59 1.59 2.13 1.93 1.81 1.80 1.80 TO?.24. 1 21.8 20.5 20.3 20.3 0.210 0.216 CW217 0.217 0.217

153 7.11. FISSION NEUTRONS REFLECTED FROMPOLYETHYLEN E+ 1% BORON SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(MEV) 0=5 0=1 0 0=20 D=60 TH 4.666-05 1.146-03 5.386-03 6.676-03 1.88E-07 2.50E-07 5.506-05 9.496-04 3.546-C3 4.186-03 5.OOE-07 6.876—05 1.086-03 3.83E-03 4.486-03 1.00E-06 9.466-05 1.296-03 4.28E-03 4.966-03 2.1 SE —06 1.326-04 1.556-03 4.776—03 5.456-03 4.65E-06 1.846-04 1 .846-0 3 S.226-03 5.906-03 1.00E-05 2.646-04 2.266-03 5.926-03 6.626-03 2. 1 5E-05 3.706-04 2.686-03 6.506-03 7.186-03 4.65E-0S 5.126-04 3.156-03 7.046-03 7.706-03 1 . OOE-04 7.296-04 3.816-03 7.886-03 8.536-03 2.1SE-04 9.666-04 4.296-03 8.246-03 8.836-03 4.6SE-04 I.406-03 5.356-03 9.596-03 1.026-02 1.OOE-03 1.996-03 6.586-03 1.106-02 1.176-02 2.1S6-0 3 2.866-03 8.286-03 1.316-02 1.376-02 4. 65E-03 4.15E-03 1.056-02 1.566-02 1.636-02 1 . OOE-0 2 5.72E-03 1.2S6-02 1.726-02 1.786-02 1 .26E-02 7.526-03 1.546-02 2.076-02 2.126-02 1 . 58E-02 8.766-03 1.746-02 2.316-02 2.376-02 1 •99E-02 9.71E-03 1.836-02 2.386-02 2.446-02 2.51E-02 1.C6E-02 1.916-02 2.426-02 2.476-02 3.16E-02 1.186-02 1.986-02 2.436-02 2.486-02 3.986-02 1.376-02 2.266-02 2.756-02 2.806-02 5.01E-02 1.606-02 2.616-02 3.176-02 3.236-02 6.31E-02 1.896-02 3.066-02 3.716-02 3.786-02 7.94E-02 2.256-02 3.626-02 4.366-02 4.446-02 1e OOE —01 2.686-02 4.216-02 5.036-02 5.116-02 1.26E-01 3.216-02 4.856-02 5.696-02 S.776-02 1.58E-01 3.916-02 5.786-02 6.706-02 6.796-02 1 .99E-01 4.766-02 6.826-02 7.786-02 7.876^02 2.516-01 5.776-02 7.946-02 8.936-02 9.026-02 3. 1 6E-01 6.986-02 9.416-02 1.046-01 1.056-01 3.98E-01 8.696-02 1.146-01 1.25E-01 1.266-01 5.01E-01 9.956-02 1.286-01 1 .39E-01 1.406-01 5.31E-01 1.206-01 1.516-01 1 .63E-01 . 1.646-01 7.94E-01 1.326-01 1.656-01 I .766-01 1.77E-01 l.OOE 00 1.406-01 1.736-01 1.856-01 1.866-01 1 .26E 00 1.466-01 1 .816-01 1 .936-01 1.946-01 1.58E 00 1.446-01 1.816-01 1.956-01 1.966-01 1.99E 00 1.316-01 1.676-01 1.816-01 1.826-01 2.516 00 1.126-01 1 .446-01 1 .556-01 1.576-01 3.16E 00 e.586-02 1.096-01 1.176-01 1.176-01 3.98E 0 0 5.806-02 7.306-02 7.806-02 7.846-02 5.01E 00 3.266-02 4.116-02 4.396-02 4.416-02 6.31E 00 1.296-02 1.626-02 1.736-02 1.746-02 7.94E 00 * 5.236-03 6.646-03 7.136-03 7.176-03 1 .006 01 4.286-03 S.25E-03 5.526-03 S.53E-03 1 . 2 6E 01 5.216-04 6.61E-04 7.09E-04 7.14E-04 1 .56E 01 0.006-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol 1.99E 01 0.006-01 O.OOE-Ol O.OOE-Ol 0.006-01

Data from: Palfalvi and Koblinger (1976/ and Palfalvi (1976)

154 -6 10

7 in 1—J L_j J I i i I i i I i i I i i I—i i I L. 1 u 0 1 2 3 4 S 6 7 TH 10 10 10 10 10 10 10 10 ENERGY(EV)

\ d 5 10 20 60

Rh 0.465 0.420 0.387 0.382 In 0.0953 0.0864 0.0795 0.0786 S 0.0269 0.0244 0.0224 0.0221 P 0.0110 0.00995 0.00913 0.00902 Np 0.949 0.858 0.790 0.781 Th 0.0332 0.0301 0.0277 0.0274 U 0.144 0.131 0.120 0.119

1 2.04 1.87 1.73 1.71 D 2.32 2.12 1.96 1.94 26.0 23.8 22.1 21.8 0.204 0.210 0.214 0.214

155 7.12. FISSION NEUTRONS REFLECTED FROMPOLYETHYLENE + 1% BORON SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(MEV) 0=5 0=10 0=20 0=40 TH 1.406-13 1.196-09 4.49E-07 5.586-06 1.88E-07 2.506-07 2.156-13 1.136-08 5.18E-06 5.13E-05 5. OOE-07 3.806-12 2.286-08 7.666-06 9.416-05 1 .006-06 1.366-11 6.086-08 1.77E-05 2.03E-04 2. 1 56-06 4.96E-11 1.496-07 3.59E-05 3.886-04 4.656-06 1.75E-10 3.206-07 6.02E-05 5.986-04 1.006-05 6.116-10 6.466-07 9.256-05 8.36E-04 2. 1 56-05 2. 09E-09 1.286-06 1.396-04 1.156-03 4.656-05 6.68E-09 2.276-06 1.806-04 1.33E-03 1 .006 -04 2.176-08 4.096-06 2.376-04 I.58E-03 2.156-04 6.966-08 7.286-06 3.1 06-04 1.85E-03 4.656-04 2.276-07 1.266-05 3.766-04 1.996-03 1 . OOE —03 8. 536-07 1.566-04 S.266-04 2.45E-03 2.15E —03 4.846-06 7.656-05 1.106-03 4.446-03 4. 6SE-03 3.696-05 3.066-04 2.856-03 9.706-03 1.00E-02 1.646-04 5.916-04 2.796-03 6.936-03 1.266-02 1.296-03 3.336-03 1 .096-02 2.36E-02 1 . 586-02 1.83E-03 4.346-03 1.40E-02 2.86E-02 1.996-02 2.216-03 4.476-03 1.286-02 2.61E—02 2.51E-02 2.646-03 4.496-03 1.07E-02 2.026-02 3.16E-02 3. 186-03 4.516-03 8.066-03 1.276-02 3.98E-02 3.87E-03 5.166-03 7.486-03 9.12E-03 5.0IE-02 5.41E-03 7.77E-03 1.226-02 1.54E-02 6.316-02 8.306-03 1.29E-02 2.136-02 2.84E-02 7.946-02 1.146-02 1 .83E-02 3.05E-02 4.066-02 1.006-01 1.606-02 2.57E-02 4.22E-02 5.646-02 1.266-01 2.35E-02 3.86E-02 6.14E-02 7.656-02 1 .58E-01 3.196-02 5.26E-02 8.286-02 1.026-01 1.99E-01 4.29E-02 7. 30E-02 1.116-01 1.326-01 2.51E-01 5.94E-02 9.92E-02 1.466-01 1.706-01 3 . 1 6E -01 7.64E—02 1.30E-01 1.91E-01 2.186-01 3.98E-01 9.91E-02 1.67E-01 2.31E-01 2.55E-01 5.01E-01 1.26E-01 1.90E-01 2.48E-01 2.67E-01 6.31E—01 1.60E-01 2.336-01 2.88E-01 3.01E-01 7.94E-01 1.79E-01 2.526-01 2.98E-01 3.07E-01 l.OOE 00 1.876-01 2.556-01 2.93E-01 2.98E-01 1.26E 00 1.93E-01 2.54E-01 2.79E-01 2.81E-01 1 .586 00 1.81E-01 2.28E-01 2.446-01 2.456-01 1.99E 0 0 1.E8E-01 1.906-01 1.996-01 2.00E-01 2.51E 00 1.31E-01 1.546-01 1 . 59E- 01 1.59E-01 3.16E 00 9.52E-02 1.106-01 1.136-01 1.13E-01 3.98E 00 6.02E-02 6.776-02 6.896-02 6.89E-02 5.01E 00 3.15E-02 3.536-02 3.596-02 3.59E-02 6.31E 00 9.92E-03 1.106-02 1.116-02 1.11E-02 7.94E 00 3.73E-03 4,066-03 4. 126-03 4.12E-03 l.OOE 01 4.07E-03 S.03E-03 5.046-03 5.036-03 1.26E 01 3.73E-04 4.06E-04 4. J3E-C4 4.13E-04 1.58E 01 0.00E-01 0.006-01 O.OOE-Ol 0.006-01 1.99E 01 0.C0E-01 0.00E-01 O.OOE—01 0.006-01

Data from: Pdlfalvi and Kobiinger (1976) and Pdlfalvi (1976)

156 10

ENERGY(EV)

\ d ef 5 10 20 40

Rh 0.515 0.471 ' 0.419 0.384 In 0.102 0.0884 0.0753 0.0682 S 0.0255 0.0210 0.0174 0.0157 P 0.0105 0.00872 0.00723 0.00652 Np 1.07 0.993 0.889 0.816 Th 0.0340 0.0290 0.0243 0.0220 U 1.149 0.128 0.107 0.0968

K 2.23 2.12 1.97 1.85 D 2.54 2.39 2.20 2.05 D7E. 29.0 27.8 26.0 24.3 0.206 dt 0.190 0.193 0.199

157 7.13. MODERATED FISSION NEUTRONS REFLECTED FROM Be SLAB GEOMETRY

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(MEV1 0=2.5 D=5 0=10 0=20 TH 2.44E-02 3.59E-02 5.706-02 8.77E-02 1.88E-07 2.50E-07 1 .27E-02 1.55E-02 1.91E—02 2.166-02 5.OOE — 07 1.32E-02 1.60E-02 1.976-02 2.23E-02 1.OOE-06 1.37E-02 1.66E-02 2.056-02 2.30E-02 2.1 5E-06 1.4CE-02 1.70E-02 2.09E-02 2.35E-02 4.65E-06 1.41E— 0 2 1.72E-02 2.136-02 2.39E-02 1.OOE-05 1.S0E-02 1.836-02 2.286-02 2.55E-02 2.J5E-05 1.S6E-02 1.906-02 2.37E-02 2.63E-02 4 . 656 - 05 1.59E-02 1.94E-02 2.43E-02 2.69E-02 1.OOE-04 1.64E-02 2.01E-02 2•526-02 2.78E-02 2. 15E-04 1.65E-02 2.C3E-02 2.55E-02 2.80E-02 4.65E-04 1.70E-02 2.096-02 2.65E-02 2.89E-02 1•OOE-03 1.74E-02 2.166-02 2.75E-02 2.996-02 2. 1 5E-03 1.79E-02 2.24E-02 2.86E-02 3.096-02 4.65E-03 1.84E-02 2.32E-02 2.97E-02 3.19E-02 1.OOE-02 1.92E-02 2.4SE-02 3.126-02 3.32E-02 1.26E-02 1.95E-02 2.49E-0 2 3.16E-02 3.35E-02 1 . 58E-02 2.C2E-0 2 2.586-02 3.27E-02 3.46E-02 1 . 996-02 2. C8E-02 2. 66E-02 3.35E-02 3.54E-02 2.S1E-02 2 .15E-02 2.76E-02 3.45E-02 3.64E-02 3.16E-02 2.25E-02 2.87E-02 3.58E-02 3.766-02 3.986-02 2.54E-02 3.236-02 4.026-02 4.22E-02 5.01E-02 2.66E-02 3.396-02 4.196-02 4.39E-02 6.31E-02 2.61E-0 2 3.576-02 4.406-02 4.59E-02 7.94E-02 2.98E-02 3.77E-02 4.62E-02 4j82E-02 1•OOE-Ol 3.09E-02 3.91E-02 4.77E-02 4.96E-02 1 . 26E-01 3.22E-02 4.06E-02 4.93E-02 S.12E-02 1 •58E —01 3.49E-02 4.41E-02 5.34E-02 5.53E-02 1.99E-01 3.87E-02 4.90E-02 5.93E-02 6.14E-02 2.51E-01 4.20E-02 ' 5.31E-02 6.39E-02 6.61E-02 3.16E-01 4.69E-02 5.93E-02 7.13E-02 7.376-02 3.98E-01 5. 26E-02 6.54E-02 7.77E-02 8.006-02 5.01E-01 S.37E-02 6.81E-02 8.09E-02 8.32E-02 6.31E-01 5.82E-02 7.10E-02 8.28Er-02 8.50E-02 7.94E-01 S.75E-02 7.086-02 8.30E-02 8.52E-02 l.OOE 00 5.S4E-02 6.896-02 8.15E-02 8.39E-02 1.26E 00 S.31E-02 6.706-02 8.016-02 8.276-02 1.58E 00 5.07E-02 6.496-02 7.886-02 8.176-02 1.99E 00 4.426-02 5.696-02 6.936-02 7.206-02 2.S1E 00 3.45E-02 4.41E-02 5.35E-02 5.556-02 3.16E 00 2.1OE—02 2.60E-02 3.066-02 3.14E-02 3.98E 00 1.07E-02 1.206-02 1.286-02 1.286-02 5.01E 00 5.64E-03 6.426-03 6.916-03 6.926-03 6.31E 00 2.67E-03 3.69E-03 4.82E-03 5.08E-03 7.94E 00 2. C5E-04 4.34E-04 8.16E-04 9.24E-04 l.OOE 01 3.17E-0S 2.19E-04 5.22E-04 5.38E-04 1.26E 01 7.62E-05 8.506—05 9.886-05 1.02E-04 1 .58E 01 O.OOE-Ol 0.006-01 0.006-01 O.OOE-Ol 1.99E 01 O.OOE-Ol 0.006-01 O.OOE-Ol O.OOE-Ol

Data from: Pdlfalvi and Koblinger (1976) and Pdlfalvi (1976) •t

d 6 \ .2.5 5 10 20

Rh 0.161 0.162 0.157 0.152': In 0.0287 0.0289 0.0282 0.0273 S 0.00576 0.00566 0.00539 p.00520 P 0.00244 0.00244 0.00236 0.00228 Np 0.354 0.356 0.347 0.336 Th 0.00907 0.00917 0.00897 0.00870 U 0.0408 0.0413 0.0404 0.0392

K 0.840 0.846 0.823 0.798 D 0.934 0.939 0.914 0.888 DTE. 11.4 11.4 11.1 10.8 0.229 0.230 0.231 0.230

159; 7.14. MODERATED FISSION NEUTRONS REFLECTED FROM Al SLAB GEOMETRY

4> (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY < M6V ) 0=2.5 0=5 D= 1 0 D=20 TH 8. 58E-.03 1 .456-02 2.176-02 2.776-02 1.88E-07 2 . 50E —07 2. 76E-03 4.816-03 7.596-03 1.056-02 5.00E-07 2.906-03 5.056-03 8.006-03 1 .126-02 1 . OOE-06 3. 056-03 5.346-03 8.50E-03 1.206-02 2.1 SE-06 3.166-03 5.546-03 8.876-03 1.266-02 4 . 656 - 06 3.216-03 5.636-03 9.056-03 1.296-02 1.00E-05 3.326-03 5.84E-03 9.406-03 1.356-02 2.156-05 ,3.486-03 6.136-03 9.906-03 1.43E-02 4. 656-OS 3.586-03 6.306-03 1.026-02 1.476-02 1.00E-04 3.736-03 6.576-03 1.066-02 1.S46-02 2.15E-04 3.726-03 6.566-03 1.066-02 1.546-02 4.65E-04 3.e46-03 6.776-03 1 .106-02 1.596-02 1 . 00E-03 3.946-03 6.956-03 1.126-02 1.636-02 2. 1SE-03 4.016-03 7.086-03 1.156-02 1.696-02 4.65E-03 4.456-03 7.916-03 1.306-02 1.936-02 1.OOE-O2 6.30E-03 1.016-02 1.44E-02 I.856-02 1.266-02 5.07E-03 9.736-03 1.746-02 2.986-02 1•58E-02 5.45E-03 1.056-02 1.966-02 3.796-02 I•996-02 7.436-03 1.27E-02 2.116-02 3.78E-02 2.516-02 1.016-02 1.546-02 2.336-02 3.52E-02 3.16E-02 1.346-02 1.89E-02 2.486-02 3.27E-02 3.986-02 1.676-0 2 2.306-02 2.856-02 3.376-02 7.94E-02 1.706-02 2.586-02 3.556-02 4.596-02 1 . 00E-01 1.806-02 2.716-02 3.696-02 4.716-02 1.266-01 1.906-02 2.84E-02 3.866-02 4.85E-02 1 . 586 - 01 2.076-02 3.09E-02 4.186-02 5.24E-02 1.996-01 2.18E-02 3.33E-02 4.656-02 5.986-02 2.S1E-01 2.30E-02 3.616-02 5. 16E-02 6.68E-02 3. 1 6E-01 2.466-02 3.956-02 5.80E-02 7.686-02 3.98E-01 2.806-02 4.506-02 6.57E-02 8.576-02 5.016-01 3.036-02 4.866-02 7.05E-02 9.066-02 6.31E-01 3.42E-02 5.506-02 7.936-02 1.00E-01 7.94E-01 3.57E-02 5.816-02 8.476-02 1.076-01 l.OOE 00 3.58E-02 5.936-02 8.776-02 1.11E-01 1.266 00 3. S2E-C2 5.856-02 8.606-02 1.07E-01 1.586 00 3.27E-02 5.356-02 7.686-02 9.276-02 1.99E 00 2.876-02 4.61E-02 6.416-02 7.506-02 2.51E 00 2.376-02 3.796-02 5.236-02 -6. 046-02 3.166 00 1.746-02 2.796-02 3.836-02 4.406-02 3.98E 00 1.136-02 1.816-02 2.466-02 2.776-02 5.016 00 6.296-03 1.016-02 1.376-02 1.556-02 6.316 00 2.396-03 3.856-03 S.256-03 5.956-0 3 7.946 00 9.716-04 1.576-03 2.076-03 2.25E-03 1 .006 01 7.806-04 1.236-03 1.966-03 2.656-03 1.266 01 9.676-05 1.566-04 2.066-04 2.26E-04 1.586 01 0.006-01 0.006-01 0.006-01 O.OOE-Ol 1.996 01 0.006-01 0.006-01 O.OOE-Ol 0.006-01

Data from: Pdlfalvi and Koblinger (1976) and Pdlfalvi (19 76) d 5 2.5 5 10 20

Rh 0.257 0.257 0.249 0.228 In 0.0489 0.0488 0.0465 0.0414 S 0.0128 0.0126 0.0118 0.0102 P 0.00524 0.00517 0.00485 0.00422 Np 0.540 0.542 0.527 0.487 Th 0.0165 0.0164 0.0155 0.0136 U 0.0719 0.0714 0.0674 0.0594

* 1.26 1.25 1.21 1.13 D ^ 1.40 1.39 1.35 1.26 DTB. 16.4 16.3 15.9 14.9 H 0.227 0.225 0.225 0.227

161;

8

NEUTRONS FROM THE D(T, 4He)n REACTION ("14-MeV" NEUTRONS) THROUGH SHIELDING

8.1. 14.6-MeV neutrons through H20 8.2. 14.5-MeV neutrons through polyethylene (perpendicular incidence) 8.3. 14.5-MeV neutrons through polyethylene (cosine incidence) 8.4. 14.7-MeV neutrons through concrete 8.5. 14.6-MeV neutrons through Fe 8.6. 14.6-MeV neutrons through Cu 8.7. 14.6-MeV neutrons through Pb 8.8. 14.6-MeV neutrons through 238U 8.1.

14.6-MeV NEUTRONS THROUGH H20 SPHERICAL GEOMETRY

(1 NEUTRON EMITTED AT CENTER)

ENERGY(EV > "n=S. Rq = 1 5. R0=20. R0=30. " 1.06+00 1.0E-+C1 8.976-08 2.606-03 2.05E-03 5.0E+01 1.35E-C3 2.736-03 9.916-08 2.39E-03 1.716-03 1 .0E+02 1 .52E-03 °2. 166-03 1 .056-07 3.01E-03 2.056-03 2.0E+02 9.31E-C4 3 .496-03 9.816-08 3.176-03 2.036-03 4.06+02 1 .26E-03 3.366-03 1 .146-07 2.896-03 1.816-03 7.0E+02 1 .46E-03 4.38E—03 9.036-08 3.366-03 2.326-03 1.0E+03 1.81E-C3 3.C6E-03 1.126-07 3.186-03 1.84E-03 3.0E+03 1 .386-03 4.146-03 1.066-07 3.266-03 2.15E-03 6.06+03 2.1JE-C3 4.106-03 8.88E-08 3 .976-03 2.20E-03 1.06+04 1.606-03 5.C16-03 1 .49E-07 4.426-03 2.576-03 ' 2.06+04 2.776-03 4.906-03 1.14E-07 4.426-03 3.20E-03 4.06+C4 2.986-03 4.1 16-03 1.336-07 4.316-03 2.946-03 6.06+04 3.4E6-C3 6.236-03 1.746-07 5.506-03 3.746-03 8.0E+04 4 .666-03 6.61E-03 2.016-07 6.80E-03 4.04E-03 1.0E+05 4.S8E-03 6.96E-03 2.286-07 6.64E-03 6.226-03 1.56+05 4.7 5E-C3 e.42E-03 2.756-07 6.93E-03 5.12E-03 2.0E+05 5.84E-03 1.046-02 3.006-07 1.016-02 5.576-03 2.SE+CS 6.E2E-03 1.146-02 4.226-07 1.12E-02 6.746-03 3 • 0E + C5^ 4 .81E-03 1.296-02 5.006-07 I.49E-02 9.53E-03 3. 5E + 0s' 1.226-02 1.276-02 3.886-07 1.366-02 8.646-03 4•OE + C 5 1.216-02 1.72E-02 6.916-07 1 .356- 02 9.876—03 4.5E+C5 8.336-03 1.67E-02 4.286-07 1 .356-02 8.416-03 5.06+05 7.796-03 1 .476-02 6.166-07 1.796-02 9.736-03 5.56+05 1 .486-02 1.956-02 7.97E-07 1.976-02 1.476-02 6.06+05 1 .426-02 2.656-02 9.196-07 1.956-02 1.326-02 7.06+05 2 .016-02 3.18E—02 8.416-07 2.266-02 1.646-02 8.06+05 2 .246-02 3.206-02 1.046-06 2.346-02 1.546-02 9.0E+05 1 .936-02 3.13E-02 1.016-06 3.126-02 2.00E-02 1.0E+06 I.656-02 3.006-02 1.096-06 2.486-02 1.726-02 1.2E+06 1 .E4E-C2 3.676-02 1 .206-06 3.376-02 1.886-02 1.4E+06 3 .24E-02 3.53E-02 1 .366-06 3.916-02 2.226-02 1.6E+C6 2.41E-02 4.88E-02 1.776-06 4.56E-02 3.106-02 1•8E+06 4.316-02 5.C7E-02 1.636-06 5.886-02 2.926—p2 2.0E+06 E.31E-02 6.C3E-02 1.826-06 S.236-02 3.496-02 2•3E+06 4 .4SE-02 8.21E-02 2.246-06 7.086-02 4.026-02 2.6E+C6 6.56E-02 9.72E-02 2 .716-06 7.446-02 5.756-02 3•0E+06 6.89E-02 9.S1E-02 2.866-06 8.786-02 5.54E-02 3.5E+05 6.eiE-02 9.966-02 2.916-06 8.346-02 5.86E-02 4.0E+06 6.30E-C2 1.066-01 2.726-06 8.39E-02 5.196-02 4.5E+C6 7 .7EE-C2 1.02E-01 3.72E-06 1 .10E-01 7.256-02 5.06+06 8.136-02 1.C8E-01 3.78E-06 1 .10E-01 7.576-02 6.06+06 e.826-02 1.28E-01 3.72E-06 1.24E-01 8.56E-02 7.06+06 1.216-01 1.54E-01 4.81E-06 1.52E-01 1.08E-01 8•0E+C6 1.316-01 1.84E-01 5.666-06 1.55E-01 1.07E-01 9.OE+06 1.C66-01 1.70E-01 5.226-06 1.55E-01 1.086-01 1.0E+07 1.126-01 1.63E-01 5.256-06 1 .586-01 1 .16E-01 1.16+07 1.266-01 1.6CE-01 5.75E-06 1.736-01 1.26E-01 1.26+07 1 .516-01 2.C96-01 6.976-06 1.956-01 1.40E-01 1.36 + 07 2.626-01 3.346-01 1 .136-05 3.02E-01 2.196-01 1.46 + 07 3.566-01 4.446-01 1.356-05 4.06E-01 2.826-01 1.56+07 1.006401 6.83E600 1.496-04 3 . 1 5E & 0 0 1.476400

Data from: Ing and Cross (unpublished) 1 1 1 1 Mill . i i i ml ml '1 I ' ' "'"1 101 10' 10 2 I01 10' 10s 10* 10' ENERGY eV a Ro 5 10 15 20 30

Rh 0.461 0. 547 0.588 0.632 0. 679

In 0.106 0. 128 0.139 0.151 0. 162

S 0.224 0. 216 0.214 0.212 0. 215

P 0.0813 0. 804 0.0800 0.0805 0. 0821

Np 2.16 2. 01 1.93 1.86 1. 81

Th 0. 327 0. 287 0.267 0. 250 0. 236

U 1. 04 0. 919 0. 858 0.811 0. 770

K 5. 40 4. 99 4.77 4.61 4. 47 D 7.32 6. 67 6.34 6.07 5. 85 D.E. 52.9 48. 4 46.0 44.1 42. 3 Dy 0.637 0.555 0.515 0.478 0.443

165; 8.2.

14.5 MeV NEUTRONS THROUGH POLYETHYLENE (CH2) SLAB GEOMETRY (PERPENDICULAR INCIDENCE)

4>(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY

Data from: Pdlfalvi and Kobiinger (i 976) and Pdlfalvi (1976) 10 T—i——i—i—i—|—i—i—|—r~i—|—i—i—|—i 1 i |—T

10

-1 10

-2 10 x o. -a 10

10

-5 10

. 40 CM -7IOOO 11—111—. 1 1 1 , 1 1 1. Ir-lnirM .1 lit II 10 6 7 TH 10° 101 102 103 io4 10s 10 10 ENERGY(EV)

d 5 10 20 40

Rh 0.485 0.569 0.620 0.705 In 0.111 0.133 0.144 0.164 S 0.238 0.237 0.226 0.236 P 0.104 0.109 0.110 0.128 Np 2.12 2.01 1.90 1.84 Th 0.311 0.285 0.257 0.240 U 1.00 0.921 0.837 0.785

K 5.36 5.07 4.74 4.56 D 7.23 6.77 6.28 5,97 O. 51.8 48.5 45.1 42.1 0.608 0*541 0.484 0.433

167; 8.3.

14.5 MEV NEUTRONS THROUGH POLYETHYLENE (CH2) SLAB GEOMETRY (COSINE INCIDENCE)

$(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY

Data from: Pdlfalvi and Koblinger (1916} and Pdlfalvi {1976} i i—ii i i i -i- J iii i iii ii 10 — 6 TH 10° 10' io2 103 10" 10s 10 10 ENERGY(EV)

d (6 \ 5 10 20 40

Rh 0.514 0.573 0.642 0.732 In 0.117 0.132 0.150 0.172 S 0.241 0.233 0.219 0.228 P 0.110 0.111 0.108 0.119 Np 2.10 1.98 1.82 1.83

Th • 0.306 0.279 0.241 0.234 U 0.985 0.902 0.784 0.768

K 5.30 4.98 4.53 4.52 D 7.14 6.65 5.95 5.90 D.E. 50.9 47.6 43.0 42.4

Dr 0.592 0.530 0.450 0.413

169; 8.4. 14.7-MeV NEUTRONS THROUGH CONCRETE SPHERICAL GEOMETRY

4ttR2E0(E) (1 NEUTRON EMITTED AT CENTER)

E NERGY( EV ) B0 = 10. R0=20. R0=30. R0=40. R0=60. 1•OE+OO I.OE+Ol 6 • 61E- 04 S.e3E-03 9.1 SE—03 8.426-03 3.81E-03 3.OE+Ol 1. .2CE- 03 6.99E-03 9.606-03 9.19E-03 3.83E-03 1.0E+02 9 • e7E-C4 8.29E-03 1 .12E-02 8.68E-03 3.66E- -03 3.0E+02 1 .1 9E — 03 9 .926-03 1 .176-02 9.15E-03 4.03E-03 1.0E+03 2 • 25E- 03 9.23E-03 1•18E-02 9.74E-03 3.68E-03 2.0E+03 2 • 68E-03 1.C1E-02 1.22E-02 9.38E-03 3.73E- -03 5.0E+03 4 .08E- 03 1.23E-02 1.25E-02 9.12E-03 3.39E-03 c 1 • 0E + 04 .1 1E- 03 1.28E-02 1.29E-02 9.16E-03 3.69E-03 2.0E+C4 4 • 89E — C3 1.386-02 1.42E-02 1.07E-02 4.20E-03 4.0E+04 6 .88E- 03 1.£16-02 1.496-02 1.086-02 4.09E-03 6.06+04 e .23E- 03 I.90E-02 1.746-02 1.28E-02 4.54E-03 1.0E+05 9 • S1E- 03 2.026-02 2.096-02 1 .25E-02 4.89E -03 1.SE+OS I .476- 02 2.E66-02 2.S8E-02 1 .63E-02 6.S9E -03 2.0E+C5 l .806- 02 2 .656-02 2.3SE-02 1 .57E-02 6.33E-03 2.56+05 l . 74E— 02 2.6 4E-02 2.22E-02 1.50E-02 5.70E -03 3.0E+05 l • 97E- 02 3.28E-02 2.75E-02 1.84E-02 6.87E-03 3.56+05 2 • 40E- C2 2.8SE-02 2.93E-02 1.85E-02 7.436-03 4.0E+05 2 • 40E- C2 2.CEE-02 2.37E-02 1.556-02 6.106 -03 4.5E+05 1 • 76E- 02 2.20E-02 1.85E-02 1 .12E-02 4.63E -03 S.OE+OS 2 • 51E- 02 3.16E-02 3.01E-02 2.10E-02 7.73E -03 5.SE+CS 4 .6 5E- 02 S.46E-02 4 .44E-02 3.3IE—02 1.1 2E -02 6.OE+OS 4 .4 2E- 02 6.33E-02 S .33E-02 3.57E-02 1. 1 IE -0 2 7.OE + 05 6 • 43E- 02 6.67E-02 6.09E-02 4•48E—02 1 .70E -02 8.0E+05 6 • 27E- 02 7.9CE-02 6.S9E-02 4.50E— 02 1.68E-02 9.0E+CS 4 • 48E-•C2 6.016-02 5.056-02 3.316-02 1.11E -0 2 1.0E+06 2 • 82E- 02 3.406-02 2•79E-02 1.776-02 7.10E -03 1.2E+06 4 • 92E-•02 5.896-02 4 .39E—0 2 3.58E-02 1 .12E -0 2 1.4E+06 5 • 63E- 02 7.13E-02 5.31E—02 3.93E-02 1.42E -02 1.6E+06 7 • 27E-•02 8.38E-02 6.376-02 4.85E-02 1.71E -02 1.QE+06 7 • 9 £E- C2 1.ceE-oi 7.756-02 5.54E-02 2.22E -02 2.0E+06 7 .14E-02 8.68E-02 7.18 E—02 5.17E-02 2.05E -02 2.3E+C 6 1 .1 IE—01 1.44E-01 1.296-01 9.27E-02 3.49E -02 2.6E+06 1 .75E-01 2.J3E-01 2.106-01 1.45E-01 5.92E -02 3.0E+C6 1 .616—01 2.OCE-Ol 1.566-01 1.OOE—01 3.33E -02 3.5E+06 1 .14E-01 1.35E-01 9.76E-02 5.99E-02 1.93E -02 4.0E+06 1 • 1EE-•01 1.156-01 8.386-02 5 .166-02 1 .73E -02 4.5E+06 1 .30E- •01 1.356-01 1.036-01 6.63E-02 2.24E -02 5.06+06 1 .1 1E-•01 1.346-01 1.106-01 7.026-02 2.72E -02 6.06+06 1 .236-01 1.336-01 1.116-01 7.046-02 2.37E -02 7.06+C6 1 •34E-01 1 .4£E-01 1.10E-01 7.56E-02 2.61E -02 8.06+06 1 •46E-01 1 .29E-01 9.36E-02 5.87E-02 1 . 77E -02 9.0E+06 8 • 05E--02 7.E6E-02 6.26E-02 3.82E-02 1.34E -02 1.0E+C7 6 •05E-C2 6.616-02 S.266-02 3.286-02 1 .216 -02 1.1E+07 7 .37E- •02 9.88E-02 7 .416-02 4.806-02 1.65E -02 1.2E + C 7 1 •39E-01 1.43E-01 1.066-01 6.316-02 2.076 -02 1.36+07 2 .996- -01 2.666-01 1.956-01 1 .156-01 3 .356 -02 1.4E+07 6.90E-01 5.77E-01 3.61E-01 2.11E-01 5.92E -02 1.SE+07 e •93EAOO 3.21ES00 1 .426100 6.2 OE—01 1.11E -01

Data from: Cross and Ing (1977) TTTTT

1 4.7- MeV NEUTRONS THROUGH CONCRETE

ELEMENTAL COMPOSITION OF CONCRETE (g/cm3) H 0.0149 O 1.241 Si 0.784 Al 0.123 Ca 0.138

10 3

1= .

I U — I01 10 1 10 IO3 IO' 10S 10' 10' ENERGY (EV I a Ro' 10 20 30 • 40 60 Rh 0. 517 0. 543 0 .529 0. 516 0. 501 In 0. 123 0. 133 0 131 0. 128 0. 125 S 0. 198 0. 157 0 .131 0. 115 0. 0986 P 0. 0745 0. 0616 0 0529 0. 0473 0. 0416 Np 1. 96 1. 56 1 .31 1. 19 1. 05 Th 0. 273 0. 192 0 148 0. 125 0. 100 U 0. 878 0. 635 0 498 0. 426 0. 351

K 4. 84 3. 81 3 .18 2. 84 2. 48 D 6. 45 4. 95 4 .06 3. 59 3. 08 D.E . 47. 79 37. 82 31 76 28. 66 25. 32 Dy 0.545 0.432 0.381 0.358 0.333

171; 8.5. 14.6-MeV NEUTRONS THROUGH Cu SPHERICAL GEOMETRY 47rR2 E0(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY (EV) P0=5. R0 =10 . R0=20. ^,=30. R0=50. 1.0E+C0 5.06+00 0. C. 0. 8.03E-0S 2.75E-04 1.06+01 0 . 0 . 0 . 1.39E-04 4.466-04 4.06+C1 C. . 0. 1 .14E-04 3.22E-04 4.516-04 8.06+01 0 . 0. 5.336-05 2.636-04 S.28E-04 1.06+C2 0. 0. 1.676-04 4.576-04 2.96E-04 2.06+02 0 . 6.24E- 05 2.736-05 2.83E-04 5.13E-04 3.06+C2 0. 0 . 6.196—05 4.036-04 6.41E-04 4.06+02 0. 0. 2.14E-04 6.47E-04 6.29E-04 5.06+02 0. 0. 0. S.44E-04 6.98E-04 6.06+02 0. . 0 . 2.936-04 7.60E-04 8.52E-04 8.06+C2 0. 0. 1.826-04 3.566-04 8.146-04 1.06+03 0. 0. 1.016-03 4.36E-04 1.22E-03 2.0E+C3 0. 7.516- 05 1.776-04 1.04E-03 1.47E-03 3•0E+03 2.836- 04 2.£2E- 04 1.266-03 1.78E-03 1.72E-03 4.0E+03 2.026- 04 4.C06- 04 1.076-03 1.50E-03 2.05E-03 5.0E+C3 0. 2.226- 03 2.636-03 3.41E-03 3.46E-03 6.06+03 9.02E- 04 1.S36- 03 2.17E-03 3.67E-03 4.12E-03 8.06+03 0.026- C4 C.S36- 03 2.756-03 9.636-04 9*14E—04 1.06+04 E.22E- 04 0. 1 .156-03 1.676-03 9.10E-04 1.56+04 0 . 1.21E- 03 2.83E-03 3.686-03 5.226-03 2.2E+04 1.016- 03 2.666- 03 6.68E-03 1.626-02 2.13E-02 2.66+04 8.316- 03 2.446- 02 8.65E-02 1.696-01 1.S8E-01 3.0E+C4 0. 1.606- 03 2.076-03 1.706-03 2.34E-04 3.56+04 3 .656-C4 2.71E- 03 5.076-03 2.22E-03 8.38E-04 4.06+04 8.50E- 04 S.736- 03 7.666-03 6.64E-03 1.45E-03 5.06+04 3.58E- C3 6.5E6- 03 7.686-03 6.14E-03 2.S5E-03 6.06+04 1.66E- 03 7.S36- 03 7.456-03 5.22E-03 2.24E-03 8.06+04 3.6SE- 03 6.62E- 03 1.036-02 1 .06E-02 S.04E-03 1.06+05 4.82E- 03 1.14E- 02 1.80E-02 1.72E-02 1.16E-02 1.56+05 1.21E- 02 3.C8E- 02 6.836-02 8.21E-02 6.096-02 2.06+05 1.67E- 02 5.70E- 02 1.366-01 1.71E-01 1.19E-01 2.56+05 3.£IE— C2 7.E8E- 02 1.886-01 2.07E-01 1.316-01 3.06+C5 4.2CE- 02 1.21E- 01 2 .916-01 3.79E-01 2.40E-01 3.56+05 6 .66E-02 2.26E- 01 6 .06E-01 7.34E-01 3.916-01 4.06+C5 8.02E- 02 1.96E- 01 3.70E-01 3.42E-01 1.23E-01 4.56+05 5.30E- 02 1.34E- 01 1.77E-01 1 .63E-01 4.596-02 E.06+05 8 .40E-C2 1 . 91.E-01 3 .37E-01 2.936-01 8.766-02 5.56+05 e.9eE- 02 2. UE-01 3.46E-01 2.726-01 9.42E-02 6.06+05 9.83E- 02 2.74E- 01 4 .44E-01 3.536-01 1.036-01 7.0E+05 1.44E- CI 3.76E- 01 5.426-01 3.956-01 1.09E-01 8.0E+05 1•11E- 01 2.47E-01 2.106-01 1.22E-01 2.52E-02 9.0E+C5 1.E3E- 01 2.46E- 01 2.816-01 1.77E-01 3.32E-02 1.0E+06 1.706- 01 3.12E- 01 3.666-01 2.15E-01 4.58E-02 1.2E+06 1 .S4E-01 3.1EE-01 2.72E-01 1.41E-01 1.83E-02 1.46+06 2.22E- 01 2.69E-•01 2.33E-01 1.116-01 1.406-02 1.66+06 2• 4 4E- 01 3.24E-01 2.47E-01 1.116-01 1.046-02 1.86+06 2.57E- 01 3.43E- 01 2.41 E—01 1.066-01 1.33E-02 2.0E+06 2.28E- 01 3.12E-01 2.03E-01 8.6SE-02 7.01E-03 2.3E+06 2.366- 01 2.75E- 01 1.516-01 5.786-02 3.936-03 2.6E+06 2.136-01 2.67E-•01 1 .216-01 4.606-02 4.986-03 3.0E+06 2.33E- 01 2.44E-01 1 .036-01 3.226-02 2.726-03 3.5E+06 1.80E- 01 1.806- 01 8.84E-02 2.87E-02 2.056-03 4.0E+06 1.74E—01 1.666-•01 6.90E-02 2.296-02 1.33E-03 4.5E+06 1.616- CI 1.296-01 5.61E-02 1.55E-02 5.11E-04 5.0E+06 1.286-01 1.C56-•01 4.26E-02 1.15E-02 1.42E-03 6. OE + O6 1.C76- 01 8.606-•02 4.1 8E-02 1.19E-02 8.96E-04 7•06+06 6.496--02 7.116-02 2.64E-02 8.756— 03 2.896-04 8.06+06 4.786-02 3.806-•02 >1 .44E-02 5.44E—03 1.60E-04 9.06+06 4.C76- 02 3.176-•02 1.63E—02 5.58E-03 2.57E-04 1 .06+07 3.536-•02 2.676-•02 1.11E-02 2.60E-03 2.34E-04 1.16+07 S.626-02 5.3EE-02 2.356-02 7.87E-03 5.14E-04. 1.26+07 4.506-C2 3.93E-02 2.426-02 9.89E-03 1.526-03 1.36+07 3.506-•02 3.61E-02 2.106-02 5.546-03 9.56E-04 1.46+07 2.886-•01 2.62E-•01 1.346-01 5.126-02 5.43E-03 1.56+07 8.086100 4.38E100 1.25E&00

Data from: Ing and Cross {197Sa) s 10° 10 1 I0! I01 10 10 10' 10' ENERGY eV a Ro 2 5 10 30 50 Rh 0. 434 0. 520 0 .520 0. 256 0. 125 In 0. 100 0. 121 0 .113 0. 0353 0. 00900 s 0. 198 0. 157 0 .100 0. 0158 0. 00266 p 0. 0724 0. 0600 0 .0400 -0. 00664 0. 00114 Np 2. 14 1. 88 1 .51 0. 613 0. 269 Th 0. 312 0. 235 0 .146 0. 0246 0. 00445 U 0. 994 0. 765 0 491 0. 0877 0. 0163

K 5. 26 4. 48 3 48 1. 73 1. 19 D 7. 11 5. 89 4 .40 1. 89 1. 18 D.E. 53. 1 46. 6 38 54 22. 2 15. 4 Dy 0. 629 0. 498 0 381 0. 295 0. 302

173; 8.6. 14.6-MeV NEUTRONS THROUGH Cu SPHERICAL GEOMETRY 4TTR2E0(E) (1 NEUTRON EMITTED

ENERGY(EV1 R0 =5. R0=10. R0=20. Rq =30 • R0=50. 1.OE+OO 5.OE+OO 0. 0. 1.04E-06 1.77E-05 8.33E-05 1* OE+Ol 0. 0. 4.72E-05 7.84E-0S 3.04E-04 4.0E+C1 0. 0. 3.78E-05 2.336-04 6.48E-04 8.OE+Ol 1 .566-C4 1.22E—04 1 . 71E—04 4«966—04 1.216-03 1.0E+C2 0. 0. 9.665-05 6.34E-04 1 .306-03 2.0E+02 0. 0 . 1.03E-04 8.78E-04 2.02E-03 3.0E + 02 0. 0. 1.59E-04 1.64E-03 3.46E-03 4.0E+02 0 . 0. 5.54E-04 2.87E-03 4.82E-03 S.0E+C2 0. 0 . 6.71E-04 3.23E-03 6.416-03 6.06+02 c. 4.60E-04 8.606-04 4.28E-03 6.91E-03 6.0E+C2 0. 0. 2.116-03 9.S76-03 1.2SE-02 1.0E+03 0 . 4.25E-04 2.776-03 1.34E-02 1•97E—02 2.0E+C3 3.1 SE— 04 1.886-04 6.73E-03 2.72E-02 3.166-02 3.06+03 0 . 1 .426-04 3.74E-03 1.33E-02 8.56E-03 4.0E+03 c. 1.596-03 1.49E-02 4.27E-02 3.30E-02 S.0E+03 4.226- C4 1.466-03 1.85E-02 4.29E-02 2.95E-02 6.0E+03 0 . 7.796-04 1.36E-02 3.76E-02 2.676-02 8.0E+03 1 .206-03 4.C6E-03 5.64E-02 1.07E-01 7.61E-02 1.0E+04 3 .856-04 6.64E-03 2.32E-02 3.78E-02 1.686-02 1.5E+04 2.1IE— 03 4.61E-03 2.99E-02 5.336-02 2.27E-02 2.26+04 2.S2E- C3 9.106-03 3.61E-02 5.6SE-02 2.92E-02 2.66+04 2.59E- 03 3.636-03 2.516—02 3.99E-02 1.25E-02 3.0E+04 2.366- 03 3.78E-03 2.106-02 3.29E-02 1.48E-02 3.5E+C4 2.726- 03 8.64E-03 6.106-02 7.41E-02 2.84E-02 4.0E+04 7.076- 03 1 .316-02 7.376-02 8.91E-02 3.86E-02 5.0E+04 9.136- 03 2.72E-02 9.946-02 1.32E-01 4.36E-02 6.0E+04 1.C6E- 02 3.52E-02 I .20E-01 1.S7E-01 5.84E-02 8.0E+04 1.286- C2 4.996-02 I.416-01 1.386-01 4.31E-02 1.0E+05 2.156- 02 6.716-02 1.556-01 1.38E-01 3.76E-02 1.5E+CS E.1S6- 02 1.176-01 2.076-01 1.72E-01 4.41E-02 2.0E+05 8.11E- 02 1.606-01 2.706-01 2.09E-01 4.72E-02 2.5E + 0S S.9eE- 02 £.046-01 2.786-01 2.08E-01 4.68E-02 3.0E+05 1 .1 EE-01 2.416-01 3.316-01 2.20E-01 4.63E-02 3.SE+0S 1 .42E-01 2.946-01 3.47E-01 2.266-01 3.69E-02 4.0E+05 1.716- 01 2.976-01 4.236-01 2.71E-01 4.36E-02 4.SE+05 2.046- 01 3.996-01 4.326-01 2.74E-01 4.26E-02 5.0E+CS 1.916- 01 3.746-01 3.296-01 2.OOE-Ol 2.736-02 5.56+0 5 1.976- 01 3.646-01 3.81E-01 2.01E-01 3.61E-02 6.06+05 2.146- 01 4.126-01 3.736-01 1.74E-01 2.296-02 7.0E+05 2.146- 01 3.766-01 3.256-01 1.57E-01 1.75E-02 8.0E+05 2.626-01 3.516-01 2 .696-01 1.40E-01 1.08E-02 9.0E+05 2.35E-01 3.206-01 2.456-01 1.OOE-Ol 1.04E-02 1.OE+O6 2.30E- 01 3.17E-01 2.136-01 6.93E-02 7.736-03 1.2E+C6 2.00E- 01 2.69E-01 1.70E-01 S.76E-02 3.S4E-03 1•4E+06 1.82E-•01 2.326-01 1.22E-01 4.59E-02 3.13E-03 1.6E+06 1.e4E- 01 1.7e6-01 8.83E-02 3.21E-02 3.31E-03 1.86+06 1.686- 01 1.426-01 6.70E-02 2.S0E-02 1.98E-03 2.0E+06 l.80E- 01 1.456-01 5.786-02 1.9SE-02 0. 2.36+06 1.276-01 1.276-01 6.166-02 1.30E-02 1.54E-03 2.6E+C6 1.3CE-01 1.29E-01 5.016-02 1.33E-02 1.34E-03 3.0E+06 1 .16E-•01 1.19E-01 3.326-02 1.20E-02 1.04E-03 3•5E+ 06 1.OCE-Ol 9.08E-02 3 .696-0 2 8.066-03 0. 4.0E+06 9.C6E-02 7•20E-02 2.376-02 6.62E-03 1.20E-03 4•56+06 7.74E-•02 6.796-02 2 .386-02 8.19E-03 3.71E-04 5.0E+06 6.47E-02 5.C36-02 1.936-02 2.58E-03 0. 6.0E+06 4.686-02 3.886-02 1 .216-02 3.48E-03 1.546-04 7.0E+06 2.966-02 2.886-02 7.426-03 2.72E-03 0. 8.0E+06 2.116-02 1.676-02 3.166-03 1.81E-03 0. 9•0E+06 1.756-02 9.716-03 4.88E-03 1.S5E-03 0. 1•0E+07 8.10E-03 8.186-03 2.166-03 2.16E-03 2.7SE-04 1.1E+07 3.34E-•03 3.20E-03 1.346-03 0. 0. 1.2E+07 3.43E- •03 4.376-03 0 . 1.07E-03 0. 1.36+07 2.28E-02 2.126-02 1.366-02 3.36E-03 8.16E-04 1.4E+07 1.456-•01 1.376-01 5.376-02 1.S4E-02 6.76E-04 1•56+07 7.51E&00 3.75E&00 9.586-01 2.16E-01 9.54E-03

Data from: Ing and Cross {1976b} 5 CM

10" 10' I0! 10' 10' 10s 10' 10' ENERGY eV

a Ro 5 10 20 30 50 Rh 0. 407 0. 358 0 209 0. 116 0. 0410

In 0. 0830 0. 0638 0 0279 0. 0119 0. 00287

S 0. 125 0. 0674 0 0205 0. 00689 0. 00117

P 0. 0465 0. 0259 0 00806 0. 00273 0. 00049

Np 1. 64 1. 14 0 571 0. 296 0. 106

Th 0. 199 0. 105 0 320 0. 107 0. 00184

U 0. 643 0. 344 0 107 0. 0365 0. 00639

K 3. 96 2.81 1.63 1.06 0.549 D 5.18 3.47 1.83 1.09 0.520 D.E. 42.51 32.37 20.28 13.33 6.90 Dy 0.489 0.376 0.320 0.319 0.335 8.8.

14.6-MeV NEUTRONS THROUGH U-238 SPHERICAL GEOMETRY 4ttR2E(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY(EV ) R0=5. R„=10. R„=50. 1.06+00 £ • 06 + 00 0. 1.156-04 0. 0. 1.766-04 1.06+01 0 . C. 0. 0. 0. 4.06+01 1.356-04 C . 0 . 7.916-05 5.94E-04 8.06+01 0. 0. 0. 4.326-04 1.346-03 1.06+02 0 . 0. 0. 0. 2.656-04 2.06 + 02 0 . 0. 1.726-04 1 .656-04 2.266-03 3.06+02 3 .066-04 0 . 0. 3.036-04 3.82E-03 4.06+02 6 .496-04 6.446-04 1.026-03 1.016-03 5.836-03 5.06+02 0. 0. 5.366-04 5.356-04 7.816-03 6•06+C2 0 . 0. 0. 6.746-04 5.48E-03 8.06+C2 0. 0 . 2.356-03 2.156-03 7.91E-03 1.06+03 e .4CE-04 8.396-04 2.526-03 1 .546-03 1.086-02 2.0E+03 9.016—04 1.806-04 I.336-03 3.216-03 1.456-02 3.06+03, 1 .516-03 1.346-03 3.276-03 6.496-03 2.14E-02 4.06+03 6.376-04 8.666-04 6.586-03 5 .566-03 3.06E-02 S.06+03 5.606-04 3.646-03 5.746-03 1.096-02 4.306-02 6.06+03 3 .776 —C3 2.396-03 1.206-02 1.156-02 4.55E-02 8.06+03 5.436-03 7.376-03 9.776-03 1.696-02, 5.95E-02 1.06+04 £ .876—C3 4.756-03 1 .126-02 2.056-02 5.686-02 1.56+04 3.696-03 1.016-02 1.66E-02 3.106-02 7.706-02 2.26+04 8.966-03 1.566-02 1.90E-02 3.06E-02 1.026-01 2.66+04 1.686-02 1.90E-02 2.76E-02 5.446-02 1.426-01 3.06+04 4 .376-03 2.316-02 5 .34E-02 8.296-02 1.856-01 3.56+C4 9 .736-03 2.186-02 4 .696-02 1.026-01 1.866-01 4.06+04 2.1C6-02 4.506-02 6.64E-02 1.096-01 1.78E-01 5.06+C4 2.1C6-02 2.966-02 5.726-02 8.626-02 1.346-01 6.06+04 2.646-02 4.076-02 8.406-02 1.446-01 1.906-01 8.06+04 2.97E-02 6.15E-02 9.526-02 1.346-01 1.896-01 1.06+05 4.9CE-C2 8.46E-02 1.356-01 1.826-01 2.16E-01 1.56+05 5.66E-02 1.09E-01 1.596-01 2.116-01 2.956-01 2.06+05 9.446—02 1.296-01 2.20 6-01 2.846-01 3.40E-01 2.56+05 6.056-02 1.136-01 2.326-01 3.236-01 4.01 E—01 3.06+C5 6.716-02 1.476-01 2 .80E-01 3.426-01 4.33E-01 3.56+05 9.44E-02 1.936-01 3.266-01 4.496-01 5.47E-01 4.06+05 1 .16E-C1 1.976-01 3.106-01 4.326-01 4.986-01 4.56+05 1.206-01 2.276-01 4.166-01 5.886-01 7.936-01 5.06+05 1.276-01 2.546-01 5.73E-01 8.75E-01 1.346100 5.56+05 1 .866-01 3.396-01 6.916-01 9 .416-01 1.136100 6.06+05 1.876-01 3.746-01 6.236-01 8.24E-01 8.086-01 7.06+05 2 . 1 £6-01 4.086-01 6.966-01 8.116-01 7.356-01 8.06+05 2.456-01 4.23E-01 6 .946-01 7.956-01 5.996-01 9.06+05 2.546-C1 4.126-01 6.38E-01 6.566-01 4.51E-01 1.06+06 £.416-01 4.76E-01 6.596-01 6.816-01 4.566-01 1.26+C6 2.826-C1 4.85E-01 6.916-01 6.4 36-01 4.03E-01 1.46+06 2 .656-01 4.42E—01 6.096-01 5. 626-01 2.656-01 1.66+06 2.546-01 4.01E-01 5.676-01 4 .876-01 2.436-01 1.86+06 2.506-01 3.896-01 4.726-01 3.786-01 1.516-01 2.06+06 2 .516-01 3 .£66-01 4.38E-01 3.756-01 1.21E-01 2.3E+C6 1.9EE-01 3.386-01 3.82E-01 2.40E-01 6.966-02 2.66+06 1.656-01 2.606-01 2.376-01 1.696-01 4.026-02 3.06+06 1.726-01 2.286-01 1.776-01 9.216-02 1.S7E-02 3.56+06 9.586-02 1.41E-01 1.046-01 4.706-02 6.896-03 4.06+06 1 .016-01 1 . 1SE-01 7.636-02 3.236-02 4.216-03 4.56+06 5 .£26-02 6 .63E-02 4.196-02 2.606-02 5.836-03 5.06+06 6.296-02 6.766-02 4.276-02 2.086-02 4.156-03 6.06+06 3 .12E-02 4.356-02 2.616-02 1 .176-02 1.376-03 7.06+C6 2.96E-C2 3.896-02 1.826-02 1.786-02 2.436-03 8.0E+06 4.666-02 5.946-02 3.516-02 2.066-02 2.346-03 9.0E+C6 5.366-C2 6.376-02 3.616-02 1.336-02 3.18E-03 1.0E+C7 2.756-02 1.786-02 1.426-02 8.316-03 1.19E-03 1.1E+07 5.256-02 7.026-02 5.116-02 2.626-02 4.59E-03 1.26+07 7.696-C2 8.196-02 6.836-02 3.026-02 5.75E-03 1.3E+C7 1.E66-C3 3.906-03 1.566-03 7.816-04 0. 1.4E+C7 3.376-03 4.22E-03 5 .066-03 1.696-03 0. 1.5E+07 5.476100 6.196100 2.516100 1.006100 1.276-01

Data from: Ing and Cross (unpublished) ! s 7 10' 10 10' 10 10" 16 ENERGY e V

a R0 5 10 20 30 50 Rh 0. 430 0. 455 0. ,413 0. ,337 0. 202 In 0. 0905 0. 0916 0. , 0728 0. , 0506 0. 0205 S 0. 133 0. 0854 0. ,0361 0. .0156 0. 00244 P 0. 0492 0. 0330 0. .0148 0. .00663 0. 00109 Np 1. 72 1. 42 1. ,07 0. . 829 0. 497 Th 0. 213 0. 136 0. ,0612 0. , 0296 0. 00675 U 0. 688 0. 450 0. .214 0. .109 0. 0265

K 4. 10 3. 25 2. ,36 1. , 89 1. 35 D 5. 40 4. 11 2. .80 2. , 14 1. 42 D.E. 43. 7 36. 7 29, .4 24. . 9 18. 4 DY 0.501 0.391 0.306 0.286 0.291

177; 8.8.

14.6-MeV NEUTRONS THROUGH U-238 SPHERICAL GEOMETRY 4ttR2E(E) (1 NEUTRON EMITTED AT CENTER)

ENERGY!EV ) R =5. R0=20. R0=30. R0=SO. l.OE+CO 5.OE+OO 0 . 0 . 0. 0. 0. l.OE + Cl 0. 0. 0. 0. 0. 4.0E+C1 0 . 0. 0. 0. 0. 8.0E+C1 0. 0 . 0 . 0. 0. 1.0E+C2 0. 0 . 0. 0 . 0. 2.0E+C2 0 . 0. 0. 6.25E-C8 0. 3.0E+C2 0. 7.18E-0S 0. 0. 0. 4.0E+C2 0. 0. 0. 0. 0. 5.0E+C2 0. 0 . 0. 0. 0. 6.0E+C2 0. 0. 0. 0. 0. >8.0E+02 0 . 0. 0. 3.87E-08 0. 1.0E+C3 0 . 0. 0. 5.57E-08 0. 2.0E+C3 c. 6. 14E-05 1.14E- OS; 4.55E-06 8.75E-07 3.0E+C3 0 . 055 1.09E-05 4.OE+C3 0. 1 .71E- 1.S8E-05 2.32E-C4 04' 5.0E+03 0. 4.65E- 5.88E-04 2.08E-04 0 . 8.40E-04 3.61E- 03- 3.10E-03 6.90E-04 6.0E+C3 0 3 8.0E+C3 0. 0. 2.96E- 3.42E-03 4.61E—04 1.0E+04 0. 1.46E-04 S.32E- 0 3 3.58E-03 9.92E-04 l.SE + 04 7.S7E-04 5.29E—0 3 8.12E- 0,3 2.96E-03 1.31E-03 2.2E+04 4.19E-03 5.C8E-03 1.12E- 0 2 9.47E-03 5.20E-03 2.6E+04 6 .47E-03 1.24E—02 3.06E- 02' 3.33E-02 1.22E-02 3.0E+C4 1 .S7E-02 2.64E-02 6.41E- 02 7.33E-02 2.00E-02 3 . 5E + C4 5.44E-03 2.2SE-02 7.18E- 02 1.02E-01 2.81E-02 4.0E+04 e.31E-03 3.10E-02 1 .08E- 01 1.12E-01 4.26E-02 S.0E+C4 2.12E-02 5.86E-02 1.56E- 01 1.50E-01 4.62E-02 6.0E+04 2.13E-02 6.69E-02 2.08E- 01- 2.07E-01 5.74E-02 8.0E+C4 3.7IE-02 8.96E-02 2.79E- 01 2.23E-01 5.51E—02 1.OE+OS 5.0SE-02 1 •6EE-01 3.41E- •01 2.90E-01 6.10E-02 I.SE+C5 7.13E-C2 2.32E-01 3.84E- 01 3.15E-01 6.85E-02 2. OE+OS t.28E-01 3.14E-01 5 .33E- 01 3.45E-01 6.28E-02 2.SE+CS 1.84E-01 S.24E-01 6 • 29E- 01 3.86E-01 6.76E-02 01 3.OE+OS 2.6SE-01 S.3SE-01 8.62E- 4.47E-01 6.88E-02 •OJ 3.SE+OS 3.S0E-01 6.94E-01 8.68E- 4.78E-01 7.3SE-02 4.OE+OS 01 3.8EE-01 8.37E-01 9.S9E- 5.54E-01 5.37E-02 4.SE+OS •01 S.38E-C1 9•10E-01 9.97E- 5.86E-01 6.49E—02 S.OE+C5 01 5.8SE-C1 l.CSESOO 9.89E- 4.42E-01 S.66E-02 S.SE+OS •01 e.SOE-Ol 1•C6E+00 8.82E- 4.99E-01 4.88E-02 6.0E+05 00 7.16E-01 1.C7E400 1.07E- 4.57E-01 3.26E-02 7.0E+CS •00 7.SEE— 01 1 . 13E400 1.11E- 4.34E-01 3.83E-02 8.OE+OS •01 6.20E-01 1.14E600 8.2SE- 3.22E-01 3.57E-02 9. OE+OS •01 6.06E-01 9.C7E-01 2.22E-01 1.30E-02 1.0E+06 6.29E- '01 6.S4E-C1 8.E6E-01 1.98E—01 1.2E+06 S.13E- >01, 1 .52E-02 6.30E-01 8.96E-01 1.22E-01 1.18E-02 1.4E+C6 6.47E-01 4.14E- •01 1.6E+C6 6.7SE-01 3.82E- >01 1.02E-01 5.88E-03 4.44E-01 5.23E-01 8.S7E-02 1.SOE—03 1.8E+06 S.65E-01 2.39E- •01 4.E0E-01 3.81E—02 4.19E-04 2.0E+06 .91E-01 2.65E- >01 4 4.18E-01 4.29E-02 0. 2.3E+06 4.16E-01 1.38E- •01 2.6E+06 4.00E-C1 3 .9SE-01 2 .OOE-•01 1.84E-02 2.91E-03 3.0E+06 3.72E-01 1 .40E->01 4.08E-02 2.63E-03 3.SE+06 3 .SOE-Ol 3.C4E-01 1 .04E-•01 2.18E-02 2.91E-04 4.0E+06 2.77E-C1 2.S6E-01 1 .02E-•0 2 2.72E-02 0. 4.SE+06 2.80E-01 2.48E-01 8. SOE' •02 3.9SE-02 1.73E-03 S.0E+06 2.44E-01 2.35E-01 8.19E- • 02 2.39E-02 1.27E-03 6.0E+06 2.0CE-01 1.E0E-01 7.53E- •02 3.32E-03 2.99E-03 7.0E+C6 1.33E—01 1.f3E-01 3.97E- -0 2 1 .54E-02 0. 8.0E+06 9.72E-02 9.97E-02 2.62E- • 02 8.47E-03 1.20E-03 9.0E+06 S.S1E-02 4•28E-02 3.44E- -0 3 0. 0. 3.1EE-02 1.0E+07 2.68E-02 8.43E- -03 3.60E-03 0. 1.33E-02 1.1E+C7 3* SEE—03 2.3SE- •02' 4.01E-03 8.40E-04 -0 2 1.2E+07 4 .69E-02 4.eiE-02 1 .44E- 0. 0. 1.3E+07 3.79E-C2 2.90E-02 1 .21 E-02 ' 1.34E-03 0. 1.4E+C7 • 02' 1.68E-02 2.91E-02 1 .72E- 5.48E-03 0. 1.5E+07 3 .S2E-02 5.24E-02 2.32E- 6.26E-03 1.91E-03 0. O. 0. 1 0. 0. 7.43E400 3.79E600 8.4SE- • oi , 2.25E-01 1.15E-02 Data from: Ing and Cross (unpublished) 10' I I 11II j 1—I I I Mllj 1 I I I 11 H| 1—I II Mll| 1—I I I M IT 1—I I I Mllj 1—I I I 11 llj

10° 14.6 MeV NEUTRONS THROUGH !1,U 5 CM

10"

10"

-r 10 1 0 "

10" — IX10s 10" 1

- 10'

10"

10"

! 10' 10' 10 10! 10' 10s 10' 10' ENERGY eV

a Ro 5 10 20 30 50 Rh 0. 437 0.352 0 .211 0 .136 0. 0723 In 0. 0861 0.0597 0 .0277 0 .0136 0. 00492 S 0. 0758 0.0378 0 .0125 0 .00577 0. 00258 P 0. 0300 0.0158 0 00537 0 .00261 0. 00103 Np 1. 30 0.908 0 .506 0 322 0. 166 Th 0. 117 0.0557 0 0179 0 .00845 0. 00291 U 0. 390 0.192 0 .0641 0 .0299 0. 0103

K 3. 05 2.23 1 .52 1 .22 0. 912 D 3. 80 2.61 1 .62 1 .23 0. 856 D.E. 35. 1 27.4 19 .4 15 .4 11. 1 Dy 0. 369 0.312 0 .298 0 .305 0. 315

179

NEUTRONS FROM THE D(T, 4He)n REACTION ("14-MeV" NEUTRONS) REFLECTED FROM VARIOUS MATERIALS

9.1. 14.5-MeV neutrons reflected from H20 (perpendicular incidence)

9.2. 14.5-MeV neutrons reflected from H20 (cosine incidence) 9.3. 14.5-MeV neutrons reflected from polyethylene (perpendicular incidence) 9.4. 14.5-MeV neutrons reflected from polyethylene (cosine incidence) 9.1.

14.5 MeV NEUTRONS REFLECTED FROM H20 SLAB GEOMETRY (PERPENDICULAR INCIDENCE)

4> (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EV> 0=E D=10 D = 20 D=40 TH O.OOE-Ol O.OOE-Ol O.OOE-Ol 0.00E-01 i.esE -01 2.S0E -01 O.OOE-Ol O.OOE-Ol 0 00E-01 O.OOE-Ol 5. OPE -01 0.00E-01 O.OOE-Ol 0 00E-01 O.OOE-Ol 1 .OOE 00 7.75E-04 2.1 8E-03 1 16E-03 1.85E-03 2.15E 00 1.12E-03 1.46E-03 1 31E-03 1.72E-03 4. 65E 00 7.71E—04 6.51E-04 1 26E-03 1.77E-03 1 .OOE 01 8.72E-04 1.14E-03 7 45E-04 2.15E-03 2. 1SE 01 1.54E-03 1 .30E-03 1 42E-03 2.06E-03 4.65E 01 1.86E-03 1.06E-03 2 OlE-03 2.45E-03 1 .OOE 02 1.C2E-03 2.50E-03 2 44E-03 1.60E-03 2. 1 SE 02 1.08E-03 1.29E-03 1 15E-03 1.87E-03 » . 65E 02 9.39E-04 1.20E-03 2 64E-03 1.49E-03 1 . OOE 03 1.31 E—03 1.28E-03 2 55E-03 3.04E-03 2. 15E 03 1.C6E-03 1.53E-03 2 22E-03 3.89E-03 4.65E 03 1.15E-03 1.64E-0 3 4 35E-03 1.81E-03 1 . OOE 04 1.60E-03 2.14E-03 9 44E-04 2.79E-03 1 . 2 6E 04 2.37E-03 3.21E-03 2 3 8E-03 6.15E-04 1 . 58E 04 2.83E-03 1.42E-03 1 48E-03 4.28E-03 2. OOE 04 1.33E-03 4.52E-03 9 S2E-04 2.97E-03 2 . 5IE 04 7.30E-04 1.53E-03 ' 4 04E-03 1.15E-03 3. t 6E 04 t.376-04 3.55E-03 4 69E-03 1.27E-03 3. 98E 04 3.07E-03 2.83E-03 2 91E-03 5.97E-03 5.01E 04 1.8SE-03 3.95E-03 5 90E-03 1.39E-03 6. 31E 04 2.06E-03 1.89E-r03 3 02E-03 1.096-0 3 7 . 94E 04 2.39E-03 5.17E-03 1 54E-03 3.46E-03 1 .OOE 05 2.52E-03 5.33E-03 5 33E-03 3.936-03 1 . 26E 05 4.04E-03 3. 59E-03 3 97E-03 3.056-03 1 . S8E 05 4.17E-03 3 . 07E-03 4 06E-03 5•00E-03 2. OOE 05 3•OOE—03 6.59E-03 4 88E-03 4.04E-03 2. 51E 05 3.24E-03 5.71E-03 5 12E-03 4.84E-03 3.16E 05 3.63E-03 6.1 0E-0 3 5 1 IE-03 5.39E-03 3.98E 05 S.43E-03 4.48E-03 4 32E-03 8.226-03 5. OlE 05 4.54E-03 7.34E-03 7 52E-03 5.956—03 6.31E 05 3.47E-03 5.99E-03 6 34E-03 1.176-02 7. 94E 05 7.46E-03 9.33E-03 6 89E-03 1.446-02 1 .OOE 06 1.37E-02 1.01E-02 1 07E-02 7.516-03 1 .26E 06 7.11E—03 1.07E-02 1 02E-02 1.34E-02 1.S8E 06 6.09E-0 3 1.59E-02 1 49E-C2 1.27E-02 2. OOE 06 4.73E-03 1.52E-02 1 66E-02 9.31E—03 2.51E 06 4.29E-03 9. 82E-03 1 48E-02 1.64E-0 2 3.1 6E 06 8.74E-03 1.20E-02 1 BSE-02 1.59E—02 3.98E 06 7.29E-03 8.88E-03 1 24E-02 1.43E-02 5. OlE 06 6.98E-03 2.61E-02 1 60E-02 1.71E—02 6.31E 06 1.06E-02 1.68E-02 1 66E-02 1.636-02 7.94E 06 7* 57E-03 1.06E-02 1 0SE-02 1.426-02 1 .OOE 07 e.70E-03 8.59E-03 1 34E-02 1.75E-02 1 . 2 6E 07 5.95E-02 7.17E-02 ' 7 28E-02 6.43E-02 1 . 58E 07 2.72E-03 4.7SE-03 5 07E-03 2.30E-03 2 .OOE 07 O.OOE-Ol O.OOE-Ol 0 00E-01 O.OOE-Ol

Data from: Pdlfalvi and Koblinger (1976) and Pdlfalvi (1976) <-1

d 10 20 40 \ 5

Rh 0.574 0.592 0.586 0.571 In 0.124 0.137 0.137 0.132 S 0.147 0.141 0.136 0.131 P 0*104 0.0919 0.0904 0.0835 Np 1.15 1.15 1.14 1.09 Th 0.111 0.107 0.107 0.101 U 0.382 0.375 0.376 0.351

K 2.77 2.77 2.71 2.60 D 3.48 3.45 3.38 3.22 DTE. 26.1 26.6 25.9 25.1 0.291 0.275 0.278 0.265 9.2.

14.5 MeV NEUTRONS REFLECTED FROM H20 SLAB GEOMETRY (COSINE INCIDENCE)

$ (U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EVI 0=5 0=10 0=20 D=40 TH 0.006-01 O.OOE-Ol 0.006-01 0.006-01 1 .886 -01 2.506' -01 O.OOE-Ol O.OOE-Ol 0.006-01 0.006-01 5.006-01 O.OOE-Ol 0.006-01 • 0.006-01 0.006-01 t . OOE 00 4.55E-04 6.79E-04 1.076-03 7.80E-04 2.1 SE 00 2.076-04 7.516-04 1.846-03 1.13E-03 4.656 00 8.806-04 1.426-03 1.10E-03 1.93E-03 J .OOE 01 8.096-04 9.046-04 1.496-03 1.07E-03 2.15E 01 5.316-04 2.136-03 2.036-03 1.496-03 4.656 01 3.846-04 1.216-03 1.116-03 1.536-03 1 .OOE 02 9.256-04 1.116-03 1.426-03 2.616-03 2. J SE 02 1.176-03 1.226-03 1.096-03 1.296-03 4.656 02 4.066-04 1.306-03 1.936-03 1.616-03 1 .OOE 03 6.356-04 1 .166-03 1.95E-03 3.336-03 2.15E 03 1.396-03 7.306-04 1.106-03 1.726-03 «.65E 03 1.806-03 1.276-03 1.666-03 2.0S6-03 1 . OOE 04 3.686-04 1.146-03 1.596-03 2.176-03 1 . 26E 04 8.526-04 8.736-04 2.726-03 1.22E-03 1 .58E 04 8. OOE—04 6.286-04 1.69E-03 1.29E-03 2. OOE 04 5.686-04 1.806-03 2.216-03 1.186-03 2.S1E 04 1 .106-03 1.146-03 2.636-03 7.716-04 3.16E 04 S.996-04 1.116-03 3.916-03 1.576-03 3.986 04 1.556-03 1.59E-03 2.246-03 2.856-03 S.OIE 04 4.006-04 3.45E-04 2.886-03 3.366-03 6. 316 04 1.176-03 4.06E-03 2.936-03 2.266-03 7.946 04 1 .576-03 1 .546-03 5.156-03 S.01E-03 1 .006 05 2.616-03 3.90E-03 5.106-03 2.04E-03 1.266 05 1.366-03 3.026-03 3.516-03 3.036-03 1 .586 05 1.336-03 4.166-03 4.29E-03 7.156-03 2. OOE 05 2.276-03 5.266-03 4.82E-03 4.876-03 2.516 05 4.726-03 5.136-03 S.276-03 4.826-03 3.166 05 3•S46-03 7.056-03 6.716-03 7.036-03 3.986 OS 4.686-03 2.636-03 9.556-03 1.376-02 5.016 05 5.286-03 5.066-03 7.116-03 8.056-03 6.316 05 7.67E-03 1.50E-02 1.026-02 1.33E-02 7. 946 05 8.58E—03 1. 07E-02 1.016-02 1.406-02 1 .006 06 1.696-02 5.99E-03 1.326-02 1 .236-02 1 .2 66 06 1.526-02 9.93E-03 1.916-02 1.19E-02 1 . 586 06 1. 016-02 2.95E-02 1.466-02 3.406-02 2.006 06 1.996-02 I.S5E-02 1.996-02 1.53E-02 2.516 06 1.566-02 2.356-02 2.916-02 3.216-02 3. 166 06 2.476-02 2.996-02 2.736-02 3.216-02 3 .986 06 2.226-02 2.526-02 3.206-02 3.416-02 S. OlE 06 2.086-02 4.986-02 3.876-02 4.036-02 6 .316 06 2.946-02 4.856-02 6.626-02 3.426-02 7.94E 06 4.516-02 5.226-02 4.526-02 3.156-02 1 . OOE 07 4.13E-02 3.986-02 4.336-02 4.516-02 1 .266 07 6.02E-02 6.666-02 6.616-02 6.946-02 1 . 586 07 1.17E-01 1.906-01 1.96E-01 2.02E-01 2. OOE 07 O.OOE-Ol 0.006-01 0.006-01 O.OOE-Ol

Data from: Pdlfalvi and Koblinger (1976} and Palfalvi (1976}

184 I 1 ill I I I. I I I til til I I TH 10 10* 101 10 10 10 ENERGY(EV)

d 5 10 20 40

Rh 0.781 0.743 0.713 0.667 In 0.184 0.181 0.173 0.161 S 0.198 0.197 0.186 0.173 P 0.107 0.0997 0.0945 0.0901 Np 1.62 1.58 1.50 1.48 Th 1.84 0.184 0.172 0.166 U 0.610 0.608 0.574 0.557

1 3.90 3.89 3.71 3.61 D 4.97 4.96 4.73 4.60 DTE. 37.0 36.9 35.5 34.9

DY 0.319 0.328 0.323 0.331

185; 9.3.

14.5 MeV NEUTRONS REFLECTED FROM POLYETHYLENE (CH2) SLAB GEOMETRY (PERPENDICULAR INCIDENCE)

$(U) (1 NEUTRON FROM A PLANAR SOURCE)

ENERGY(EV1 0=5 D= 1 0 0=20 D=40 TH 0 • OOE-01 O.OOE-Ol O.OOE-Ol O.OOE-Ol 1 . 88E -01 2.50E-01 0.00E-01 O.OOE-Ol 0.00E-01 O.OOE-Ol! 5.OOE• -01 O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol l.OOE 00 8.33E-04 1.62E-0 3 1.36E-03 1.41E-03 2.15E 00 9.40E-04 1.72E-03 6.59E-04 1.3SE-03 4.65E 00 8.52E-04 1.27E-03 1•37E—03 1.S9E-03 l.OOE 01 2.30E-03 1.36E-03 2.15E-03 1.43E-03 2.15E 01 8.80E-04 1.43E-03 1 .82E-C3 1.44E-03 4.65E 01 6.12E-04 1.69E-0 3 1.42E-03 2.01E-03 1 .OOE 02 1.36E-03 1.95E-03 2.39E-03 1 .18E-03 2.15E 02 1.64E-03 1.70E-03 1.60E-03 1.79E-03 4.65E 02 1.44E-03 1. 84E-03 2.14E-03 2.08E-03 1 .OOE 03 1.64E-03 2.11E-03 4.55E-03 2.41E-03 2.1 5E 03 1.82E-03 4.02E-03 2. 92E-C3 2.02E-03 4.65E 03 1.46E-03 1.62E-03 1.88E-03 1.83E-03 1 . OOE 04 2.93E-03 1.39E-03 2.03E-03 2.31E-03 1 . 26E 04 2.68E-03 1.98E-03 3.11E-03 2.74E-03 1 .S8E 04 2.64E-03 1 .57E-03 2.06E-03 7.10E-04 2. OOE 04 2.64E-03 2.13E-03 2.24E-03 2.17E-03 2 . 5 IE 04 3.39E-03 3.35E-03 3.05E-03 2.28E-03 3. 1 6E 04 3 a 14E-03 3.62E-03 3.30E-03 3.21E-03 3.98E 04 2.13E-0 3 3. 08E-03 3.73E-03 2.58E-03 5.01E 04 2.56E-03 2.63E-03 2.39E-03 4.75E-03 6.31E 04 1.70E-03 1.71E-03 3.26E-03 2.14E-03 7.94E 04 2.S6E-03 3.S4E-03 2.37E-03 1.90E-03 1 . OOE 05 2.85E-03 1.85E-03 5.33E-03 3.56E-03 1 .26E 05 2.53E-03 2.67E-03 4.02E-03 5.69E-03 1 . 58E 05 3.04E-03 3.87E-03 3.23E-C3 6.58E-03 2. OOE 05 3.56E-03 4.58E-03 7.15E-03 5.04E-03 2. 51E 05 3.35E-03 3.09E-02 5.36E-03 7.19E-03 3.16E 05 3.4IE-0 3 5.67E-03 5.75E-03 5.48E-03 3.98E 05 4.OOE—03 1.01E-02 6.62E-03 7.35E-03 5 a 0 IE 05 5.11E-03 7.06E-0 3 8.13E-03 5.69E-03 6 a 31E 05 6.81E-03 8.05E-03 1.10E-02 6.64E-03 7. 94E 05 7. 44E-03 8.S0E-03 1.42E-02 6.86E-03 1 . OOE 06 4.51E-03 9.47E-03 1.18E-02 9.20E-03 1 . 2GE 06 6.68E-03 5.66E-03 1.48E-02 1.22E-02 1 . 58E 06 8. 36E-03 7.1 2E-03 1.29E-02 1.27E—02 2 a OOE 06 8.81E-03 1 .31E-02 1.31E-02 1.10E-02 2. S1E 06 7.67E-03 9.84E-03 1.19E-02 1.82E-02 3.1 6E 06 1.23E-02 1.OOE—02 1.79E-02 2.09E-02 3 a 98E 06 2.55E-03 1.11E-02 8.71E-03 1.29E-02 5. 0IE 06 8.03E-03 1.23E-02 1.02E-02 1.10E-02 6.31E 06 5.47E-03 1.14E-02 1.35E-02 1 . 15E-02 7 • 94E 06 4.38E-03 1 .08E-02 1 .52E-02 1.38E-02 1 .OOE 07 5.97E-03 7.73E-03 4.38E-03 4.76E-03 1 a 26E 07 4.65E-02 5.53E-02 4.21E-02 5.41E-02 1 . 58E 07 1.15E-03 2.19E-03 1 .61E-03 8.05E-04 2. OOE 07 O.OOE-Ol O.OOE-Ol O.OOE-Ol O.OOE-Ol

Data from: Klfalvi and Koblinter (1976) and Pdlfahi (19761

186 -1

d 5 10 20 40

Rh 0.488 0.490 0.501 0.550 In 0.110 0.110 0.113 0.129 S 0.114 0.112 0.0977 0.117 P 0.0816 0.0742 0.0615 0.0760 Np 0.996 0.949 0.964 1.05 Th 0.0899 0.0871 0.0798 0.0937 U 0.318 0.304 0.279 0.330

K 2.36 2.36 2.26 2.49 2.93 2.89 2.76 ,3.07 DTE. 22.8 23.1 23.2 24.5 Dr 0.282 0.272 0.254 <" 0.263 9.4.

14.5 MeV NEUTRONS REFLECTED FROM POLYETHYLENE (CH2) SLAB GEOMETRY (COSINE INCIDENCE)

$(U) (1 NEUTRON FROM A PLANAR SOURCE)

1.88E-01 2.506-01 0.006-01 0.006-01 0 006-01 0.006-01 5. OOE -01 0.006-01 0.006-01 0 006-01 0.006-01 1 . OOE 00 5.676-04 1.356-03 7 086-04 1.586-03 2.15E 00 1.076-03 1.026-03 7 576-04 8.636-04 4.656 00 1.326-03 1.276-05 9 956-04 1.49E-03 1 .OOE 01 9.896-04 1.446-03 1 226-03 2.156-03 2.1SE 01 1.69E-03 1 .14E-03 1 476-03 9.886-04 4.656 01 1.066-03 1.506-03 1 386-03 I.53E-03 1 .OOE 02 9.80E-04 1.496-03 2 166-03 1.506-03 2.1SE 02 8.676-04 1 .856-03 1 296-03 1.61E-03 4.656 02 7.536-04 1.616-03 1 366-03 1.446-03 I .OOE 03 1.256-03 1.OS6-03 2 076-03 1.546-03 2. 156 03 1.076-03 1.316-03 2 22E-03 1.236-03 4.65E 03 9.556-04 2.186-03 1 636-03 1.646-03 1 . OOE 04 1.946-03 1.78E-03 1 256-03 1.756-03 1.26E 04 1.136-03 2.626-03 1 306-03 1.206-03 1 . 58E 04 1.24E—0 3 1.486-03 2 006-03 2.646-03 2.006 04 1.116-03 1.856-03 1 626-03 1.826-03 2.516 04 2.276-03 1.846-03 2 09E-03 2.47E-03 3.166 04 1.136-03 2.266-03 1 946-03 1.256-03 3. 986 04 1.816-03 2.026-03 2 246-03 2.576-03 5.016 04 1.37E-03 2.456-03 1 806-03 3.506-03 6.31E 04 2.65E-03 3.776-03 2 97E-03 3.356-03 7.94E 04 1.776-03 3.596-03 3 446-03 3.826-03 1 . 006 05 2.37E-03 ' 2.946-03 2 456-03 4.18E-03 1.266 05 2.866-03 4.266-03 4 576-03 4.066-03 1 .586 05 3.33E-03 5.836-03 3 716-03 4.446-03 2. OOE 05 3.54E-03 6.176-03 4 676-03 7.436-03 2. 516 05 3.63E-03 3.946-03 4 546-03 1.026-02 3.166 05 4.85E-03 4.376-03 8 586-03 7.596-03 3.98E OS 5.696-03 9.726-03 6 806-03 6.186-03 5.OlE 05 6.866-03 e.306-03 1 946-02 8.556-03 6.316 05 6.37E-03 1 .14E-02 9 216-03 1 .10E-02 7.94E 05 1.18E-02 1.036-02 1 526-02 1.076-02 1 .OOE 06 1 .16E-02 1 .296-02 1 216-02 1.586-02 1 . 26E 06 9.836-03 1.44E-02 1 746-02 1.74E-02 1 . 58E 06 1.376-02 1.256-02 1 776-02 1.646-02 2.00E 06 1.85E-02 2.116-02 1 986-02 1.866-02 2.51E 06 1.976-02 2.936-02 2 676-02 2.466-02 3.16E 06 2.82E-02 2.626-02 2 476-02 2.776-02 3 . 986 06 2.32E-02 3.29E-02 3 346-02 3.186-02 5.OlE 06 3.116-02 3.456-02 3 426-02 4.306-02 6.316 06 3.85E-02 4.556-02 3 786-02 5.606-02 7. 946 06 3.23E—02 5.066-02 4 286-02 4.72E-02 1 . OOE 07 4.50E-02 5.486-02 4 046-02 5.91E-02 1 .266 07 7.25E-02 6.28E-02 8 116-02 9.01E-02 1 .586 07 1.906-01 1.856-01 2 226-01 2.31E-01 2.006 07 0.006-01 0.006-01 0 006-01 0.OOE-Ol

Dorn from: Palfalviand Kobtinger (1976) and Palfalvi (1976)

188 5 10 20 40

Rh 0.718 0.720 0.679 0.715 In 0.172 0.174 0.161 0.170 S 0.198 0.188 0.186 0.197 P 0.106 0.0962 0.0981 0.104 Np 1.60 1.52 1.54 1.56 Th 0.188 0.177 0.179 0.183 U 0.628 0.587 0.594 0.608

K 3.93 3.73 3.78 3.85 D 5.04 4.76 4.83 4.93 D.E. 37.1 35.4 36.2 36.4 5r 0.349 0.324 0.345 0.341

189;

REFERENCES

AUXIER, J.A., 1965, Health Phys. 11 89.

AUXIER, J.A., SNYDER, W.S., JONES, T.D., 1968, in Radiation Dosimetry Vol.1, 2nd Edn (ATTIX, F.H., ROESCH, W.C., Eds), Academic Press, New York, Chapter 6. BLOKHIN, G.E., BLOKHINTSEV, D.I., BLYUMKINA, Yu.A., BONDARENKO, I.I., DERYAGIN, B.N., ZAIMOVSKII, A.S., ZINOV'EV, V.P., KAZACHKOVSKIJ, O.D., KHEN BON, K., KRASNOYAROV, N.V., LEIPUNSKIJ, A.I., MALYKH, V.A., NAZAROV, P.M., NIKOLAEV, S.K., STAVISKIJ, V.Ya., UKRAINTSEV, F.I., FRANK, I.M., SHAPIRO, F.L., YAZVITSKIJ, Yu.S., 1961, At. Ehnerg. 10 437.

BONDARENKO, I.I., LIFOROV, V.G., MOROZOV, V.N., NIKOLAEV, M.N., PARFENOV.V.A., SEMENOV, V.A., 1965, At. Ehnerg. 18 593.

BR1CKA, M., DOLIAS, Mylene, LAMBERIEUX, J., CAIZERGUES, J., 1973, "La R6ponse des detecteurs sous moderateur spherique aux neutrons monocinetique", Neutron Monitoring for Radiation Protection Purposes, 2, IAEA, Vienna, 279.

CASHWELL, E.D., EVERETT, C.J., 1959, The Monte Carlo Method, Pergamon, New York, 132.

COVEYOU, R.R., SULLIVAN, J.G., CARTER, H.P., IRVING, D.C., FREESTONE, Jr., R.M., KAM, F.B.K., 1965, 05R, A General-Purpose Monte Carlo Neutron Transport Code, Oak Ridge - Nat. Lab. Rep. ORNL-3622.

CRANBERG, L., FRYE, G., NERESON, N., ROSEN, L., 1956, Phys. Rev. 103, 662. CROSS, W.G., ING, H., 1973, in Neutron Monitoring for Radiation Protection Purposes, 1, IAEA, Vienna, 73.

CROSS, W.G., ING, H., 1977, "Spectra and dosimetry of neutrons interacting with concrete shielding" presented at the 4th Int. Congress of the International Radiation Protection Association, Paris, April 24-30, to be published. DELAFIELD, H.J., BOOT, S.J., 1973, in Neutron Monitoring for Radiation Protection Purposes, 2, IAEA, Vienna, 375.

DELAFIELD, H.J., MULLENDER, M.L., GIBSON, J.A.B., KEMSHALL, C.D., READING, A.H., HOLT, P.D., BOOT, S.J., 1975, Measurements of the Uniformity of the Radiation Field and the Neutron Leakage Spectrum from the Viper Reactor, presented at 4th IAEA Research Co-ordination Meeting and Intercomparison Experiment on Nuclear Accident Dosimetry 7th—8th April, 1975, Harwell, UK, AERE Report R-8519 (1976). DRAKE, M.K., 1970, Data Formats and Procedures for the ENDF Neutron Cross Section Library, Brookhaven Nat. Lab. Rep. BNL50274(T-601).

ENEA/IAEA, 1970, The Physics Problems of Reactor Shielding, Report of a Joint ENEA/IAEA Specialist Meeting (Organization for Economic Co-operation and Development).

GEER, W.U., KOONTZ, P.G., ORNDOFF, J.D., PAXTON, H.C., 1962, Hazards Evaluation for the Los Alamos Critical Assembly Facility, Los Alamos Scientific Lab. Rep. LAMS-2698 (Rev). HANFORD LABORATORIES, 1962, Health Phys. 9, 757.

HANKINS, D.E., 1967, A Study of Selected Critical-Dosimetry Methods, Los Alamos Scientific Lab. Rep. LA-3910.

191 HANSEN,G.E., ROACH, W.H., 1961, Six and Sixteen Group Cross Sections for Fast and Intermediate Critical Assemblies, Los Alamos Scientific Laboratory Report LAMS-2543. HAYWOOD, F.F., POSTON, J.W., 1972, 2nd IAEA Nuclear Accident Dosimetry Coordination Meeting and Intercomparison Experiment, May 3 — 15, 1971, Oak Ridge Nat. Lab. Rep. ORNL-TM-3770. HURST, G.S., HARTER, J.A., HENSLEY, P.N., MILLS, W.A., SLATER, M., REINDHARDT, P.W., 1956, Rev. Sci. Instrum. 27, 153. HURST, G.S., RITCHIE, R.H., 1959, Radiation Accidents: Dosimeters aspect of neutron and gamma-ray exposures, Oak Ridge Nat. Lab. Rep. ORNL-2748, Part A. HURST, G.S., RITCHIE, R.H., EMERSON, L.C., 1959, Health Physics 2, 121.

IAEA, 1965, Pulse Neutron Research, 1, 2, IAEA, Vienna.

IAEA, 1968a, Fast Reactor Physics, 1,2, IAEA, Vienna.

IAEA, 1968b, Engineering Compendium on Radiation Shielding, 1, Springer-Verlag, New York (1968). IAEA,-1970, Nuclear Accident Dosimetry Systems, IAEA, Vienna, 181.

HAYWOOD, F.F., POSTON, J.W., 1971, 2nd IAEA Nuclear Accident Dosimetry Coordination Meeting and Intercomparison Experiment, May 3-15, 1971, Oak Ridge Nat. Lab. Rep. ORNL-TM-3770, 12.

ICRU, 1969, Neutron Fluence, Neutron Spectra and Kerma, ICRU Rep. 13, ICRU, Washington, section II. ING, H., CROSS, W.G., 1975a, Health Phys. 29, 839.

ING, H., CROSS, W.G., 1975b, Nucl. Sci. Eng. 58, 420.

ING, H., CROSS, W.G., 1976 . Calculated Leakage Spectra of Neutrons Through Cu and Their Application to a Simulated Criticality Accident, presented at 21st Annual Meeting of the Health Physics Society, San Francisco, California. ING, H., CROSS, W.G., 1977, Health Phys. 32, 351.

JARVIS, G.A., LINENBERGER, G.A., ORNDOFF, J.D., PAXTON, H.C., 1960, Nucl. Sci. Eng. 8, 525.

KALOS, M.H., 1963, Nucl. Sci. Eng. 16, 227.

KOBLINGER, L., 1974, 05R5S; A Special Sub-Version of the 05R Code for Single Slab Shields, Report of the Central Research Institute for Physics, Hungarian Academy of Sciences KFKI-74-47.

LISKIEN, H., PAULSEN, A., 1974, Compilation of Threshold Reaction Neutron Cross Sections for Neutron Dosimetry and Other Applications EANDC 95"U". .

MAKRA, S., 1972, IV Int. Symp. fur Personendosimetrie, Potsdam, Staatliche Zentrale fur Strahlenschutz Rep. SZS-153, p. 166.

MAKRA, S., 1973, European Study Group Meeting on Radiological and Environmental Protection, Budapest, Rep. PL-566, IAEA, Vienna, p. 127.

MAKRA, S., VERTES, P., 1973, Kernenergie 16, p.378.

192; MIRIC, I., UBOVIC, Z., 1974, 3rd IAEA Nuclear Accident Intercomparison Experiment, May 14-25, 1973, Boris Kidric Institute of Nuclear Sciences Rep-IBK-1275. MYNATT, F.R., MUCKENTHALER, F.J., STEVENS, P.N., 1969, Development of Two Dimensional Discrete Ordinates Transport Theory for Radiation Shielding, Union Carbide Corporation (Nuclear Division) Rep. CTC-INF-952. PALFALVI, J., MAKRA, S., 1974, Nuclear Accident Dosimetry Measurements at 3rd IAEA Intercomparison, Vinca, Yugoslavia, May 1973, Report of the Central Research Institute for Physics, Hungarian Academy of Sciences KFKI-74-68.

PALFALVI, J., MAKRA, S., 1975, Nuclear Accident Dosimetry Measurements at 4th IAEA Intercomparison, Harwell, UK, April 1975, Report of the Central Research Institute for Physics, Hungarian Academy of Sciences KFKI-75-68.

PALFALVI, J., KOBLINGER, L., 1976, Spectra of Neutrons Transmitted Through and Reflected from Different Homogeneous Slabs, Report of the Central Research Institute for Physics, Hungarian Academy of Sciences, KFKI-76-58.

PALFALVI, J., 1976, Dosimetric Quantities and Spectra of Neutrons Transmitted through and Reflected from Different Homogeneous Slabs, Report of the Central Research Institute for Physics, Hungarian Academy of Sciences KFKI-76-76.

PARKER, K., 1963, The Aldermaston Nuclear Data Library as at May 1963, Atomic Weapons Research Establishment (UK) Rep. AWRE 0-70/63. POSTON, J.W., KNIGHT, J.R., WHITESIDES, G.E., 1974, Health Physics 26, 217.

RBE Committee, 1963, Report of the RBE Committee to the International Commission on Radiological Protection and International Commission on Radiological Units and Measurements, Health Phys. 9, 357.

RITCHIE, R.H., ELDRIDGE, H.B., 1961, in Selected Topics in Radiation Dosimetry, IAEA, Vienna, 657.

SCHAEFFER, N.M., 1973, Reactor Shielding for Nuclear Engineers, USAEC Technical Informa- tion Center, Oak Ridge, Tennessee (1973).

SNYDER, W.S., 1971, in Protection Against , NCRP Report No. 38, p.46. STEWART, L., 1960, Nucl. Sci. Eng. 8, 595. VERTES, P., 1970, Calculations of Multigroup Spectra of Neutrons Transmitted Through Multi-layer Shielding, Report of the Central Research Institute for Physics, Hungarian Academy of Sciences, KFKI-70-37-RPT.

VESELKIN, A.P., EGOROV, Yu.A., EMEL'YONOV, I.Ya., ORLOV, Yu.V., PANKRAT'EV, Yu.P., 1970, Spectry bystrykh nejtronov Atlas, Atomizdat, Moscow.

WEALE, J.W., GOODFELLOW, H., McTAGGART, M.H., WARNKE, E.G., 1968, J. Br. Nucl. Energy Soc. 7, 313.

WOLL, D., 1968, Card Image Format of the Karlsruhe Evaluated Nuclear Data File KEDAK, Report of the Gesellschaft fiir Kernforschung, Karlsruhe KFK-880. ZIJP, W.L., VOORBRAAK, W.P., NOLTHENIUS, H.J., 1973, Compilation of Evaluated Cross Section Data Used in Fast Neutron Metrology, Reactor Centrum Nederland Rep. RCN-196.

193; HOW TO ORDER IAEA PUBLICATIONS

An exclusive sales agent for IAEA publications, to whom all orders and inquiries should be addressed, has been appointed in the following country:

UNITED STATES OF AMERICA UNIPUB, P.O. Box 433, Murray Hill Station, New York, N.Y. 10016

In the following countries IAEA publications may be purchased from the sales agents or booksellers listed or through your major local booksellers. Payment can be made in local currency or with UNESCO coupons.

ARGENTINA Comlsl6n Naciorial de Energfa At6mica, Avenida del Libertador 8250, Buenos Aires AUSTRALIA Hunter Publications, 58 A Gipps Street, Collingwood, Victoria 3066 BELGIUM Service du Courrier de I'UNESCO, 112, Rue du Trone, B-1050 Brussels C.S.S.R. S.N.T.L., SpSlenS 51, CS-113 02 Prague 1 Alfa, Publishers, Hurbanovo namestie 6, CS-893 31 Bratislava FRANCE Office International de Documentation et Librairie, 48, rue Gay-Lussac, F-75240 Paris Cedex 05 HUNGARY Kultura, Bookimport, P.O. Box 149, H-1389 Budapest INDIA Oxford Book and Stationery Co., 17, Park Street, Calcutta, 700016 Oxford Book and Stationery Co., Scindia House, New Delhi-110001 ISRAEL Heiliger and Co., 3, Nathan StraussStr., Jerusalem ITALY Libreria Scientifica, Dott. Luciode Biasio "aeiou". Via Meravigli 16, 1-20123 Milan JAPAN Maruzen Company, Ltd., P.O. Box 5050, 100-31 Tokyo International NETHERLANDS Martinus Nijhoff B.V., Lange Voorhout 9-11, P.O. Box 269, The Hague PAKISTAN Mirza Book Agency, 65, Shahrah Quaid-e-Azam, P.O. Box 729, Lahore-3 POLAND Ars Polona-Ruch, Centrala Handlu Zagranicznego, Krakowskie Przedmiescie 7, Warsaw ROMANIA llexim, P.O. Box 136-137, Bucarest SOUTH AFRICA Van Schaik's Bookstore (Pty) Ltd., P.O. Box 724, Pretoria 0001 Universitas Books (Pty) Ltd., P.O. Box 1557, Pretoria 0001 SPAIN Diaz de Santos, Lagasca 95, Madrid-6 Diaz de Santos, Balmes 417, Barcelona-6 SWEDEN AB C.E. Fritzes Kungl. Hovbokhandel, Fredsgatan 2, P.O. Box 16358 S-103 27 Stockholm UNITED KINGDOM Her Majesty's Stationery Office, P.O. Box 569, London SE1 9NH U.S.S.R. Mezhdunarodnaya Kniga, Smolenskaya-Sennaya 32-34, Moscow G-200 YUGOSLAVIA Jugoslovenska Knjiga, Terazije 27, POB 36, YU-11001 Belgrade

Orders from countries where sales agents have not yet been appointed and requests for information should be addressed directly to:

# iA ^ Division of Publications f Qwp $ International Atomic Energy Agency ^^ Karntner Ring 11, P.O.Box 590, A-1011 Vienna, Austria CM O CO INTERNATIONAL SUBJECT GROUP: II ATOMIC ENERGY AGENCY Nuclear Safety and Environmental Protection/Radiological Safety VIENNA, 1978 PRICE: US$17.00