The Complexity of Gradient Descent: CLS = PPAD ∩ PLS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paradigms of Combinatorial Optimization
W657-Paschos 2.qxp_Layout 1 01/07/2014 14:05 Page 1 MATHEMATICS AND STATISTICS SERIES Vangelis Th. Paschos Vangelis Edited by This updated and revised 2nd edition of the three-volume Combinatorial Optimization series covers a very large set of topics in this area, dealing with fundamental notions and approaches as well as several classical applications of Combinatorial Optimization. Combinatorial Optimization is a multidisciplinary field, lying at the interface of three major scientific domains: applied mathematics, theoretical computer science, and management studies. Its focus is on finding the least-cost solution to a mathematical problem in which each solution is associated with a numerical cost. In many such problems, exhaustive search is not feasible, so the approach taken is to operate within the domain of optimization problems, in which the set of feasible solutions is discrete or can be reduced to discrete, and in which the goal is to find the best solution. Some common problems involving combinatorial optimization are the traveling salesman problem and the Combinatorial Optimization minimum spanning tree problem. Combinatorial Optimization is a subset of optimization that is related to operations research, algorithm theory, and computational complexity theory. It 2 has important applications in several fields, including artificial intelligence, nd mathematics, and software engineering. Edition Revised and Updated This second volume, which addresses the various paradigms and approaches taken in Combinatorial Optimization, is divided into two parts: Paradigms of - Paradigmatic Problems, which discusses several famous combinatorial optimization problems, such as max cut, min coloring, optimal satisfiability TSP, Paradigms of etc., the study of which has largely contributed to the development, the legitimization and the establishment of Combinatorial Optimization as one of the most active current scientific domains. -
Solving Non-Boolean Satisfiability Problems with Stochastic Local Search
Solving Non-Boolean Satisfiability Problems with Stochastic Local Search: A Comparison of Encodings ALAN M. FRISCH †, TIMOTHY J. PEUGNIEZ, ANTHONY J. DOGGETT and PETER W. NIGHTINGALE§ Artificial Intelligence Group, Department of Computer Science, University of York, York YO10 5DD, UK. e-mail: [email protected], [email protected] Abstract. Much excitement has been generated by the success of stochastic local search procedures at finding solutions to large, very hard satisfiability problems. Many of the problems on which these procedures have been effective are non-Boolean in that they are most naturally formulated in terms of variables with domain sizes greater than two. Approaches to solving non-Boolean satisfiability problems fall into two categories. In the direct approach, the problem is tackled by an algorithm for non-Boolean problems. In the transformation approach, the non-Boolean problem is reformulated as an equivalent Boolean problem and then a Boolean solver is used. This paper compares four methods for solving non-Boolean problems: one di- rect and three transformational. The comparison first examines the search spaces confronted by the four methods then tests their ability to solve random formulas, the round-robin sports scheduling problem and the quasigroup completion problem. The experiments show that the relative performance of the methods depends on the domain size of the problem, and that the direct method scales better as domain size increases. Along the route to performing these comparisons we make three other contri- butions. First, we generalise Walksat, a highly-successful stochastic local search procedure for Boolean satisfiability problems, to work on problems with domains of any finite size. -
Survey of the Computational Complexity of Finding a Nash Equilibrium
Survey of the Computational Complexity of Finding a Nash Equilibrium Valerie Ishida 22 April 2009 1 Abstract This survey reviews the complexity classes of interest for describing the problem of finding a Nash Equilibrium, the reductions that led to the conclusion that finding a Nash Equilibrium of a game in the normal form is PPAD-complete, and the reduction from a succinct game with a nice expected utility function to finding a Nash Equilibrium in a normal form game with two players. 2 Introduction 2.1 Motivation For many years it was unknown whether a Nash Equilibrium of a normal form game could be found in polynomial time. The motivation for being able to due so is to find game solutions that people are satisfied with. Consider an entertaining game that some friends are playing. If there is a set of strategies that constitutes and equilibrium each person will probably be satisfied. Likewise if financial games such as auctions could be solved in polynomial time in a way that all of the participates were satisfied that they could not do any better given the situation, then that would be great. There has been much progress made in the last fifty years toward finding the complexity of this problem. It turns out to be a hard problem unless PPAD = FP. This survey reviews the complexity classes of interest for describing the prob- lem of finding a Nash Equilibrium, the reductions that led to the conclusion that finding a Nash Equilibrium of a game in the normal form is PPAD-complete, and the reduction from a succinct game with a nice expected utility function to finding a Nash Equilibrium in a normal form game with two players. -
Random Θ(Log N)-Cnfs Are Hard for Cutting Planes
Random Θ(log n)-CNFs are Hard for Cutting Planes Noah Fleming Denis Pankratov Toniann Pitassi Robert Robere University of Toronto University of Toronto University of Toronto University of Toronto noahfl[email protected] [email protected] [email protected] [email protected] Abstract—The random k-SAT model is the most impor- lower bounds for random k-SAT formulas in a particular tant and well-studied distribution over k-SAT instances. It is proof system show that any complete and efficient algorithm closely connected to statistical physics and is a benchmark for based on the proof system will perform badly on random satisfiability algorithms. We show that when k = Θ(log n), any Cutting Planes refutation for random k-SAT requires k-SAT instances. Furthermore, since the proof complexity exponential size in the interesting regime where the number of lower bounds hold in the unsatisfiable regime, they are clauses guarantees that the formula is unsatisfiable with high directly connected to Feige’s hypothesis. probability. Remarkably, determining whether or not a random SAT Keywords-Proof complexity; random k-SAT; Cutting Planes; instance from the distribution F(m; n; k) is satisfiable is controlled quite precisely by the ratio ∆ = m=n, which is called the clause density. A simple counting argument shows I. INTRODUCTION that F(m; n; k) is unsatisfiable with high probability for The Satisfiability (SAT) problem is perhaps the most ∆ > 2k ln 2. The famous satisfiability threshold conjecture famous problem in theoretical computer science, and sig- asserts that there is a constant ck such that random k-SAT nificant effort has been devoted to understanding randomly formulas of clause density ∆ are almost certainly satisfiable generated SAT instances. -
Lecture: Complexity of Finding a Nash Equilibrium 1 Computational
Algorithmic Game Theory Lecture Date: September 20, 2011 Lecture: Complexity of Finding a Nash Equilibrium Lecturer: Christos Papadimitriou Scribe: Miklos Racz, Yan Yang In this lecture we are going to talk about the complexity of finding a Nash Equilibrium. In particular, the class of problems NP is introduced and several important subclasses are identified. Most importantly, we are going to prove that finding a Nash equilibrium is PPAD-complete (defined in Section 2). For an expository article on the topic, see [4], and for a more detailed account, see [5]. 1 Computational complexity For us the best way to think about computational complexity is that it is about search problems.Thetwo most important classes of search problems are P and NP. 1.1 The complexity class NP NP stands for non-deterministic polynomial. It is a class of problems that are at the core of complexity theory. The classical definition is in terms of yes-no problems; here, we are concerned with the search problem form of the definition. Definition 1 (Complexity class NP). The class of all search problems. A search problem A is a binary predicate A(x, y) that is efficiently (in polynomial time) computable and balanced (the length of x and y do not differ exponentially). Intuitively, x is an instance of the problem and y is a solution. The search problem for A is this: “Given x,findy such that A(x, y), or if no such y exists, say “no”.” The class of all search problems is called NP. Examples of NP problems include the following two. -
On Total Functions, Existence Theorems and Computational Complexity
Theoretical Computer Science 81 (1991) 317-324 Elsevier Note On total functions, existence theorems and computational complexity Nimrod Megiddo IBM Almaden Research Center, 650 Harry Road, Sun Jose, CA 95120-6099, USA, and School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel Christos H. Papadimitriou* Computer Technology Institute, Patras, Greece, and University of California at Sun Diego, CA, USA Communicated by M. Nivat Received October 1989 Abstract Megiddo, N. and C.H. Papadimitriou, On total functions, existence theorems and computational complexity (Note), Theoretical Computer Science 81 (1991) 317-324. wondeterministic multivalued functions with values that are polynomially verifiable and guaran- teed to exist form an interesting complexity class between P and NP. We show that this class, which we call TFNP, contains a host of important problems, whose membership in P is currently not known. These include, besides factoring, local optimization, Brouwer's fixed points, a computa- tional version of Sperner's Lemma, bimatrix equilibria in games, and linear complementarity for P-matrices. 1. The class TFNP Let 2 be an alphabet with two or more symbols, and suppose that R G E*x 2" is a polynomial-time recognizable relation which is polynomially balanced, that is, (x,y) E R implies that lyl sp(lx()for some polynomial p. * Research supported by an ESPRIT Basic Research Project, a grant to the Universities of Patras and Bonn by the Volkswagen Foundation, and an NSF Grant. Research partially performed while the author was visiting the IBM Almaden Research Center. 0304-3975/91/$03.50 @ 1991-Elsevier Science Publishers B.V. -
Arxiv:1910.02319V2 [Cs.CV] 10 Nov 2020
Covariance-free Partial Least Squares: An Incremental Dimensionality Reduction Method Artur Jordao, Maiko Lie, Victor Hugo Cunha de Melo and William Robson Schwartz Smart Sense Laboratory, Computer Science Department Federal University of Minas Gerais, Brazil Email: {arturjordao, maikolie, victorhcmelo, william}@dcc.ufmg.br Abstract latent space [23][8]. Previous works have demonstrated that dimensionality reduction can improve not only com- Dimensionality reduction plays an important role in putational cost but also the effectiveness of the data rep- computer vision problems since it reduces computational resentation [19] [35] [33]. In this context, Partial Least cost and is often capable of yielding more discriminative Squares (PLS) has presented remarkable results when com- data representation. In this context, Partial Least Squares pared to other dimensionality reduction methods [33]. This (PLS) has presented notable results in tasks such as image is mainly due to the criterion through which PLS finds the classification and neural network optimization. However, low dimensional space, which is by capturing the relation- PLS is infeasible on large datasets, such as ImageNet, be- ship between independent and dependent variables. An- cause it requires all the data to be in memory in advance, other interesting aspect of PLS is that it can operate as a fea- which is often impractical due to hardware limitations. Ad- ture selection method, for instance, by employing Variable ditionally, this requirement prevents us from employing PLS Importance in Projection (VIP) [24]. The VIP technique on streaming applications where the data are being contin- employs score matrices yielded by NIPALS (the standard uously generated. Motivated by this, we propose a novel algorithm used for traditional PLS) to compute the impor- incremental PLS, named Covariance-free Incremental Par- tance of each feature based on its contribution to the gener- tial Least Squares (CIPLS), which learns a low-dimensional ation of the latent space. -
A Tour of the Complexity Classes Between P and NP
A Tour of the Complexity Classes Between P and NP John Fearnley University of Liverpool Joint work with Spencer Gordon, Ruta Mehta, Rahul Savani Simple stochastic games T A two player game I Maximizer (box) wants to reach T I Minimizer (triangle) who wants to avoid T I Nature (circle) plays uniformly at random Simple stochastic games 0.5 1 1 0.5 0.5 0 Value of a vertex: I The largest probability of winning that max can ensure I The smallest probability of winning that min can ensure Computational Problem: find the value of each vertex Simple stochastic games 0.5 1 1 0.5 0.5 0 Is the problem I Easy? Does it have a polynomial time algorithm? I Hard? Perhaps no such algorithm exists This is currently unresolved Simple stochastic games 0.5 1 1 0.5 0.5 0 The problem lies in NP \ co-NP I So it is unlikely to be NP-hard But there are a lot of NP-intermediate classes... This talk: whare are these complexity classes? Simple stochastic games Solving a simple-stochastic game lies in NP \ co-NP \ UP \ co-UP \ TFNP \ PPP \ PPA \ PPAD \ PLS \ CLS \ EOPL \ UEOPL Simple stochastic games Solving a simple-stochastic game lies in NP \ co-NP \ UP \ co-UP \ TFNP \ PPP \ PPA \ PPAD \ PLS \ CLS \ EOPL \ UEOPL This talk: whare are these complexity classes? TFNP PPAD PLS CLS Complexity classes between P and NP NP P There are many problems that lie between P and NP I Factoring, graph isomorphism, computing Nash equilibria, local max cut, simple-stochastic games, .. -
Lecture 5: PPAD and Friends 1 Introduction 2 Reductions
CS 354: Unfulfilled Algorithmic Fantasies April 15, 2019 Lecture 5: PPAD and friends Lecturer: Aviad Rubinstein Scribe: Jeffrey Gu 1 Introduction Last week, we saw query complexity and communication complexity, which are nice because you can prove lower bounds but have the drawback that the complexity is bounded by the size of the instance. Starting from this lecture, we'll start covering computational complexity and conditional hardness. 2 Reductions The main tool for proving conditional hardness are reductions. For decision problems, reductions can be thought of as functions between two problems that map yes instances to yes instances and no instances to no instances: To put it succinct, \yes maps to yes" and \no maps to no". As we'll see, this notion of reduction breaks down for problems that have only \yes" instances, such as the problem of finding a Nash Equilibrium. Nash proved that a Nash Equilibrium always exists, so the Nash Equilibrium and the related 휖-Nash Equilibrium only have \yes" instances. Now suppose that we wanted to show that Nash Equilibrium is a hard problem. It doesn't make sense to reduce from a decision problem such as 3-SAT, because a decision problem has \no" instances. Now suppose we tried to reduce from another problem with only \yes" instances, such as the End-of-a-Line problem that we've seen before (and define below), as in the above definition of reduction: 1 For example f may map an instance (S; P ) of End-of-a-Line to an instance f(S; P ) = (A; B) of Nash equilibrium. -
Introduction to SAT History, Algorithms, Practical Considerations
Introduction to SAT History, Algorithms, Practical considerations Daniel Le Berre 1 CNRS - Universit´ed'Artois SAT-SMT summer school Semmering, Austria, July 10-12, 2014 1. Contains material provided by Joao Marques Silva, Armin Biere, Takehide Soh 1/117 Agenda Introduction to SAT A bit of history (DP, DPLL) The CDCL framework (CDCL is not DPLL) Grasp From Grasp to Chaff Chaff Anatomy of a modern CDCL SAT solver Nearby SAT MaxSat Pseudo-Boolean Optimization MUS SAT in practice : working with CNF 2/117 Disclaimer I Not a complete view of the subject I Limited to one branch of SAT research (CDCL solvers) I From an AI background point of view I From a SAT solver designer I For a broader picture of the area, see the handbook edited in 2009 by the community 3/117 Disclaimer : continued I Remember that the best solvers for practical SAT solving in the 90's where based on local search or randomized DPLL I This decade has been the one of Conflict Driven Clause Learning solvers. I The next one may rise a new kind of solvers (parallel architectures) ... 4/117 Agenda Introduction to SAT A bit of history (DP, DPLL) The CDCL framework (CDCL is not DPLL) Grasp From Grasp to Chaff Chaff Anatomy of a modern CDCL SAT solver Nearby SAT MaxSat Pseudo-Boolean Optimization MUS SAT in practice : working with CNF 5/117 Context : SAT receives much attention since a decade Why are we all here today ? I Most companies doing software or hardware verification are now using SAT solvers. -
Lecture Notes: Algorithmic Game Theory
Lecture Notes: Algorithmic Game Theory Palash Dey Indian Institute of Technology, Kharagpur [email protected] Copyright ©2020 Palash Dey. This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/). Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See https://cse.iitkgp.ac.in/~palash/ for the most recent revision. Statutory warning: This is a draft version and may contain errors. If you find any error, please send an email to the author. 2 Notation: B N = f0, 1, 2, ...g : the set of natural numbers B R: the set of real numbers B Z: the set of integers X B For a set X, we denote its power set by 2 . B For an integer `, we denote the set f1, 2, . , `g by [`]. 3 4 Contents I Game Theory9 1 Introduction to Non-cooperative Game Theory 11 1.1 Normal Form Game.......................................... 12 1.2 Big Assumptions of Game Theory.................................. 13 1.2.1 Utility............................................. 13 1.2.2 Rationality (aka Selfishness)................................. 13 1.2.3 Intelligence.......................................... 13 1.2.4 Common Knowledge..................................... 13 1.3 Examples of Normal Form Games.................................. 14 2 Solution Concepts of Non-cooperative Game Theory 17 2.1 Dominant Strategy Equilibrium................................... 17 2.2 Nash Equilibrium........................................... 19 3 Matrix Games 23 3.1 Security: the Maxmin Concept.................................... 23 3.2 Minimax Theorem.......................................... 25 3.3 Application of Matrix Games: Yao’s Lemma............................. 29 3.3.1 View of Randomized Algorithm as Distribution over Deterministic Algorithms..... 29 3.3.2 Yao’s Lemma........................................ -
The Classes PPA-K : Existence from Arguments Modulo K
The Classes PPA-k : Existence from Arguments Modulo k Alexandros Hollender∗ Department of Computer Science, University of Oxford [email protected] Abstract The complexity classes PPA-k, k ≥ 2, have recently emerged as the main candidates for capturing the complexity of important problems in fair division, in particular Alon's Necklace-Splitting problem with k thieves. Indeed, the problem with two thieves has been shown complete for PPA = PPA-2. In this work, we present structural results which provide a solid foundation for the further study of these classes. Namely, we investigate the classes PPA-k in terms of (i) equivalent definitions, (ii) inner structure, (iii) relationship to each other and to other TFNP classes, and (iv) closure under Turing reductions. 1 Introduction The complexity class TFNP is the class of all search problems such that every instance has a least one solution and any solution can be checked in polynomial time. It has attracted a lot of interest, because, in some sense, it lies between P and NP. Moreover, TFNP contains many natural problems for which no polynomial algorithm is known, such as Factoring (given a integer, find a prime factor) or Nash (given a bimatrix game, find a Nash equilibrium). However, no problem in TFNP can be NP-hard, unless NP = co-NP [27]. Furthermore, it is believed that no TFNP-complete problem exists [30, 32]. Thus, the challenge is to find some way to provide evidence that these TFNP problems are indeed hard. Papadimitriou [30] proposed the following idea: define subclasses of TFNP and classify the natural problems of interest with respect to these classes.