ൢ֙ـं

(ᖪ 23: 331-351 (2003ٿέ៉ Formosan Entomol. 23: 331-351 (2003)

໢ޘ၆̂Ϩ೹ኅ ( leuconoe clara (Butler)) (សਂϫĈ೹ ኅࡊ) ൴ֈ̝ᇆᜩ

!ཱི ᜋξৠྺྮ˘߱ 2آ !ᜋ̂ጯ๩ᘹጯրآౘ৵ᘜ*! ઼ϲ !ཱི ጯ௡! ᄂΔξषэྮ 59ۏᐡજۏϲᄂ៉౾઼ !ۿለว஽ ཱི ᜋξৠྺྮ˘߱ 2آ !ᜋ̂ጯ๩ᘹጯրآϲ઼ !ڔ౰! ߉ָҦ! ౘ͛ܫጏ! เچͳ✕⚾! เ७∖! ң

ၡ!!ࢋ

ܜ15ă20ă25ă30 ̈́ 35ƨă80±5% RHă14L:10D ̝Ϡ ٺ૟̂Ϩ೹ኅӉ̶Ҿཉ ! ! ഑ᘼ(Parsonia laevigata)۞ཧͯಏ੸࿶ֈҌҀ̼ࠎјኅĂአߤд̙Т໢ۊቐ࿶ዳĂͽ д 35ƨӉ̙ြ̼Ă15ƨॡြ̼தΪ 63%Ăͽ 20ƨ׶ 30ڍЧᖪഇ൴ֈ۞ត̼Ąඕ˭ޘ ƨॡြ̼த྿ 86% ̈́ 85%ĄҋӉҌјኅ̝х߿தͽ 20ƨॡ۞ 67% ࠎ౵੼Ă30ƨ̝х ੼҃ᒺൺćੵӉഇγĂЧᖪഇ۞൴ֈ̿ޘ߿தࢫҲҌ 18%ĄЧᖪഇ̝൴ֈ͟ᇴ࠰ᐌ໢ ˘มѣۡቢਫ਼ᕩᙯܼĄ̂Ϩ೹ኅ̝൴ֈᓜࠧҲ໢ĂӉࠎ 6.92ƨĂௐ̝ޘதᄃ࿶ֈ໢ి ᛬Ҍௐ̣᛬ρᖪ̶Ҿࠎ 10.17ă10.12ă8.43ă7.07ă6.77ƨĂུഇࠎ 9.66ƨăӉҌј ćௐ˘᛬Ҍௐ̣᛬ρᖪ̶Ҿࠎޘ͟ ኅࠎ 8.46ƨĄЧᖪഇ۞ѣड़᎕໢ĂӉࠎ 108.24 46.49ă42.57ă54.92ă70.86ă135.74 ͟ ޘĂུ ࠎ 236.45 ͟ޘćҋӉҌјኅᅮࢋ 688.18 ᐌޘ෹࿅ 2.95 mm ۞⼈ࣃӈјࠎϐ᛬ρᖪćρᖪᐝഥᆵޘĄρᖪ۞πӮᐝഥᆵޘ͟ ϡ၆ᇴ̝มѣۡቢਫ਼ᕩᙯ૱۞ޘ᛬ഇͽ 1.45Ƃ1.54 ࢺඈͧᆧΐĂρᖪ᛬ഇᄃᐝഥᆵ ᇆᜩЧᖪഇ۞វݭĂޘᆧΐĂ࿶ֈ໢҃ܜᐌ᛬ഇᆧܜ݋ĄЧ᛬ρᖪវڱĂ௑ЪᑛႬܼ ᆧ҃ܜ15ă20ă25ă30ƨ࿶ዳॡĂࢴཧณӮᐌ᛬ഇᆧ ٺͽ 20ƨॡٙ଀۞វݭ౵̂Ą ޘΐĂӮͽௐ̣᛬ρᖪ۞ࢴཧณ౵̂Ăࠎٙѣρᖪഇࢴཧณ۞ 80% ͽ˯ćЧ࿶ዳ໢ ᓁࢴཧณ̶Ҿࠎ 375.30ă457.21ă429.56ă398.98 cm2ĄϤѩ଀ۢĂ20ƨࠎ̝̂˭ Ξ೩ֻିՄֹϡ֭ઇࠎ̂ณ࿶ዳ۞ૄώྤफ़ĄڍĂ˯ࢗඕޘϨ೹ኅྵዋЪ۞࿶ֈ໢

ᙯᔣෟĈ̂Ϩ೹ኅă໢ޘă൴ֈăᐝഥᆵޘăࢴཧณ

ࠉ!!ِ (Danaidae)ĄҾЩࠎโᕇ̂Ϩ೹ኅă̂ࡧ౫೹ ኅĂ̂௎ኅă์ϝኅă׶πኅĂࠎᄂ៉ய೹ኅ Ϩ೹ኅ (Idea leuconoe clara Butler) ࡊ̚វݭ౵̂۞˘჌ (Hamano, 1986)ĂಝჍ̂ ,សਂϫ () Ă೹ኅࡊ ೹ኅࡊ̚۞λ൑ᜦ (Chang and Tsaiٺᛳ

*ኢ͛ᓑᘭˠ e-mail: [email protected] ໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 331 ഑ᘼĂۊࢴפρᖪזঔ ᖪࢴਨĄҭдᄂ៉่៍၅ڻݝ۞ͬזĂ׎̶οቑಛଂ੺ֽΗफ(1984 ĂЯѩώ჌ۏࢴ׎΁჌۞૙͹ങפזᄼăᄂ៉׶͟ώ۞ল஧ཏफ(Ackery ֭Ϗ៍၅ޠгડăහ ᖪĄٿand Vane-Wright, 1984)Ąдᄂ៉۞̶οቑ ρᖪࠎಏࢴّ ,(ᔵ൒ϫ݈̏ѣ Chang and Tsai (1984 ڌಛĂHo and Chang (1998)ᄮࠎ͹ࢋдᄂ៉ ,(Δ Hamano (1986), Lee and Chang (1988ٺΔ֎̈́ݑొޮߋΗफćTsai (1992)ಡጱய ߋΗफ̈́ Tsai (1992), Wang and Lee (1998), HoޮٺΔ֎ᑺঔгડĂݑొ݋஽யڌొ ᜋᑎඈгćLee and Chang (1988)݋ᄲߏക and Chang (1998), Hsu (1999)ඈкҜጯ۰ ঔćHamano ૞छ၆̂Ϩ೹ኅ۞ԛၗ̈́௫ّ೩΍˘ֱ៍၅ڻݑొ̈́Δొڌᄂ៉ݑొăٺि ரρᖪنјኅ҃ྵٺĂҭкઐࢦڍҌޮߋΗफ ᄃೡࢗඕܕܢᄂΔٺ޽΍׎к̶ο(1986) ౙă̋г̈́੼гĂ׎̚ ഇĂ่ѣඊ۰അಡጱ̂Ϩ೹ኅ۞Чഇԛၗ׶Ϡ̰ٺঔᙝĂҭ̙കि۞ ώ჌ٺߋΗफĂ ߿Ϋ(Ou-Yang and Chen, 1999)ĄϤޮ̈́ثঔڌᜋᎩăآᄂΔᎩăٺкய ၅ĂΞ༊౎γିጯିՄ៍ٺٽѩγĂᜋᑎ׶ქफ˵ѣ̶οćChang and Tsai ໂ׍៍ካᆊࣃͷ (ϝ ֹϡĂ߇ώቔؼᜈ Ou-Yang and Chen (1999ܛă۾ă౎ߨă༄̋ܛ݋೩΍̶οд(1984) ጯপّΐͽࡁտĂͽˠ̍࿶ۏăᄂݑăመസăޮߋΗफЧгĂ ಡӘĂ̪ಶ׎ϠڌăᘲغϮă፫ ൴ܜг૲ćፂ Wang ֈ۞͞ёĂ੫၆̂Ϩ೹ኅдЧ჌ؠ໢˭Ϡثቷăᜋᑎඈгડያঔ܅ăڌᄂ ׹ ֈ۞ଐԛĂҤࢍЧᖪഇ۞൴ֈᓜࠧҲ໢׶ѣड़ثand Lee (1998)አߤ൴னдᐸ̋फঔ Ă̈́ଣ੅ޘĂ֭˞ྋ׎Ϡх۞ዋЪ໢ޘγቡ̋शٕฟᘈг ᎕ზ໢ڒಛĂࠤҌঔࢬ˯̈́फ˯ፘ ࿶ֈ̈́̂ޢρᖪࢴཧณĂઇࠎ͟۞˭ޘᗵ៣ᆄΗफᄃፋ ̙Т໢ٺॡѣٙ֍Ăᄂ៉ώफ݋к֍ π߶โሗ߶߹ٙགྷ̝఍̈́Ч࣎ ณᓄതώ჌۞ૄᖂĄ͉ثঔొڌ࣎ ᗓफĄ Ϩ೹ኅјᖪ΍ன؞༼ĂChang and ؅ਟᇄПݲ̂ Tsai (1984)ಡጱ 3Ƃ5 ͡Ă7Ƃ8 ͡Ă10 ͡Ч ၐᙫྛЅႷᎴПݲټѣ΍ன੼पĂLee and Chang (1988)݋޽΍ Ιȃ ᄂ៉Δొјኅ͹ࢋ൴Ϡഇࠎ 4Ƃ10 ͡ĂݑొБ ͽ 20 ੸ᅬّ̈́ 30 ੸ฯّ̂Ϩ೹ኅࠎᖪ măᆵ 4.7 mă੼ 2.6 6.1 ܜ)ވშٽᖎٺϨ೹ኅᇴณྵкĂͷБѐ ໚Ă̂ٺѐࠤࠎ૱֍ĄϤ ॺ჌ρᖪ̰ވĂშٸĂࢳҖቤၙĂ mĂშϫ 16 mesh)̰ᛖځĂវݭྵ̂Ă೹৳ᔿܜΞ֍ഇ ഑ᘼ(Parsonia laevigata)̈́јᖪᄘ໚ۊ၅Ăࠎጩ˚઼छ̳๩౵ࢦࢋ۞៍ካኅ჌ ࢴਨ៍ٺӀ ܅੺ឈ̜(Lantana camara) ăᓄߐۏTsai, 1992)ĂΞᏜໂ׍៍ካᆊࣃĄ ങ)˘̝ Ăᔵ൒ឍ㌣ࡊ (Pentas lanceolata) ă੺Ӏඏ(Asclepiasۏρᖪ۞૙͹ങٺᙯ Impatiens)܅΅߷ᆂܧAsclepiadaceae) ۞ቿ඿ྶ㖴ᘼ(Tylophora curassavica) ă) hispida)дল஧జ੃ᐂࠎώ჌ρᖪࢴਨ(Liao, wallerana)ăϨϜᜋ(Michelia alba)ăܜᒫ͢ Ăҭॲፂ Nishida et al.(1996)ٙ੃ྶ׎ (Stachytarpheta jamaicensis)ăᅕॴ(Citrus(1977 Ă೩ֻјᖪӛᄘăՐઊăϹԍ̈́ۏ഑ᘼ(Parsonia laevigata)Ă҃ sunki)ඈങۊࢴפдল஧่ ࢴඈϡ౉ĂдშפăᅬᖪயӉăρᖪܥAckery and Vane-Wright (1984)ᄮࠎੵ˞ ዌౚᔖ ĂֻࠎЧีྏរ̝ᖪޢ௢΃࿶ዳ 3Ƃ4 ΃̰ވ тቿ඿ྶ㖴ᘼۏ഑ᘼγĂᔘѣ׌჌ឍ㌣ࡊങۊ ׶ͱϩঐ(Cynanchum formosanum)˵ߏρ ໚ĂซҖྏរĄ

ௐαഇסˬ˩˟ᖪௐٿέ៉ 332 វͽ࿪ུ۞ޢᖪ࠰ͽᇴҜёഫᇾ͎ീณćུ̼ ኇ៪ જ͇πಏ੸Ⴭ׎ུࢦĂͽᇴҜёഫᇾ͎ീณུޟىΠȃྣ࡙ᄇӨᙫ෈ҡߝȃี ཉ኎Ϡ৽ͽӀٸĂ֭д๬ቱ஼̰ޘᆵ̈́ޘܜវ ܜ഑ᘼ࠴ॺĂܶۊγॺ჌ވྏរ݈Адშ ӈͽᇴҜഫᇾ͎ീ׎ਂޢјᖪҀ̼ޞࡗ 80 cm ੼Ăӣࡗ 40 ͯ፧ქݓཧͯॡĂᑭ Ҁ̼Ăז ߏϤ݈ਂਂૄҌਂბĂਂܜĂീณਂޘăᆵܜ ߤങঀཧͯ˯ቁ൑ᖪӉăρᖪ̈́ᄝිĂ໤౯ֻ ژĄώྤफ̶़ޘ഑ᘼ ᆵ݋ീณ݈ਂ౤֎Ҍֆ֎̝ᆵۊᅬّ̂Ϩ೹ኅயӉϡĄྏរ༊͇૟׌࠴ Ăѣड़᎕໢(K)̈́൴ֈᓜࠧҲ໢(C)ߏֶ˭Еޢ ٺ૱Ϩ೹ኅயӉĄᅬኅ఼ֻ̰̂ވ࠴ॺວˢშ ёĈ̳ ޢ഑ᘼཧࡦ˯Ăֻྏ˟̈ॡۊٺϨ͇૟Ӊ೸ய ഑ᘼ࠴ॺொ΍ᑭߤĂ૟ӣӉཧͯଳ˭ᛸа n ∑VT − ∑V ∑Tۊ૟ K = ă ၁រވĂཧߠͽജ܅ᄤҝĂΐͪܲ޺ᒅማĂ൒ n ∑V 2 − (∑V ) 2 ๬ቱ஼(஼˾ ∑V 2 ⋅ ∑T − ∑V ∑VTځˢ๪ԛ౅ٸ૟ӣӉཧͯಏͯޢ C = श 8 cmĂ੼ 5.8 cmĂट n ∑V 2 − (∑V ) 2ۡొغश 9.2 cmĂۡ ૜ะ̈͋ͽ߹఼וณࡗ 300 ml)̚Ă஼ᄏͽ੫ ૟៍၅໢ޘ(T)̈́൴ֈిத(V)ඈЧࣃ΃ˢࢍზ ঈĂ஼γ෭˯யӉ͟ഇ̈́በཱི۞̈ᇾចĂ̶۩ Ր଀Ą Ҿொˢ 15ă20ă25ă30 ̈́ 35ƨă80±5% RHă

14L:10D (5:00 ฟ፶Ă19:00 ᙯ፶)Ϡܜቐ̰Ą έȃ҂ᙫ෈Ϟॵဨ໔ ˢ 100 ௕ӉĄՏ͟៍၅ٸቐ̶ҾܜϠޘՏ˘໢ ૟ࣣய˭۞̂Ϩ೹ኅ 500 ௕Ӊ̶ࠎ̣ ̈́੃ᐂĂт๬ቱ஼̰ᒅঈ͉ࢦॡᅮϡ኎Ϡ৽ᑡ ˢ 15ă20ă25ăٸ఍நĂ̶Ҿڱ௡Ăֶ݈ࢗ͞ ޹Ą ޞቐ̰ĂܜϠ۞ޘ30ă35ƨͷ׽ؠЍฉഇ̈́ᒅ ځࢗ๪ԛ౅˯ٺӉြ̼ॡĂӈಏ੸࿶ዳޞ Ăಏ੸࿶ֈĂՏ͟៍၅Ч࣎ᖪഇ۞ϠޢӉြ̼ ˢ֖ૉ̝ٸ๬ቱ஼̚ĂՏ͟୻நटጡ֭д஼̰ ă൴ֈଐԛॡ֭੃ᐂρᖪЧ᛬ഇ۞ࢴཧณĄܜ ޢ˭ࢴĂٙѣֻྏཧͯଳפ഑ᘼཧֻͯρᖪۊ д͞ॾ৽˯Ăͽٸ഑ᘼཧͯۊͯ˘ᔼࢴ݈А૟ ᔿĂࣣြ̼ρᖪͽ̈ܲ܅ཧߠΒᄤӣͪജٺ࠰ ࿖ඊೡᘱγԛͷϡગ˥࣒ગјᄃྍཧͯ࠹Т ˢ̂҃ݓٸГు႙ޢݓ̝ქཧᔼࢴĄௐ˟᛬҃ ๬ቱځˢ๪ԛ౅ٸΐͽበཱིĂ૟ѩཧ֭ͯېԛ ཧͯᔼࢴĂՏֻ͟ᑕ֖ૉ̝ཧͯณĄௐˬ᛬۞ дࣧٸണ঻۞ཧͯޢࢴפ஼̚ᔼࢴĂ࿣͟Г૟ श 11ۡ˾ړ)๬ቱ஼ځ࿶ֈ஼ೱјྵ̙̂౅ޢ А࠹၆ᑕ̝͞ॾ৽ͯ˯Ăͽ࿖ඊೡᘱޢͽગ˥ श 9 cmă੼ 8 cmăटณࡗ 500ۡొغcmă జࢴొ̶̝ཧͯז࣒ગଫണ঻ཧͯొ̶Ăӈ଀ ml)Ă஼ᄏͽ੫ᕕ̈͋Ăֹ۩ঈ߹જĄՏ͟៍ ৽ᇹĂГϡཧࢬ᎕ീؠᆇ(Delta-T Devices ρ̈́ܜă൴ֈଐԛ֭੃ᐂវܜ၅Ч࣎ᖪഇ۞Ϡ Area Measurement System)ు˘ീณ׎ࢬ ᖪᐝഥᆵޘĄ ЧֻྏρᖪՏ̝͟ࢴཧณć֭੃ᐂז᎕Ăӈ଀ ീؠߏͽᇴҜёഫᇾ͎Ăീณ̝ܜρᖪវ ρᖪེϩ۞ॡมĂͽ௢ࢍρᖪЧ᛬ഇ۞ࢴཧ ࣣြ̼̝ௐ˘᛬ρᖪེࣣ̈́ϩ̝Ч᛬ρᖪд ˭ޘณĄГॲፂ Su(1985)۞͞ёĂࢍზ̙Т໢ ീؠߏീ۞ޘćρᖪᐝഥᆵܜၗ˭۞វې૱ϒ Ч᛬ഇ۞ࢴཧณ̶οĄ ณེࣣϩॡེ˭۞ᐝഥٙ଀Ăдௐ˘᛬ρᖪ۞

຋͎۞ܢΞϡྋ࣠ព຋ᙡϫᙡٙ̚ޘᐝഥᆵ ๖!!ݎ ീณĂϺΞϡᇴҜёഫᇾ͎ീณĂ׎ዶЧ᛬ρ

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 333 ߒΙ! Ϛӣྣ࡙ήσҩයፆӨᙫ෈ϞԆࣀ౥ Table 1.! Rate of survival (%) of various development stages of the giant danaine , Idea leuconoe clara, under different temperatures Temp. Egg Larval stage Egg to Pupa Emergence (℃) hatching 1st 2nd 3rd 4th 5th Adult 15 63.0 60.3 97.4 100.0 100.0 100.0 78.4 96.6 28.0 20 86.0 86.1 98.7 98.6 100.0 98.6 98.6 95.7 67.0 25 80.0 92.5 98.7 98.6 91.7 90.9 85.0 100.0 51.0 30 85.0 95.3 98.8 95.0 98.7 65.3 36.7 100.0 18.0 35 0 - - - - - - - -

ޘ׽ؠĂҭ໢ޘϞኇ៪ ԆБणฟĂѩΞਕߏЯᔵ൒ᒅىΙȃྣ࡙ᄇσҩයፆӨᙫ෈ҡߝȃี ۩Ϩ೹ኅ̝х߿த ྵ੼Ă೩੼˞΃ᔁిதĂֹώ჌дֻྏ۞̈̂(˘) Ă̂Ϩ೹ኅЧᖪ มणਂ࿅඀̚ĂЯਂ჻дϏ·̶णฟ̝݈͉ԣڍд̙Тؠ໢˭۞ྏរඕ ĄӉд 35ƨॡ̙ြ̼Ă ઀ᒌٙ࡭Ą˘ܑٺഇ۞х߿தЕ ҃д 15ă20ă25ă30ƨ˭࿶ዳĂӉြ̼த̶ Ҿࠎ 63.0ă86.0ă80.0 ̈́ 85.0%Ąͽ 20 ᄃ 30 (˟)̂Ϩ೹ኅ̝൴ֈ ƨ۞ြ̼த౵੼Ă҃ 15ƨ౵ҲĂ˟۰࠹म д̙Тؠ໢˭Ă̂Ϩ೹ኅЧᖪഇ۞πӮ൴ 23.0%Ąρᖪഇ̝х߿தੵ˞д 15ƨ۞ௐ˘᛬ ֈٙᅮ͟ᇴ̈́൴ֈిதтဦ˘ҌဦαĄд 35 ρᖪࠎ 60.3% ׶ 30ƨॡௐ̣᛬ρᖪࠎ 65.3% ƨॡӉѪ˸̙ြ̼ĄϤဦ˘ΞۢĂӉд 15ă ˯̝ޘĂӈρᖪд 15 20ă25ă30ƨॡĂ׎ြ̼ٙᅮ͟ᇴᐌ໢%86 ٺγĂ׎ዶ۞х߿த࠰੼ ĂπӮ൴ֈ͟ܜƂ30ƨ೼࿆Ξх߿Ăҭௐ˘᛬ρᖪ၆ 15ƨ۞ ̿҃ᒺൺćд 15ƨॡӉഇ౵ ᇴࠎ 14.27±0.38 ͟ć25ă30ƨॡ౵ൺĂπӮ ྵ˧צൾҲĂௐ̣᛬ρᖪ၆ 30ƨ۞ԡ˧צԡ मĄུഇ۞х߿தĂͽ 20ƨ۞ 98.6% ౵੼Ă ࠎ 5.30±0.08 ׶ 5.44±0.07 ͟ć20ƨॡӉഇࠎ ׎Ѩߏ 25ƨ۞ 85.0%ĂГѨࠎ 15ƨ۞ 78.4%Ă 7.50±0.06 ͟Ăࡗߏ 15ƨॡ۞ 1/2 ࢺćӉ൴ֈ 30ƨॡ 36.7% ౵मĂܑϯུ౵ዋᑕ 20ƨ۞ ిதͽ 25 ̈́ 30ƨॡࠎ 0.1887 ̈́ 0.1838 ࠎ౵ ҃ ԣĂ׎Ѩࠎ 20ƨ۞ 0.1333Ă౵ၙࠎ 15ƨ۞ ˬܕព൒͉੼ĂٙͽѣޘĂҭ 30ƨ۞໢ޘ໢ х߿ĄҭΪࢋਕഭ࿅ུഇĂҀ 0.0701Ąڱ൑ུ۞˟̶̝ Ҁ̼த࠰ ρᖪഇ۞൴ֈ͟ᇴ̈́൴ֈిதтဦ˟Ăд۞˭ޘ੼ĂЧ໢ޝࠎјᖪ۞፟தಶ̼ ෹࿅ 95%Ă25 ̈́ 30ƨॡٙѣུ̼࣎វ࠰Ҁ̼Ą 15ă20ă25ă30ƨॡ۞πӮ൴ֈ͟ᇴ̶Ҿࠎ ϤӉ൴ֈҌјኅ̝х߿தᄃུഇଐԛᙷҬĂͽ 60.11±1.54 ă 26.27±0.26 ă 18.93±0.26 ă 20ƨॡ౵੼ࠎ 67.0%Ă׎Ѩࠎ 25ƨॡ 51.0%Ă 16.67±0.32 ͟Ăӈ 15ƨ൴ֈ౵ၙĂρᖪഇࠎ ତ඾ߏ 15ƨॡ 28.0%Ăд 30ƨॡх߿தࢫҲ 30ƨ۞ 3.6 ࢺć൴ֈిத̪ͽ 30ƨ̝ 0.0600 Ҍ 18.0%Ăӈώ჌ଂӉ࿶ֈҌјኅ۞х߿த࠹ ౵ԣĂ׎Ѩࠎ 25ƨ̝ 0.0528ĂГѨࠎ 20ƨ̝ ༊ҲĂд 25ƨΪѣ˘Η۞ӉਕҀ̼ࠎјኅĂ 0.0381Ă౵ၙࠎ 15ƨ̝ 0.0166Ą 20ƨॡ่ˬ̶̝˟۞Ӊਕ࿶ዳࠎјኅĂд 15 ུഇ۞൴ֈ͟ᇴ̈́൴ֈిதтဦˬĂུ൴ ઇࠎ̂ณ࿶ֈώ჌۞໢ ֈഇϺͽ 30ƨ౵ԣΪᅮ 11.50±0.12 ͟Ă׎Ѩآពࠎ̙ዋځ30ƨ ̈́ Ă֭ͷ 30ƨॡ۞Ҁ̼јኅ̝ਂ჻૱ሸᒺϏ ࠎ 25ƨ۞ 15.88±0.09 ͟Ă20ƨ۞ 22.57±0.22ޘ

ௐαഇסˬ˩˟ᖪௐٿέ៉ 334 ഀ౥ȄىРኵЅีىყΙ! Ϛӣྣ࡙ήσҩයፆ֊෈Ϟี Fig. 1.! Duration in days and development rate of the egg stage of the giant danaine butterfly, Idea leuconoe clara, under different temperatures.

ഀ౥ȄىРኵЅีىყΠ! Ϛӣྣ࡙ήσҩයፆ҂ᙫ෈Ϟี Fig. 2.! Duration in days and development rate of the larval stage of the giant danaine butterfly, Idea leuconoe clara, under different temperatures.

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 335 ഀ౥ȄىРኵЅีىყέ! Ϛӣྣ࡙ήσҩයፆဵ෈Ϟี Fig. 3.! Duration in days and development rate of the pupa stage of the giant danaine butterfly, Idea leuconoe clara, under different temperatures.

͟Ă҃ 15ƨུഇ౵ܜᅮࢋ 43.59±0.84 ͟ć൴ Ч᛬ρᖪഇ̝πӮ൴ֈഇтဦ̣Ąௐ˘᛬ ֈిதϺͽ 30ƨ̝ 0.0870 ౵ԣĂ25ă20ă15 ρᖪд 15ă20ă25ă30ƨॡ۞πӮ൴ֈ͟ᇴ ƨֶԔࠎ 0.0630ă0.0443ă0.0229Ăӈ 30ƨ ̶Ҿࠎ 11.29±0.57ă4.23±0.06ă2.81±0.07ă ॡ̝൴ֈిதࡗࠎ 15ƨॡ۞ 4 ࢺĄ 2.63±0.06 ͟Ă൴ֈిதֶԔࠎ 0.0886ă ဦαܑϯϤӉҌјኅҀ̼ٙᅮ͟ᇴ̈́൴ 0.2364ă0.3559ă0.3802ćௐ˟᛬ρᖪд 15ă ᅮπӮ 20 ă 25 ă 30 ƨॡ۞πӮ൴ֈ͟ᇴ̶ҾࠎܜֈిதĂ൴ֈ͟ᇴ̪ͽ 15 ƨ౵ 115.18±1.46 ͟Ăᐌ໢ޘᆧΐ҃ᒺൺĂҌ 20ă 10.97±0.32ă3.60±0.10ă2.74±0.11ă2.33±0.05 25ƨॡЧࠎ 56.34±0.21 ̈́ 39.67±0.20 ͟Ăд ͟Ă൴ֈిதֶԔࠎ 0.09121 ă 0.2778 ă 30ƨॡΪᅮ 33.33±0.21 ͟ć൴ֈిத̪ͽ 30 0.3650ă0.4292ćௐˬ᛬ρᖪд 15ă20ă25ă ƨॡ 0.0300 ౵ԣĂ׎Ѩࠎ 25ƨॡ 0.0252ĂГ 30ƨॡ۞πӮ൴ֈ͟ᇴ̶Ҿࠎ 9.49±0.26ă Ѩࠎ 20ƨॡ 0.0177Ă౵ၙࠎ 15ƨॡ 0.0087Ą 4.31±0.07ă3.10±0.10ă2.74±0.06 ͟Ă൴ֈ Ă ిதֶԔࠎ 0.1054ă0.2320ă0.3226ă0.3650ć˭ޘពϯĂ̙Т໢ڍϤဦ˘Ҍဦα̝ඕ ੼ ௐα᛬ρᖪд 15ă20ă25ă30ƨॡ۞πӮ൴̿ޘϨ೹ኅ۞Чᖪഇ̝൴ֈ͟ᇴ࠰ᐌ໢̂ ҃ᒺഴĂҭ൴ֈిத̂࡭˯Ӯᐌ໢ޘ̿੼҃ᆧ ֈ͟ᇴ̶Ҿࠎ 10.14±0.29 ă 4.68±0.08 ă ΐĂͷд 15ƨ࿶ዳ̝πӮρᖪഇăུഇ̈́Ӊ 4.00±0.13ă3.24±0.07 ͟Ă൴ֈిதֶԔࠎ 0.0986ă0.2137ă0.2500ă0.3086ćௐ̣᛬ρ ܜҌјኅ൴ֈഇĂ࠰ͧд 30ƨٙ࿶ዳ۞ॡม ࢺͽ˯Ą ᖪд 15ă20ă25ă30ƨॡ۞πӮ൴ֈ͟ᇴ̶ˬ

ௐαഇסˬ˩˟ᖪௐٿέ៉ 336 ഀ౥ȄىРኵЅีىყѲ! Ϛӣྣ࡙ήσҩයፆ֊Սԙᙫ෈Ϟี Fig. 4.! Duration in days and development rate of the egg to adult stages of the giant danaine butterfly, Idea leuconoe clara, under different temperatures.

੼ĂͷΞᖣӉҌјኅ۞ѣड़᎕໢ֽଯྵّצҾࠎ 17.86±0.54ă9.48±0.18ă6.72±0.17ă ԡ ࿶ዳٕ౎γ൴Ϡ˘ѐ̚۞̰ވĂ൴ֈిதֶԔࠎ 0.0560ă ീ̂Ϩ೹ኅд͟ 6.53±0.13 ࠎޘᜋгડд 2002 ѐ۞͡πӮ໢آ0.1055ă0.1488ă0.1531ĄϤѩΞۢĂд 30 ΃ᇴĄͽ ቷડྺຽԼ܅ƨٙ࿶ዳ̝πӮ൴ֈഇӮྵ 25ă20 ̈́ 15ƨ ּĂॲፂώ჌̝൴ֈᓜࠧҲ໢̈́ ੃ᐂࢍზ΍ޘൺćЧ᛬ρᖪഇ۞൴ֈిத࠰ͽ 15ƨॡ౵ҲĂ ։ಞᜋว̶ಞٙ೩ֻ۞Бѐ໢ 30ƨॡ౵੼ĄЧ᛬ഇρᖪ̝൴ֈ͟ᇴ࠰ᐌ໢ޘ ̝ѣड़᎕໢ࠎ 5331 ͟ޘĞܢᐂ˘ğĂ߇̂Ϩ೹ ᜋгડ˘ѐΞ൴Ϡ 7Ƃ8 ΃Ąآ੼҃ᆧԣĄ ኅд̿ޘ੼҃ᒺൺĂ൴ֈిத݋ᐌ໢̿ ഇ̝൴ܜЧᖪഇ̝πӮ൴ֈ ֭ͷϤܑ˟ΞۢĂ̂Ϩ೹ኅЧϠޘॲፂͽ˯д̙Т໢ Ӕۡቢਫ਼ޘᇴ̝ྤफ़ĂΞֶ̳ёࢍზ΍̂Ϩ೹ኅЧᖪഇ ֈిதᄃ׎൴ֈዋ໢ቑಛ̰̝໢͟ ពϯӉă ᕩĂЧਫ਼ᕩ͞඀ё۞࠹ᙯܼᇴĞrğдӉഇॡڍ൴ֈᓜࠧҲ໢̈́ѣड़᎕໢ĄϤඕ̝ ρᖪഇௐ˘᛬Ҍௐ̣᛬ăུഇ̈́ӉҌјኅඈЧ ൑ព඾मளĂӈӉഇ̝ਫ਼ᕩᙯܼ̙јϲĂ׎ዶ ഇ̝൴ֈᓜࠧҲ໢̶Ҿࠎ 6.92 ă 10.17 ă ᖪഇ࠰ѣព඾ّमளхдĂͷུഇ̈́ӉҌјᖪ 10.12ă8.43ă7.07ă6.77ă9.66 ̈́ 8.46ƨć ഇՀхдໂព඾̝࠹ᙯᙯܼĂӈ̂Ϩ೹ኅੵӉ ൴ֈѣड़᎕໢Чࠎ 108.24ă46.49ă42.57ă ഇγ۞Ч൴ֈഇ̝൴ֈిதд 15 Ҍ 30ƨ۞ቑ 54.92ă70.86ă135.74ă236.45 ̈́ 688.18 ͟ ಛ࠰ᐌ໢ޘ̿੼҃ᆧΐĄ ĂΞ൴னௐ˘᛬ҌڍĞܑ˟ğĄϤ˯̝ࢗඕޘ ܜ׶វޘௐ̣᛬ρᖪᐌ඾᛬ഇᆧΐ၆൴ֈᓜࠧҲ໢۞ (ˬ)ρᖪഇ۞ᐝഥᆵ

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 337 ഀ౥ȄىРኵЅีىყϤ! Ϛӣྣ࡙ήσҩයፆӨឭ҂ᙫ෈Ϟี Fig. 5.! Duration in days and development rate of each instar larvae of the giant danaine butterfly, Idea leuconoe clara, at various temperatures.

ௐαഇסˬ˩˟ᖪௐٿέ៉ 338 ᖝࣨճྣᇄԤਝᑖྣىีڏഀ౥(Y)ᇄྣ࡙(X)Ϟᜰ߽ЅىߒΠ! σҩයፆӨᙫ෈ӵ 15 Ս 30ʨ໢ี Table 2.! Relationship between developmental rate and temperature, lower developmental threshold temperature (ʨ), and the accumulative effective temperature (degree-days) for various development stages of the giant danaine butterfly, Idea leuconoe clara, under a temperature range of from 15 to 30ʨ Lower developmental Correlation Accumulative effective Life stage Regression equation threshold temperature coefficient (r)1) temperature (degree-days) (℃) Egg Y = -0.0345 + 0.0079X 0.9265 6.92 108.24 1st instar Y = -0.1822 + 0.0199X 0.9615* 10.17 46.49 2nd instar Y = -0.2047 + 0.0220X 0.9683* 10.12 42.57 3rd instar Y = -0.1350 + 0.0174X 0.9773* 8.43 54.92 4th instar Y = -0.0821 + 0.0133X 0.9718* 7.07 70.86 5th instar Y = -0.0347 + 0.0067X 0.9531* 6.77 135.74 Pupae Y = -0.0407 + 0.0042X 0.9989** 9.66 236.45 Egg to Adult Y = -0.0117 + 0.0014X 0.9913** 8.46 688.18 1) * and ** denote significant difference at 5% and 1% levels, respectively.

ߣᓃΙ! 2002 ԑۣ៌ӴୢϞТҁ֯ྣ࡙ЅԤਝᑖྣ Appendix 1.! Monthly average temperatures and accumulative effective temperatures in 2002 in Ilan Month Average temperature (℃) Accumulative effective temperature (K, degree- days) 1) Jan. 16.30±0.60 243 Feb. 17.20±0.45 245 Mar. 27.00±0.40 397 Apr. 23.30±0.46 445 May 25.10±0.25 516 June 27.00±0.38 556 July 29.20±0.27 643 Aug 29.40±0.19 649 Sept. 25.80±0.32 538 Oct. 23.50±0.39 466 Nov. 19.60±0.41 334 Dec. 18.10±0.59 299 Sum 5331 1) K = Days × (Average temperature – lower developmental threshold temperature).

д̙Тؠ໢˭Ă̂Ϩ೹ኅρᖪഇЧ᛬ഇ۞ᐝഥ 1.25 ̈́ 1.24 mmĂྵ 15 ̈́ 20ƨॡ࠹म 0.07 ώ჌ρᖪ۞ᐝഥ Ƃ0.08 mmćௐˬ᛬ρᖪͽ 25ƨॡ۞ᐝഥᆵ˭ޘဦ̱Ą଀ۢЧ໢ٺЕޘᆵ mm ౵̈Ă׎Ѩࠎ 30ƨॡ۞ 0.02±1.82 ޘ ѡቢᔌ๕ᙷܜĂͷᆧܜ࠰ᐌ᛬ഇᆧΐ҃ᆧޘᆵ ҬĄௐ˘᛬ρᖪд 15ă20ă25ă30ƨॡ۞ᐝ 1.90±0.01 mmĂГѨࠎ 15ƨ۞ 1.97±0.01 Ҿࠎ 0.92±0.01 ă 0.82±0.01 ă mmĂ౵ᆵࠎ 20ƨ۞ 2.00±0.01 mmćௐα᛬̶ޘഥᆵ ͽ 20ƨॡ۞ 2.94±0.02 mmޘ0.82±0.01ă0.78±0.01 mmĂͽ 15ƨॡᐝഥ ρᖪ۞ᐝഥᆵ ॡ࠰ࠎ 2.82±0.02 mmćޘ౵̂ćௐ˟᛬ρᖪд 15 ̈́ 20ƨॡ۞ᐝഥ ౵ᆵĂ׎ዶˬ࣎໢ޘᆵ ࠰ࠎ 1.32±0.01 mmĂ 25 ̈́ 30ƨॡࠎ ௐ̣᛬ρᖪॡд 15ă20ă25ă30ƨॡ۞ᐝഥޘᆵ

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 339 ყϲ! Ϛӣྣ࡙ήσҩයፆӨឭ҂ᙫ෈Ϟᓞ෦ቶ࡙Ȅ Fig. 6.! Width of the head capsule of each instar larva of the giant danaine butterfly, Idea leuconoe clara, at various temperatures.

Ҿࠎ 4.07±0.07ă4.26±0.03ă4.11± 4 mm ͽ˯ĂϤѩΞۢĂ̂Ϩ೹ኅρᖪ۞ᐝഥ̶ޘᆵ Ąޘ0.05ă4.40±0.07 mmĂͽ 30ƨॡ౵ᆵĂЧ఍ ֶ᛬ഇѣ˘ؠ۞ᆵ ˘࠰д 4 mm ͽ ˯Ăͷ ௐ ̣ ᛬ ૟̂Ϩ೹ኅЧ᛬ρᖪഇాᜈ᛬ഇ۞Ѩޘᐝഥᆵ۞ޘந໢ ࠹ੵٙ଀۞ޘҾ࠹म 1.25ă ᛬ഇᄃ݈˘᛬ഇ̝πӮᐝഥᆵ̶ޘᄃௐα᛬ρᖪ۞ᐝഥᆵ ώ჌дௐα᛬ ͧࣃтܑˬĄд 15ă20ă25 ̈́ 30ƨ̶Ҿࠎٺ1.32ă1.29 ̈́ 1.38 mmĄϤ ࠰Ϗ෹࿅ 2.95 mmĂҭௐ̣ 1.45±0.03 ă 1.51±0.07 ă 1.50±0.05 ă 1.54±ޘρᖪॡ׎ᐝഥᆵ ٺ1.50Ă׎ዶ࠰̂ ٺ࠰д 0.04Ă่ 15ƨॡͧࣃҲޘ఍ந˭Ă׎ᐝഥᆵ۞ޘ᛬ρᖪдЧ჌໢

ௐαഇסˬ˩˟ᖪௐٿέ៉ 340 ߒέ! σҩයፆӨᙫ෈ӵ 15 Ս 30ʨ໢ԩΙឭ෈ᇄࠉΙឭ෈Ϟҁ֯ᓞ෦ቶ࡙ШЅӨឭ҂ᙫ෈Ϟᓞ෦ቶ࡙லҢᄇኵ(Y)ᇄឭ ෈(X)Ϟᜰ߽ Table 3.! Average ratio of head capsule width of next instar divided by this instar and the relationship between the common logarithms of head capsule width of larval stage and each instar of the giant danaine butterfly, Idea leuconoe clara, under a temperature range of from 15 to 30ʨ Average ratio of head capsule width of Correlation coefficient Temp. (℃) Regression equation next instar divided by this instar (r)1) 15 1.45±0.03 Y = -0.1986 + 0.1621X 0.9999** 20 1.51±0.07 Y = -0.2471 + 0.1779X 0.9987** 25 1.50±0.05 Y = -0.2590 + 0.1753X 0.9997** 30 1.54±0.04 Y = -0.2863 + 0.1860X 0.9997** 1) ** denote significant difference at 1% levels, respectively.

ᐌ᛬ഇͽ 1.45Ƃ mm Ѩ̝Ă׎Ѩ 30ƨ۞ 31.44±0.37 mmĂ15ޘ1.50Ăӈρᖪᐝഥᆵ ٺඈ ੼Ҍ 30ƨॡᐝ ƨ۞ 30.30±0.45 ࠎ౵ൺĄϤѩΞۢĂௐ˟᛬̿ޘࢺӔඈͧᆧΐĂͽ໢ 1.54 Ăͷд 15Ƃܜ౵ܜϡ၆ Ҍௐ̣᛬ρᖪ࠰ͽ 20ƨវ૱۞ޘԣĄܑˬ̚Тॡ૟ᐝഥᆵྵܜഥᆧ ቁѣᇆܜ30ƨม࿶ዳ̂Ϩ೹ኅĂ၆׎ρᖪវ ޘĂ଀ۢЧ໢ژᇴᄃ᛬ഇ̝ᙯܼͽۡቢਫ਼ᕩ̶ ࠰хдਫ਼ᕩۡቢᙯܼĂ࠹ᙯܼᇴӮ੼྿ 0.99 ᜩĄ˭ ͽ˯ͷ࠰хдໂព඾ᙯܼĂӈд 15Ƃ30ƨ໢ ăਂᆵܜăུᆵ̈́јኅਂܜϡ (α)ུࢦăུ૱۞ޘቑಛ̰Ă̂Ϩ೹ኅρᖪ᛬ഇᐝഥᆵޘ Ăٙ࿶ዳ̝̂Ϩ೹ኅ۞ུࢦă˭ޘ၆ᇴቁᐌ᛬ഇᆧΐ҃ӔۡቢᙯܼᆧΐĄ ̙Т໢ ఍ޘαĄུࢦдα჌໢ܑٺڍᆵ̝ඕུ̈́ܜུ Ω˘͞ࢬĂд̙Тؠ໢˭Ă̂Ϩ೹ኅρᖪ ဦ˛ĄϤဦΞۢЧ நॡĂͽ 20ƨུࠎ 1.98±0.03 g ౵ࢦć30ƨུٺڍត̼ඕܜഇЧ᛬ഇ۞វ Ϻߏ 20 ƨ۞ܜ࠰ᐌ᛬ഇᆧΐ҃ᆧ ࠎ 1.60±0.03 g ౵ᅅćུܜώ჌ρᖪ۞វ˭ޘ໢ ܜĂͷᆧܜѡቢᙷҬĄࣣြ̼ௐ˘᛬ρᖪд 29.59±0.18 mm ౵ܜĂ15ă25ă30ƨུ̝ܜ Чࠎ 4.40±0.03ă4.34± ̶Ҿࠎ 28.66±0.25ă27.47±0.51ă28.35±0.31ܜ15ă20ă30ƨม۞វ 0.05ă4.46±0.06 mmĂमள̙̂Ăҭ 25ƨॡ mmćུᆵ˵ߏ 20ƨॡ۞ 12.58±0.08 mm ౵ ពྵൺćௐ˟᛬ρᖪ ᆵĂ30ƨ۞ 12.04±0.17 mm Ѩ̝Ă15 ̈́ 25ځܜmm វ 4.17±0.06 ۞ ពྵ 15ă25ă ƨ۞ 11.55±0.15 ̈́ 11.49±0.09 mm ౵̈Ąځࠎ 9.30 mmĂܜд 20ƨॡ۞វ ܜ࿶ዳ۞̂Ϩ೹ኅјᖪਂ჻˭ޘ30ƨॡ۞ 7.28±0.06ă7.79±0.11ă7.96±0.11 ̙Т໢ јኅ۞ਂޢĄҀܑ̼̣ٺЕڍඕ̝ޘᆵ̈́ޘ ±14.92 ܜćௐˬ᛬ρᖪͽ 20ƨॡ۞វܜ mm Ă౵ൺܜĂͽ 20ƨॡ۞ 64.59±0.28 mm ౵ܜ Ă25ƨॡࠎ 11.36±0.12 mm ౵ܜmm ౵ 0.23 ൺĂ15 ̈́ 30ƨॡ۞ 12.30±0.21 ̈́ 12.07±0.13 ࠎ 15ƨ۞ 57.60±0.90 mmĂ׌۰࠹म 7.01 mm Ѩ̝ćௐα᛬ρᖪд 15ă20ă25ă30ƨ mmćјᖪਂᆵϺͽ 20ƨॡ۞ 44.53±0.19 mm Ҿࠎ 18.29±0.12ă24.04± ౵ᆵĂ׎Ѩࠎ 25ƨॡ۞ 41.89±0.48 mmĂГ̶ܜវ۞˭ޘα჌໢ 0.25ă17.55±0.20ă20.66±0.28 mmćௐ̣᛬ Ѩࠎ 30ƨ۞ 33.44±0.87 mmĂ౵৫ࠎ 15ƨ۞ ពϯĂд 15Ƃ30ƨڍពྵௐα᛬ᆧΐĂ̪ͽ 20ƨ۞ 32.84±0.51 mmĄϤඕځܜρᖪ۞វ ăܜ࿶ዳĂ̂Ϩ೹ኅ۞ུࢦăུ˭ޘĂ30ƨ۞ 33.05±0.37 ඈ̙Т໢ܜmm ౵ 34.68±0.36

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 341 ყΜ! Ϛӣྣ࡙ήσҩයፆӨឭ҂ᙫ෈ϞᡝߝȄ Fig. 7.! Body length of each instar larva of the giant danaine butterfly, Idea leuconoe clara, at various temperatures.

౵ᆵĂͷјᖪ ̈́ 0.64±0.03 cm2ćௐ˟᛬ρᖪ۞ࢴཧณд̈́ܜᆵӮͽ 20ƨॡ౵ࢦă౵ུ ౵ᆵĄ 15ă20ă25ă30ƨ̶Ҿࠎ 2.14±0.04ă3.07±̈́ܜăਂᆵӮͽ 20ƨॡ౵ܜਂ۞ޢҀ̼ 0.35ă3.77±0.53ă2.76±0.08 cm2ćௐˬ᛬ॡ Πȃ҂ᙫ෈Ϟॵဨ໔ ρᖪࢴཧณͽ 20 ̈́ 25ƨॡ۞ 16.54±2.98ă ࢴ 16.50±1.16 cm2 ౵кĂ15ƨॡ۞ 10.67±0.57פд̙Тؠ໢˭Ă̂Ϩ೹ኅЧ᛬ഇρᖪ ഑ᘼཧͯ۞ཧࢬ᎕тܑ̱Ąдௐ˘᛬ρᖪ cm2 ౵͌ćௐα᛬ॡ۞ρᖪࢴཧณͽ 25ƨ۞ۊ ॡĂͽ 20ƨࢴཧณ౵кࠎ 1.27±0.92 cm2Ă15 62.50±2.72 cm2 ౵кĂ15ƨॡ۞ 40.04±1.67 ƨă25 ̈́ 30ƨॡֶԔࠎ 0.45±0.04ă0.75±0.07 cm2 ౵͌Ă࠹म 22.46 cm2ćௐ̣᛬ρᖪͽ 20

ௐαഇסˬ˩˟ᖪௐٿέ៉ 342 ߒѲ! Ϛӣྣ࡙ήσҩයፆဵ१ȃဵߝЅဵቶ Table 4.! Weight, body length, and body width of pupae of the giant danaine butterfly, Idea leuconoe clara, at various temperatures Temp. n1) Pupal weight (g) Pupal body length (mm) Pupal body width (mm) (℃) 15 29 1.84±0.03 28.66±0.25 11.55±0.15 20 70 1.98±0.03 29.59±0.18 12.58±0.08 25 51 1.75±0.05 27.47±0.51 11.49±0.09 30 18 1.60±0.03 28.35±0.31 12.04±0.17 1) n is the number of observed.

ߒϤ! Ϛӣྣ࡙ήσҩයፆԙᙫૃߝЅૃቶ Table 5.! Adult wing length and wing width of the giant danaine butterfly, Idea leuconoe clara, at various temperatures Temp. (℃) n1) Wing length (mm) Wing width (mm) 15 28 57.60±0.90 32.84±0.51 20 67 64.59±0.28 44.53±0.19 25 51 61.76±0.54 41.89±0.48 30 18 58.75±0.70 33.44±0.87 1) n is the number of observed.

ߒϲ! Ϛӣྣ࡙ήσҩයፆӨឭ҂ᙫ෈Ϟॵဨ໔ Table 6.! Leaf consumption of each instar larvae of the giant danaine butterfly, Idea leuconoe clara, at various temperatures Temp. Leaf consumption area (cm2) of each larval stage (℃) 1st 2nd 3rd 4th 5th Total 15 0.45±0.04 2.14±0.04 10.67±0.57 40.04±1.67 322.02±7.55 375.30±8.66 20 1.27±0.92 3.07±0.35 16.54±2.98 48.95±2.76 387.38±18.77 457.21±18.99 25 0.75±0.07 3.77±0.53 16.50±1.16 62.50±2.72 346.07±6.44 429.56± 6.87 30 0.64±0.03 2.76±0.08 13.70±0.52 50.50±1.26 331.34±6.71 398.98±6.81

఍ந࠰ᐌ඾᛬ഇᆧΐ׎ࢴཧณϺᆧкĂ͍׎ޘ ځƨ۞ࢴཧณ౵кĂࠎ 387.38±18.77 cm2Ă 15ă25 ̈́ 30ƨ۞ 322.02±7.55ă ߏϐ᛬ρᖪ۞ࢴཧณᆧΐ౵кĄ ٺព੼ ഑ᘼཧͯീณ׎πӮཧࢬ᎕ۊͯ 40 פ346.07±6.44ă331.34±6.71 cm2Ąࡶͽρᖪഇ Ω ᓁࢴཧณֽ࠻Ă15ă20ă25ă30ƨ̶Ҿࠎ ࠎ 38.13±0.96 cm2Ăтͽᓁࢴཧณೱზ଀ۢĂ۞ ˘375.30±8.66ă457.21±18.99ă429.56±6.87ă ࿶ዳѩኅॡҌ͌ᅮ೩ֻ 10 Ҍ 12 ͯཧ̖ͯૉ פ൴ֈĂҭώ჌ρᖪܜcm2Ă౵к۞ࠎ 20ƨĂ౵͌۞ࠎ ੸ρᖪԆј׎ρᖪഇϠ 398.98±6.81 15ƨĂ׌۰࠹म 81.91 cm2Ą߇ώ჌ρᖪ̂࡭ ࢴॡົୢࢴొ̶ཧͯĂϏυԆБЫЍТ˘ͯཧ ੼҃ࢴཧณᆧΐĂͽ 20ƨ۞ࢴཧ ͯĂ߇ٙᅮ̝ཧͯณՀкĂЯѩΞፂͽҤზ̂̿ޘᐌ໢˯ ഑ᘼཧͯᇴณĄۊពഴ͌Ăҭ̪ ณ࿶ֈॡυื໤౯۞ځณ౵̂ĂҭҌ 30ƨॡࢴཧณ ଀ۢĂα჌໢ ဦˣࠎд̙Тؠ໢˭Ăώ჌Ч᛬ρᖪഇ۞ڍ15ƨ۞ࢴཧณĄϤѩඕ ٺ੼

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 343 ყΤ! Ϛӣྣ࡙ήσҩයፆӨឭ҂ᙫ෈Ϟॵဨ໔ϷҀȄ Fig. 8.! Distribution of leaf consumption of each instar larvae of the giant danaine butterfly, Idea leuconoe clara, at various temperatures.

ࢴཧณ̶οĄϤဦΞۢĂࢴཧณ̶οϤ੼҃Ҳ 12.66%ć൴ֈјௐ̣᛬ॡĂ15ă20ă25 ̈́ 30 ԔӮࠎௐ̣᛬ăௐα᛬ăௐˬ᛬ăௐ˟᛬ă ƨ۞ρᖪࢴཧณ̶ҾΚፋ࣎ρᖪࢴཧณ۞ֶ ௐ˘᛬Ă׎̚ௐ˘᛬ρᖪ۞ࢴཧณּͧ࠹༊ 85.80ă84.73ă80.56 ̈́ 83.05%ĂӈдЧؠ໢ פ൴ֈ࿅඀̚ࠎ࠹༊ࢦࢋ۞ٺҲĂ15ă20ă25ă30ƨ̶ҾΪΚ 0.12ă0.28ă ˭Ăௐ̣᛬ρᖪ 0.17ă0.16%ćௐ˟᛬ρᖪॡࢴཧณ̶οֶԔ ࢴล߱Ą ࠎ 0.57ă0.67ă0.88ă0.69%ćҌௐˬ᛬ρᖪ ॡᆧࠎ 2.84ă3.62ă3.84ă3.44%ćௐα᛬ॡ ଆ!!፣ ࢴཧณ̶οՀᆧࠎ 10.67ă10.70ă14.55ă

ௐαഇסˬ˩˟ᖪௐٿέ៉ 344 ТĄ̙ڍ೹ኅд 30ƨॡࢫҲ̝ඕܦϞኇ៪ ੼Ăᄃল஧ىΙȃྣ࡙ᄇσҩයፆӨᙫ෈ҡߝȃี ྵ ҭϤѩΞۢĂώ჌д 15ƨ۞ြ̼தࠎ 63% ۡ૱ޘĂγࠧᒖဩ໢ۏត໢જٺᖪߏᛳٿ Ă̙Т 20ƨॡࢫҲ˞ 23%Ăព൒ 15ƨ˭̂Ϩ೹ኅ۞ޘᖪ۞វ໢̈́׎າౘ΃ᔁ۞ిٿତᇆᜩ Ąޘ౵Ҳѣड़໢ܧ֭ޘă൴ֈăϠതăု׻׶ Ӊ̂к̪Ξх߿Ăѩ໢ܜᖪ۞Ϡٿቑಛ၆ޘ໢ ᖪ۞̙Т჌ᙷăᖪၗăٿ߿જѣ̙Т۞ᇆᜩĂ ᑕ˵ౌົѣٙमளĄॲፂ (˟)̂Ϩ೹ኅ̝൴ֈͅ۞ޘၗ၆໢ېϠந ໢ડ ဦ˘Ҍဦαࠎд̙Тؠ໢˭Ă̂Ϩ೹ኅЧآᖪ۞ዋٿZhou (1990)ٙࢗĂ໢૲гડ ڍfavorable temperature range)˘ਠд 8Ƃ ᖪഇ۞πӮ൴ֈٙᅮ͟ᇴ̈́൴ֈిதĄϤඕ) ᖪϠ׻߿જϒ૱ซ Ξۢд 35ƨॡӉѪ˸̙ြ̼Ăд 25 ̈́ 30ƨ۞ٿ40ƨ̝มĂдѩ໢ડ̰Ă ၗĂ߇Ⴭѣड़໢ડĄώྏរӈ Ӊഇ̶Ҿࠎ 5.30±0.08 ̈́ 5.44±0.07 ͟(ဦې᎕ໂٺҖ֭఍ 15ă20ă25ă30ă35ƨ̣ ˘)Ăᄃ Ou-Yang and Chen(1999)д 28±1ƨ פ໢ડ̰Ᏼآдዋ ൴ ˭۞ 3Ƃ6 ͟ĂπӮࠎ 4.56±0.21 ͟ĂLee andܜ࿶ֈĂͽᒢྋ̂Ϩ೹ኅ۞Ϡ˭ޘ࣎׽ؠ໢ ੅ኢĄ Chang (1988)ٙࢗआ؞Ӊഇ 4Ƃ5 ͟ӚЪĄдี̶ڍֈଐԛĂͽ˭ಶٙ଀ඕ ̈́ ƨ۞ρᖪഇࠎ 18.93±0.26 30 ̈́ 25 (˘)̂Ϩ೹ኅ̝х߿த 16.67±0.32 ͟(ဦ˟)Ăྵ Ou-Yang and Chen Ă଀ۢͽ (1999)д 28±1ƨ˭۞ 19.36±0.37 ͟ᄃ Leeڍॡ۞࿶ֈඕޘώྏរд̙Т໢ 35ƨă80±5% RHă14L:10D (5:00 ฟ፶Ă19:00 and Chang (1988)۞ 18Ƃ25 ͟ൾൺĄд 25 ᙯ፶)̝୧І˭Ă̂Ϩ೹ኅ۞ֻྏӉ࠰̙ြ̼Ă ̈́ 30ƨ۞ུഇࠎ 15.88±0.09 ̈́ 11.50±0.12 ဦˬ)Ăᄃ Ou-Yang and Chen (1999)д)͟ ܧޘдӉഇӈѪ˸Ąᔵ൒дᄂ៉आ؞۞Ϩ͇໢ ࢴਨཧࢬ 28±1ƨ˭۞ 11.44±0.12 ͟ᙷҬĂྵ Lee andٺ੼Ăҭ̂Ϩ೹ኅᅬኅயӉॡົઃ૱ ϤӉҌٺĄҌܜཧࡦࢬ(Chang and Tsai, Chang (1988)۞ 11Ƃ12 ͟ൾٺᝈѡཛొயӉ ؆ม јኅҀ̼ٙᅮॡมĂώྏរд 25 ̈́ 30ƨࠎٺĂ̙֭ົۡତᘉខдวЍ˭ĂϤ(1984 ࢫ໢ĂՀ̙Ξਕ޺ᜈᇴ͟࠰఍д 35ƨ۞੼໢ 39.67±0.20 ̈́ 33.33±0.21 ͟ ( ဦα) Ăᄃ ୧І Ou-Yang and Chen(1999)д 28±1ƨ˭Ϥ 31ޘд 35ƨ۞໢ٸĂЯѩ૟ώ჌Ӊ޺ᜈ˭ х߿Ăព֍̂Ϩ೹ኅ۞౵੼ѣ Ƃ39 ̙͟ඈĂπӮᅮ 35 ͟ĂLee and Changڱ࠰൑ڍॡĂඕ 35ƨĄ (1988)ٙಡጱ۞ 33Ƃ42 ͟म̙кĄϤѩΞۢĂ ٺҲޘड़໢ ᇆᜩĂЧᖪഇޘ໢צϤܑ˘Ξۢ̂Ϩ೹ኅЧᖪഇ۞х߿தĂд ̂Ϩ೹ኅ۞൴ֈ͟ᇴቁ၁ ੼҃ᒺൺĂ൴ֈిதᐌ̿ޘ15ă20ă25ă30ƨॡ۞Ӊြ̼த̶Ҿࠎ 63.0ă ࠰ѣ൴ֈ͟ᇴᐌ໢ ੼҃ᆧΐ̝ᔌ๕ćೱ֏̝Ăд 15Ƃ30̿ޘࢴ֯ਨᙷ ໢פ86.0ă80.0 ̈́ 85.0%ĄࡶᄃТࠎ ດ੼Ă൴ֈດԣĂ൴ֈޘቑಛ̰Ă໢ޘ೹ኅͧྵĂӈд 20ă25ă ƨ۞໢ܦmilkweed)̝ল஧) 30ƨ࿶ዳল஧ܦ೹ኅ̝ြ̼தࠎ 88.3ă80.0ă ഇດൺĄ Ϥဦ̣۞Ч᛬ρᖪഇ൴ֈ͟ᇴ̈́൴ֈి ܦChen and Ou-Yang, 2002)Ăল஧) 76.7% ੼҃ࢫҲĂώ჌ݒ த଀ۢĂд 30ƨॡϤௐ˘᛬Ҍௐ̣᛬ρᖪ۞̿ޘ೹ኅ۞Ӊြ̼தᐌ඾໢ ൑ѩᔌ๕Ăҭ׌۰д 20ƨ۞ြ̼த࠰౵੼Ă ൴ֈ͟ᇴ̶Ҿࠎ 2.63±0.06 ă 2.33±0.05 ă 25ƨॡӮࠎ 80.0%ćͷώ჌д 30ƨ۞ြ̼த่ 2.74±0.06 ă 3.24±0.07 ă 6.53±0.13 ͟Ăྵ 20ƨॡ͌ 1%ĂӈӉд 30ƨ۞ြ̼த҃ͅྵ Ou-Yang and Chen (1999) д 28±1 ƨ۞ ྵ

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 345 Ξଯീ׎᛬ഇĄဦ̱ࠎώྏរд̙ޘă 2.60±0.21 ă 3.08±0.22 ă 4.36± ۞ᐝഥᆵ 3.00±0.14 ĂᐝޘТؠ໢ॡ̂Ϩ೹ኅЧ᛬ρᖪഇ۞ᐝഥᆵ ޘ0.42ă7.85±0.21 ͟ரൺĂΞਕߏώྏរ໢ ࠰ᐌ᛬ഇᆧΐ҃ᆧ̂Ăௐ˘᛬Ҍௐ̣᛬ޘഥᆵ ̿ޘ੼ٙ࡭ĄЧ᛬ρᖪഇ۞൴ֈ͟ᇴ࠰ᐌ໢ྵ Ҿͽ 15ƨă15 ̈́ 20ƨă20̶ޘ੼҃ᆧΐćӈ ॡ۞ᐝഥᆵ̿ޘ੼҃ᒺൺĂ൴ֈిத࠰ᐌ໢ ດ੼Ăρᖪ ƨă20ƨă30ƨ౵̂Ăͷௐα᛬ρᖪд 15ăޘቑಛ̰Ă໢ޘд 15Ƃ30ƨ۞໢ ࠰ࠎ 2.82 mmĂϤѩޘഇ۞൴ֈດԣĂ൴ֈഇດൺĄ֭ͷ 15ƨॡ۞ 25ă30ƨॡ۞ᐝഥᆵ 20ƨĂೀ྿˟ࢺͽ ΞۢĂੵௐ˘᛬ρᖪ̈́ௐ̣᛬γĂ׎ዶ᛬ഇ࠰ ٺЧ᛬൴ֈٙᅮ͟ᇴᅈ੼ ྿ˬࢺͽ˯Ąͷ 15ƨॡ ͽ 20ƨॡ۞ᐝഥ౵ᆵĂௐα᛬ρᖪ۞ᐝഥᆵܜĂ˫ྵ 30ƨ۰Ă˯ ត̼ᇆᜩĄޘ׎΁໢צੵ 20ƨॡྵ̂Ă̙ޘ ؼቤĂ߇д 15ޘពгྵ׎΁໢ځ൴ֈిத۞ ƨ࿶ֈ̂Ϩ೹ኅॡĂ่̙х߿தྵҲă൴ֈ͟ ̂Ϩ೹ኅдЧ჌ؠ໢˭Ăௐα᛬ρᖪ۞ᐝ ࠰д 2.95 mm ͽ˭Ăҭௐ̣᛬ρᖪ۞ޘĂͷ൴ֈిதྵᏵቤćд 30ƨॡώ჌ ഥᆵܜᇴྵ ព۞ડ࿣Ąᄃځ࠰෹࿅ 4 mmĂԛјޘх߿தᔵҲĂҭ൴ֈ͟ᇴྵൺͷ൴ֈిதត ᐝഥᆵ۞ ԣĄϤѩΞۢĂͽ 20 ̈́ 25ƨ۞х߿தă൴ֈ Ou-Yang and Chen (1999)д 28±1ƨ˭࿶ዳ ࠎ 2.6 mmĂௐ̣ޘᇴ̈́൴ֈిதྵָĄ ۞ώ჌ρᖪĂௐα᛬ᐝᆵ͟ ࠎ 3.0 mmĂώྏរٙ଀۞ρᖪᐝޘቑ ᛬ᐝഥᆵޘĂд 15Ƃ30ƨ۞໢ڍॲፂܑ˟۞ඕ (࠰ྵ̂Ąѩᄃ Morita and Tojo (1985ޘม֭൑ਫ਼ᕩ ഥᆵޘಛॡĂώ჌Ӊഇ۞൴ֈిதᄃ໢ ̙ٺ(ቢᙯܼĂ׎ዶЧᖪഇ࠰хдព඾۞ਫ਼ᕩۡቢ ٙࢗសਂϫ୆৳؆ཹ(Spodoptera lituraۡ ޘĂᆧΐེϩѨᇴĂҭᐝഥᆵڍᙯܼĂӈੵӉഇγĂ̂Ϩ೹ኅЧᖪഇ۞൴ֈి Т᛬ഇ඗ࢴඕ ᛬υؠјࠎϐ˘˭ٺ੼҃Ӕ׽ؠּͧᆧΐĄϤЧᖪഇ ෹࿅ 1.65 mm ۞࣎វĂ̿ޘத࠰ᐌ໢ ѩ⼈ࣃ˭ρᖪົͅᖬེϩĂͽٺ൴ֈᓜࠧҲ໢ΞۢĂௐ̣᛬ρᖪ၆Ҳ໢۞ԡ ᛬ρᖪĂ҃Ҳ۞ ѩ⼈ࣃćChen and Ou-Yang (2002)೩΍ז౵੼(6.77ƨ)Ă׎ѨࠎӉ(6.92ƨ)Ăρᖪഇ ྿ّצ πӮᐝഥᆵࠎ 3.21ז೹ኅ൴ֈॡᅮ྿ܦॡ۞ௐ˘᛬Ҍௐ̣᛬ρᖪᐌ඾᛬ഇᆧΐ׎൴ ল஧ ֈᓜࠧҲ໢ు႙ࢫҲĂӈ൴ֈҌྵ੼᛬۞ρᖪ mm ͞Ξֹҁሢρᖪུ̼̝ଐԛᙷҬĄӈ̂Ϩ ෹࿅ 2.95 mmĂӈјࠎϐޘ9.66ƨӈઃͤ൴ ೹ኅ۞πӮᐝഥᆵ ٺҲ໢ĂུഇдҲצਕԡྵ ֈćͽፋ࣎൴ֈഇ҃֏ĂࢋึӀϤӉ൴ֈҌј ᛬ρᖪĂ2.95 mm ᑕࠎώ჌ซˢϐ᛬ρᖪ̝⼈ 8.46ƨĄಶ൴ֈѣड़᎕ ࣃĄ ٺҌ͌υื੼ޘኅ۞໢ Ăॲ ᑛႬ(Dyar)അീؠధк჌សਂϫρᖪĂдޘ͟ ໢ֽ࠻ĂϤӉ൴ֈҌјኅᅮ 688.18 ˘ᆧΐĂ૱Ӕޘࠎ ׌ాᜈ᛬ഇมĂ׎ρᖪᐝഥᆵޘᜋгડΝѐ۞͡πӮ໢آ˘ᐂܢፂ ĂᖎჍࠎᑛܜ16.30±0.6Ƃ29.40±0.19ƨĂӈώྏរ 15Ƃ30 ؠ۞ͧதĂϺӈӔೀң৺ᇴ҃ᆧ ݋(Dyar’s law)Ă઄ֹͽ᛬ᖪ᛬ഇࠎፖळڱቑ Ⴌޘᜋгડ౎γ໢آቑಛᄃ 2002 ѐޘƨ۞໢ ၆ᇴࠎᓂळᇾĂٙϯЧ۞ޘᇾ׶Ч᛬ഇᐝഥᆵ ޘᜋгડΝѐБѐѣड़᎕ზ໢آಛӚЪĂͽ ᜋгડ˘ѐΞ ᕇాତ҃Ӕۡቢ(Kuan, 1987)Ąܑˬࠎώ჌Чآࢍზ଀ۢĂώ჌дޘ͟ 5331 ҋ൒൴Ϡ 7Ƃ8 ΃Ą ᛬ρᖪഇాᜈ᛬ഇ۞Ѩ˘᛬ഇᄃ݈˘᛬ഇ̝ ۞ޘ࠹ੵٙ଀۞ͧࣃ̈́ᐝഥᆵޘπӮᐝഥᆵ ϡ၆ᇴ(Y)ᄃ᛬ഇ(X)̝ਫ਼ᕩۡቢ͞඀ёĂΞ૱ ܜ׶វޘρᖪഇ۞ᐝഥᆵ(ˬ) ᐌ᛬ഇͽ 1.45Ƃ1.54 ࢺӔඈޘᖪρᖪᖣϤེϩֽᆧ̂֗វĂॲፂེ˭ ۢρᖪᐝഥᆵٿ

ௐαഇסˬ˩˟ᖪௐٿέ៉ 346 Ă౵ൺࠎ 15ƨ۞ 57.60 mmĂܜԣĂ 64.59 mm ౵ྵܜ੼Ҍ 30ƨॡᐝഥᆧ̿ޘᆧΐĂͽ໢ͧ ࠹म 7.01 mmĂྵ Hsu (1999)۞ 72 mm ൺ ޘĄд 15Ƃ30ƨ໢ၙྵܜࢫҌ 15ƨॡᐝഥᆧ ϡ၆ ࡗ 7.4Ƃ14.4 mmĄјᖪਂᆵ˵ߏ 20ƨॡ۞૱۞ޘቑಛ̰Ă̂Ϩ೹ኅρᖪ᛬ഇᐝഥᆵ ᇴቁᐌ᛬ഇᆧΐ҃ӔۡቢᙯܼᆧΐĂӈ̂Ϩ೹ 44.53 mm ౵ᆵĂ15ƨ۞ 32.84 mm ౵৫Ă׌ ݋ĂϤ˯ࢗਫ਼ᕩۡቢ͞඀ё ۰࠹म 11.69 mmĄЯѩд 15Ƃ30ƨ̙Тؠڱኅቁ၁௑ЪᑛႬ צăਂᆵӮܜଯ଀ۢρᖪ᛬ഇĄ ໢˭࿶ዳٙ଀̂Ϩ೹ኅјኅ۞ਂͅޘՀΞགྷϤώ჌ᐝഥᆵ ౵ᆵĂӈ 20ƨ̈́ܜᇆᜩĂ࠰ͽ 20ƨॡ౵ޘဦ˛ࠎд̙Тؠ໢˭Ă̂Ϩ೹ኅρᖪഇЧ ໢ Ąώྏរௐ̣᛬ρᖪ۞វ ࿶ዳॡٙ଀۞јኅវݭ౵̂Ąڍត̼ඕܜ᛬ഇ۞វ Ă30ƨ۞ 33.05ܜͽ 20ƨ۞ 34.68 mm ౵ܜ mm Ѩ̝Ă15 ̈́ 30ƨ۞ 30.30 ̈́ 31.44 mm Πȃ҂ᙫ෈Ϟॵဨ໔ ࠎ౵ൺĂӮྵ Ou-Yang and Chen (1999)д ̂Ϩ೹ኅ۞ρᖪࢴਨࠎӣ߲۞ӵѻॿࡊ ӣѣ˘րЕ۞ۏρᖪ૙͹ങٺ഑ᘼĂϤۊ 28±1ƨ˭۞ 36.90 mm ൾൺĄϤဦ˛ΞۢЧ ᆧΐĂͷௐ Pyrrolizidine alkaloids (Pas) (Abe and҃ܜ࠰ᐌ඾᛬ഇᆧޘܜ᛬ρᖪ֗វ ೀࠎௐ˘᛬۰۞ 7Ƃ8 ࢺĂௐ Yamauchi, 1987)Ăјᖪ֗វ௡ᖐ̰෬х̂ܜ᛬ρᖪ۞វ̣ Ăௐ˟᛬Ҍௐ ณ۞ sequestered alkaloid components (3ܜͽ 30ƨࠎ౵ܜ᛬ρᖪ۞វ˘ Ăӈд 15Ƃ30ƨ mg/ , as N-oxide forms) (Nishidaܜ࠰ͽ 20ƨ౵ܜ᛬ॡ۞វ̣ ม࿶ዳ̂Ϩ೹ኅॡĂ໢ޘົᇆᜩρᖪវܜĂੵ et al., 1991ćKim et al., 1994)ĂЯѩρᖪ ែĂ఺ֱ߲৵ਕ௢ۏௐ˘᛬ρᖪγĂд 20ƨ࿶ֈॡ۞ρᖪវݭ౵ វ̰ુ᎕˞ధкӣ߲Ϡ .Ą ᎕ᖼொҌུ׶јኅវ̰Ă߇ Nishida et alܜ (1996)ᄮࠎ̂Ϩ೹ኅฯјᖪଂϏವԱ PAsĂ ጾѣۏăਂᆵ ΞਕߏЯࠎձࣇ̏གྷଂρᖪ۞૙͹ങܜăུᆵ̈́јኅਂܜα)ུࢦăུ) ᖳಱ۞ณĂsequestered PAs ۞˘ొ̶Ҭͼ ܜαࠎ̙Тؠ໢˭̂Ϩ೹ኅ۞ུࢦăܑུ ఍ந۞ུࢦͽ 20ƨࠎ 1.98 g జฯኅΐ̍ј necine base and necic acidޘᆵĄα჌໢ུ̈́ ౵ࢦĂ30ƨࠎ 1.60 g ౵ᅅĂ׌۰࠹म 0.38 gĄ ͯᕝĂͽӀϡјࠎّ෱ࠃᄋĄٙͽώ჌ρᖪ ࢦࢋĂ̙ҭᇆᜩ׎ϠхĂ૱ܧࢴҖࠎפĂҭ ഇ۞ܜϺߏ 20ƨ۞ 29.59 mm ౵ܜώ჌۞ུ 25ƨ۞ 27.47 mm ౵ൺĂ׌۰࠹म 2.12 mmĂ ˵ົᇆᜩјᖪഇ۞ϠതҖࠎĄ Ou-Yang and Chen (1999)д 28±1ƨ˭۞ ώྏរ̂Ϩ೹ኅд̙Тؠ໢˭Ч᛬ഇρ ྵ Ąώ჌ρᖪ̂࡭˯ᐌ໢ܑ̱ٺࢴཧࢬ᎕ЕפĂݒͧ ᖪܜ23Ƃ29 mmĂπӮ 26.0 mm ൾ ੼҃ࢴཧณᆧΐĂͽ 20ƨॡ۞ࢴཧณ౵̿ޘ Hamano (1986)۞ 36Ƃ38 ̳ᲔăLee and ពഴ͌Ă15ƨ۞ࢴཧځChang (1988)۞ 30Ƃ35 mm ൺĄུᆵϺͽ ̂ĂҌ 30ƨॡࢴཧณ 20ƨॡ۞ 12.58 mm ౵ᆵĂ25ƨ۞ 11.49 mm ณ౵͌ĄЧ᛬ഇ࠰ͽ 15ƨ۞ࢴཧณ౵ҲĄ֭ ఍நॡĂρᖪࢴཧณ࠰ᐌ඾᛬ഇޘăུ ͷдα჌໢ܜ౵৫ĄϤѩΞۢĂ̂Ϩ೹ኅ۞ུࢦăུ ᇆᜩĂ࠰ͽ 20ƨࠎ౵੼Ăӈ ᆧΐ҃ᆧкĂ͍׎ߏϐ᛬ρᖪ۞ࢴཧณᆧΐ౵ޘ࿶ֈ໢זצᆵ 20ƨ࿶ዳॡٙ଀۞ུ౵̂ͷ౵ࢦĄ кĄ ഑ᘼ۞πӮཧࢬ᎕ࠎۊ଀ۢĂڍϤඕ ̈́ޘܜ༊ུҀ̼ࠎјᖪॡĂώ჌јኅਂ჻ ͽ 20ƨॡ۞ 38.13±0.96 cm2Ăώྏរٙ଀̝ρᖪᓁࢴཧณܜĄΞۢјኅ۞ਂܑ̣ٺЕޘᆵ

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 347 ੼҃Ӕ׽ؠּͧᆧΐĄρᖪഇॡ̿ޘࠎ 375.30±8.66Ƃ457.21±18.99 cm2Ă࿶ֈώ ిதᐌ໢ ჌Ҍུ̼ล߱Ҍ͌ᅮࢋ 10Ƃ12 ͯཧͯĂҭЯ ۞ௐ˘᛬Ҍௐ̣᛬ρᖪᐌ඾᛬ഇᆧΐ׎൴ֈ 9.66ƨӈઃͤ ٺ౺ዶ˘ֱཧ̙ͯЫĂᖼ ᓜࠧҲ໢ు႙ࢫҲĂུഇдҲົــࢴॡפώ჌ρᖪ ٺҌ͌υื੼ޘЫ׎΁າᔿཧͯĂ߇̂ณ࿶ዳώ჌ॡĂυื ൴ֈĂϤӉ൴ֈҌјኅ۞໢҃ кҤზࡗ 4Ƃ5 ࢺ۞ཧͯณĂӈҌ͌ࢋ໤౯ 40 8.46ƨĂϤӉ൴ֈҌјኅ۞ѣड़᎕໢ࠎ 688.18 ᜋгડΞҋ൒൴Ϡ 7Ƃ8آâѐഇมдޘ͟ Ƃ60 ͯ/੸Ăೱ֏̝ĂՏ˘੸̂Ϩ೹ኅρᖪҌ ਕ ΃Ą̖ۏࢴώྏរॺ჌۞˘࠴(ঀ)૙͹ങפᅮ͌ Ă̂Ϩ೹ኅρᖪ۞πӮᐝഥᆵڍ൴ֈĂࡶࢋ࿶ֈ 1000 ੸̂Ϩ೹ ፂྏរඕܜԆј׎Ϡ ෹࿅ 2.95 mm ۞⼈ࣃӈјࠎϐ᛬ρᖪĂρޘ ഑ᘼങॺ̖ૉĂтۊኅĂҌ͌ᅮ໤౯ 1000 ঀ ᐌ᛬ഇͽ 1.45Ƃ1.54 ࢺӔඈͧᆧޘΐ˯࿶ዳ࿅඀̚Ϗх߿۞ρᖪࢴཧঐਈณĂٙ ᖪᐝഥᆵ ቑಛ̰Ăρᖪ᛬ഇᐝޘཧͯณ૟ՀкĄ ΐĄд 15ƨƂ30ƨ໢ۏᅮ೩ֻ̝૙͹ങ ϡ၆ᇴቁᐌ᛬ഇᆧΐ҃Ӕۡቢᙯ૱۞ޘॲፂဦˣ۞Ч᛬ρᖪഇࢴཧณ̶οΞ ഥᆵ ݋ĄЧ᛬ρᖪڱĂд̙Тؠ໢˭Ă࠰ߏດ੼᛬ρᖪࢴཧณດ ܼᆧΐĂӈ̂Ϩ೹ኅ௑ЪᑛႬۢ ົޘᆧΐĄ࿶ֈ໢҃ܜ࠰ᐌ඾᛬ഇᆧޘܜĂٙΚּͧດ੼ćௐ˘᛬ρᖪ۞ࢴཧณ۞ͧ ֗វ̂ ăུᆵăјኅ۞ਂܜăུࢦăུܜᔵćௐα᛬Ҍௐ̣᛬۞ࢴཧณ̶ҾΚ ᇆᜩρᖪវּ ăਂᆵĂ఺ֱᇴፂӮពϯд 20ƨ࿶ዳॡٙܜ 96.47ă95.43ă95.11ă95.71%Ăӈѩ˟᛬ρ ᖪ۞ࢴཧณΚ˞ፋ࣎ρᖪഇ۞ 95% ͽ˯Ă׎ ଀۞Чᖪഇវݭ౵̂Ą ᇆᜩĂЧ᛬ഇ࠰ͽ 15ޘ໢צρᖪࢴཧณ ޘ࿶ዳ໢צௐ̣᛬ρᖪΚ 80% ͽ˯Ăࠎ̙̚ ࢴล߱Ą߇д̂ณ࿶ֈॡĂੵ˞ ƨॡ౵ҲĂͷࢴཧณ࠰ᐌ඾᛬ഇᆧΐ҃ᆧкĂפᇆᜩ۞ࢦࢋ ຍ ͍׎ߏϐ᛬ρᖪ۞ࢴཧณᆧΐ౵кĂρᖪഇมڦ҂ᇋՏ˘੸ρᖪ൴ֈٙᅮ۞ࢴཧณĂՀᅮ ዋॡ೩ ͽௐ̣᛬ρᖪ۞ࢴཧณΚ 80% ͽ˯Ăௐα᛬ܮཧͯณĂͽۏՏ˘᛬ഇٙᅮ۞૙͹ങ ࢴཧณ̶ Ҍௐ̣᛬ρᖪ݋Κ˞ 95% ͽ˯ĄᓁࢴཧณͽٺາᔿཧͯĄώ჌дௐα᛬̝݈Ϥֻ ĂϤ˭ޘοּͧઐҲĂͧྵ՟ѣયᗟĂυืপҾ঻ຍ൴ 20ƨ۞ 457.21 cm2 ࠎ౵੼Ăдѩ໢ ֈҌௐα᛬ॡĂ͍׎ߏ࿶ዳҌϐ᛬ρᖪॡĂϤ Ӊ൴ֈҌјኅ۞х߿த 67.0% ౵੼Ă൴ֈ͟ᇴ ่ޘ30ƨॡĂᐝഥᆵ ̈́ 25 ٺณ̙֖Ă˫൑ ̈́൴ֈిதᔵҲۏཧͯঐਈณໂ̂Ăт૙͹ങٺ ăུࢦăܜ30ƨॡĂҭ൴ֈҌௐ̣᛬۞វ ٺϠய֖ณ۞̂Ϩ೹ ѨڱĂ૟൑˭ڶˠ̍࿶फ़۞ଐ ăјᖪਂᆵ࠰౵̂Ăೱܜăུᆵăјᖪਂܜུ ۊኅјኅĂЯѩυืፂѩ࿰Ҥ֭໤౯р֖ณ۞ ഑ᘼങॺĄ ֏̝Ăώྏរдα჌ؠ໢˭࿶ዳĂͽ 20ƨॡ д 35ƨ۞޺ᜈؠ ̝ᓁࢴཧณ౵̂Ă࿶ֈٙ଀۞̂Ϩ೹ኅវݭ౵ڱტ˯ٙࢗĂώ჌Ӊ൑ ໢୧І˭х߿Ăρᖪд 15Ƃ30ƨ೼࿆Ξх߿Ă ̂ĂϤѩΞۢ࿶ዳώ჌ॡͽ 20ƨࠎྵዋЪ۞ Ąҭࡶ҂ณ 20ƨॡ۞ٙᅮ൴ֈഇ 56.34ޘൾҲĂௐ̣᛬ ໢˧צҭௐ˘᛬ρᖪ၆ 15ƨ۞ԡ Ăಶͽ 30ƨ࿶ֈĂᓁࢴཧณᔵ่ᅮܜ͉͟ मĄଂӉ࿶ֈҌјኅྵ˧צρᖪ၆ 30ƨ۞ԡ cm2Ă൴ֈഇݒྵ 20ƨॡഴ͌ 23.01 398.98 ޘх߿த࠹༊ҲĂЧᖪഇ۞൴ֈ͟ᇴ࠰ᐌ໢۞ ੼҃ᆧ ͟Ăଘх߿தΪѣ 18%Ăјኅវݭྵ̈Ăӈֹ̿ޘ੼҃ᒺൺĂ൴ֈిத̂кᐌ໢̿ ΐĂͽ 20 ̈́ 25ƨ۞х߿தă൴ֈ͟ᇴ̈́൴ֈ ͽ 100 ࣎Ӊϡ 66.66 ͟࿶ዳ׌΃Ăٙ଀۞јኅ தྵָĄੵӉഇγĂ̂Ϩ೹ኅЧᖪഇ۞൴ֈ ณΪѣ 36 ੸ĂࢴཧณΐࢺĂ̪̙̈́д 20ƨॡి

ௐαഇסˬ˩˟ᖪௐٿέ៉ 348 ੸јኅயณָĄ of Taiwanese . Newton 67 זϡ 56.34 ͟࿶ዳ˘΃଀ .Ϗ൴ण΍ˠ̍࿶फ़Ă׎ρ Publishing, Taipei, Taiwan, 474 ppإϨ೹ኅ̂ٺϤ .(࠰ᛳ͇൒ĂЯѩд࿶ዳ (in Chineseۏᖪࢴਨ̈́јᖪᄘ໚ങ Ho, J. Z., and L. H. Chang. 1998. The ڍĂϤ˯ࢗඕۏॡ౵ࢦࢋ۞ಶߏჯ޺֖ณ۞ࢴ Ă֭ Butterflies of Tainan. Published byޘΞۢ࿶ዳώ჌ॡͽ 20ƨࠎྵዋЪ۞໢ ཧͯ Taiwan Provincial Department ofۏΞҤზ࿶ֈؠณᖪᇴॡٙᅮ۞૙͹ങ ࿶ዳᓄതԫఙĂͽ̈́ Agriculture and Forestry, Taiwan̰ވณĄ༊൒ѣᙯώ჌۞ ,Հซ˘Վ۞ࡁտĄ Endemic Species Research Instituteޞপّ͞ࢬĂ̪ѣۏ׎Ϡ Nantou County, Taiwan, 312 pp. (in ᇬ!!ᗂ Chinese). Hsu, Y. F. 1999. Butterflies of Taiwan. -ҋᄂ Volume 1. Published by the Fongפώྏរٙϡ̝̂Ϩ೹ኅᖪ໚Ăܼ ᜕րć˫ Huan-Ku Birds Park of Taiwanܲۏࡊԫ̂ጯങڌލݑొ۞઼ϲ៉ -ώቇٚᄋ׌Ҝᆶቇ؎ࣶ෱͕޽ϔ́೩ֻᚗෳ Provincial Government, Nantou, Tai .(࡭ᔁĄ wan, 344 pp. (in Chinese׀˘ຍ֍Ăᖰѩ۞ Kim, C. S., R. Nishida, H. Fukami, F. Abe, ЕҢМᝦ and T. Yamauchi. 1994. 14-Deoxypar- sonsianidine N-oxide: a pyrrolizidine Abe, F., and T. Yamauchi. 1987. Parsonine, alkaloid sequestered by the giant a pyrrolizidine alkaloid from Par- danaine butterfly, Idea leuconoe. sonsia laevigata. Chem. Pharm. Bull. Biosci. Biotech. Biochem. 58: 980 35: 4661-4663. -981. Ackery, P. R., and R. I. Vane-Wright. 1984. Kuan, C. C. 1987. Insect Physiology. Milkweed Butterflies: Their Cladi- Edited by National Institute for stics and Biology. Cornell Univ. Compilation and Translation, Nan Press, New York, 425 pp. Sang Tang Publishing, Taipei, Tai- Chang, B. S., and P. C. Tsai. 1984. The wan, 692 pp. (in Chinese). World of Taiwanese Butterflies. Lee, J. Y., and Y. C. Chang. 1988. The Vacation Publishing, Taipei, Taiwan, Illustrations of Butterflies in Taiwan. 183 pp. (in Chinese). Taiwan Museum, Taipei, Taiwan, 142 Chen, S. C., and S. C. Ou-Yang. 2002. pp. (in Chinese). Effect of temperature on the develop- Liao, J. C. 1977. The relations between ment of Radena similis similis L. plants and butterflies in Taiwan. (Lepidoptera: Danaidae). Formosan Bulletin of the Experimental Forest Entomol. 22(3): 237-248 (in Chinese). of National Taiwan Univ, Taipei, Hamano, E. 1986. Ecological Encyclopedia Taiwan, no. 119, pp. 137-200 (in

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 349 Chinese). Su, C. Y. 1985. Influence of temperature Morita, M., and S. Tojo. 1985. on life stages and leaf consumption of Relationship between starvation and Porthesia taiwana and Orgyia supernumerary ecdysis and recogni- posticus on soybean leaf. Chinese J. tion of the penultimate-larval instar Entomol. 5(1): 53-61 (in Chinese). in the common cutworm, Spodoptera Tsai, P. C. 1992. Introduction to the litura. Insect Physiol. 31: 307-313. Ecology of Butterflies. Kenting Nishida, R., C. S. Kim, H. Fukami, and R. National Park Education Series no. 3, Irie. 1991. Ideamine N-oxides: pyrroli- 2nd ed., Kenting Publishing, Ping- zidine alkaloids sequestered by a tung, Taiwan, 183 pp. (in Chinese). danaine butterfly, Idea leuconoe. Wang, H. Y., and J. Y. Lee. 1998. Agric. Biol. Chem. 55: 1787-1797. Lepidoptera of Guisandao Islet. Ilan Nishida, R., S. Schulz, C. S. Kim, H. County Museum of Natural History, Fukami, Y. Kuwahara, K. Honda, and Ilan, Taiwan, 166 pp. (in Chinese). N. Hayashi. 1996. Male sex phero- Zhou, C. Q. 1990. Insect temperature mone of a giant danaine butterfly, range. p. 214-215. In: S. L. Tsai, ed. Idea leuconoe. J. Chem. Ecol. 22(5): Agricultural Encyclopaedia of China, 949-972. Volume Insect. Agriculture Pub- Ou-Yang, S. C., and S. C. Chen. 1999. The lishing. Beijing, China, 598 pp. (in life history of giant danaine butterfly, Chinese). Idea leuconoe clara (Butler). J. Taiwan Mus. 52(1): 13-26. ԝӇР෈Ȉ2003 ԑ 6 Т 18 Р Р෈Ȉ2003 ԑ 12 Т 20 Рڧ௥

ௐαഇסˬ˩˟ᖪௐٿέ៉ 350 Effect of Temperature on Development of Idea leuconoe clara (Butler) (Lepidoptera: Danaidae)

Su-Chiung Chen* Department of Horticulture, National Ilan University, 1, Sec. 1, Shen-Lung Road, Ilan 260, Taiwan Sheng-Chih Ou-Yang Department of Zoology, National Taiwan Museum, 48, Hsuchow Road, Taipei 100, Taiwan Shiau-Yuan Wang, Shiao-Yi Huang, Sheng-Ru Ho, Shin-Jie Huang, Chja-You Shih, Wen-Jie Chen Department of Horticulture, National Ilan Universityy, 1, Sec. 1, Shen-Lung Road, Ilan 260, Taiwan

ABSTRACT In the present study, fresh eggs of the giant danaine butterfly, Idea leuconoe clara (Butler), were collected from the host in a net room. Fresh eggs were placed in a growth chamber under conditions of 15, 20, 25, 30, and 35℃, 80±5% RH, and with a photoperiod of 14 h of light and 10 h of darkness. Hatching larvae were individually reared with leaves of Parsonia laevigata for a series of observations on the development of the butterfly under different temperatures. The results are summarized as follows. No eggs hatched at 35℃. The hatching rate was 63% at 15℃. The highest hatching rates were 86% at 20 ℃, and 85% at 30℃. The highest survival rate from egg to adult was 67% at 20 ℃, and this decreased to 18% at 30℃. Duration in days of life stages decreased as the temperature was raised from 15 to 30℃. In addition to the egg stage, the development rates of the various life stages and rearing temperatures were correlated by linear regression. Accordingly, as the rearing temperature increased, the development rate increased at the same time. The lower developmental threshold temperatures for the development of eggs, 1st to 5th instar larvae, pupae, and the egg-to-adult stages were estimated to be 6.92, 10.17, 10.12, 8.43, 7.07, 6.77, 9.66, and 8.46℃, respectively. The accumulative effective temperatures of eggs, 1st to 5th instar larvae, and pupae were 108.24, 46.49, 42.57, 54.92, 70.86, 135.74, and 236.45 degree-days, respectively. It required 688.18 degree-days for the development from egg to adult. The threshold value of the average head capsule width for development into the last instar larvae was 2.95 mm. The common logarithms of head capsule width of the larval stage and instars of larvae were correlated using linear regression. Accordingly, as the larval instar increased, the logarithms of the head capsule width increased at the same time from 1.45 to 1.54 units. This species followed Dyar’s law. The body length of larval stages increased as the larval instar grew. The rearing temperature influenced the life stage size of the giant danaine butterfly. The largest values of body length of the larva, pupal weight, pupal body length and width, and wing length and width of adults reared at from 15 to 30 ℃ occurred at 20 ℃ . The greatest leaf consumption occurred with fifth instar larvae under 15, 20, 25, and 30 ℃ rearing conditions. More than 80% leaf consumption was recorded for fifth instar larvae. Leaf consumption increased as the larval instar grew. The total leaf areas consumed at 15, 20, 25, and 30℃ were 375.30, 457.21, 429.56, and 398.98 cm2, respectively. According to the results, 20℃ was the best rearing temperature for the giant danaine butterfly. The results provide information for educational materials and the mass production of this butterfly.

Key words: giant danaine butterfly, Idea leuconoe clara, temperature, development, head capsule width, leaf consumption

໢ޘ၆̂Ϩ೹ኅ൴ֈ̝ᇆᜩ 351