Exploiting Quantum Teleportation in Quantum Circuit Mapping
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marching Towards Quantum Supremacy
Princeton Center for Theoretical Science The Princeton Center for Theoretical Science is dedicated to exploring the frontiers of theory in the natural sciences. Its purpose is to promote interaction among theorists and seed new directions in research, especially in areas cutting across traditional disciplinary boundaries. The Center is home to a corps of Center Postdoctoral Fellows, chosen from nominations made by senior theoretical scientists around the world. A group of senior Faculty Fellows, chosen from science and engineering departments across the campus, are responsible for guiding the Center. Center activities include focused topical programs chosen from proposals by Princeton faculty across the natural sciences. The Center is located on the fourth floor of Jadwin Hall, in the heart of the campus “science neighborhood”. The Center hopes to become the focus for innovation and cross-fertilization in theoretical natural science at Princeton. Faculty Fellows Igor Klebanov, Director Ned Wingreen, Associate Director Marching Towards Quantum Andrei Bernevig Jeremy Goodman Duncan Haldane Supremacy Andrew Houck Mariangela Lisanti Thanos Panagiotopoulos Frans Pretorius November 13-15, 2019 Center Postdoctoral Fellows Ricard Alert-Zenon 2018-2021 PCTS Seminar Room Nathan Benjamin 2018-2021 Andrew Chael 2019-2022 Jadwin Hall, Fourth Floor, Room 407 Amos Chan 2019-2022 Fani Dosopoulou 2018-2021 Biao Lian 2017-2020 Program Organizers Vladimir Narovlansky 2019-2022 Sergey Frolov Sabrina Pasterski 2019-2022 Abhinav Prem 2018-2021 Michael Gullans -
BCG) Is a Global Management Consulting Firm and the World’S Leading Advisor on Business Strategy
The Next Decade in Quantum Computing— and How to Play Boston Consulting Group (BCG) is a global management consulting firm and the world’s leading advisor on business strategy. We partner with clients from the private, public, and not-for-profit sectors in all regions to identify their highest-value opportunities, address their most critical challenges, and transform their enterprises. Our customized approach combines deep insight into the dynamics of companies and markets with close collaboration at all levels of the client organization. This ensures that our clients achieve sustainable competitive advantage, build more capable organizations, and secure lasting results. Founded in 1963, BCG is a private company with offices in more than 90 cities in 50 countries. For more information, please visit bcg.com. THE NEXT DECADE IN QUANTUM COMPUTING— AND HOW TO PLAY PHILIPP GERBERT FRANK RUESS November 2018 | Boston Consulting Group CONTENTS 3 INTRODUCTION 4 HOW QUANTUM COMPUTERS ARE DIFFERENT, AND WHY IT MATTERS 6 THE EMERGING QUANTUM COMPUTING ECOSYSTEM Tech Companies Applications and Users 10 INVESTMENTS, PUBLICATIONS, AND INTELLECTUAL PROPERTY 13 A BRIEF TOUR OF QUANTUM COMPUTING TECHNOLOGIES Criteria for Assessment Current Technologies Other Promising Technologies Odd Man Out 18 SIMPLIFYING THE QUANTUM ALGORITHM ZOO 21 HOW TO PLAY THE NEXT FIVE YEARS AND BEYOND Determining Timing and Engagement The Current State of Play 24 A POTENTIAL QUANTUM WINTER, AND THE OPPORTUNITY THEREIN 25 FOR FURTHER READING 26 NOTE TO THE READER 2 | The Next Decade in Quantum Computing—and How to Play INTRODUCTION he experts are convinced that in time they can build a Thigh-performance quantum computer. -
Unconditional Quantum Teleportation
R ESEARCH A RTICLES our experiment achieves Fexp 5 0.58 6 0.02 for the field emerging from Bob’s station, thus Unconditional Quantum demonstrating the nonclassical character of this experimental implementation. Teleportation To describe the infinite-dimensional states of optical fields, it is convenient to introduce a A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, pair (x, p) of continuous variables of the electric H. J. Kimble,* E. S. Polzik field, called the quadrature-phase amplitudes (QAs), that are analogous to the canonically Quantum teleportation of optical coherent states was demonstrated experi- conjugate variables of position and momentum mentally using squeezed-state entanglement. The quantum nature of the of a massive particle (15). In terms of this achieved teleportation was verified by the experimentally determined fidelity analogy, the entangled beams shared by Alice Fexp 5 0.58 6 0.02, which describes the match between input and output states. and Bob have nonlocal correlations similar to A fidelity greater than 0.5 is not possible for coherent states without the use those first described by Einstein et al.(16). The of entanglement. This is the first realization of unconditional quantum tele- requisite EPR state is efficiently generated via portation where every state entering the device is actually teleported. the nonlinear optical process of parametric down-conversion previously demonstrated in Quantum teleportation is the disembodied subsystems of infinite-dimensional systems (17). The resulting state corresponds to a transport of an unknown quantum state from where the above advantages can be put to use. squeezed two-mode optical field. -
Quantum Error Modelling and Correction in Long Distance Teleportation Using Singlet States by Joe Aung
Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2002 @ Massachusetts Institute of Technology 2002. All rights reserved. Author ................... " Department of Electrical Engineering and Computer Science May 21, 2002 72-1 14 Certified by.................. .V. ..... ..'P . .. ........ Jeffrey H. Shapiro Ju us . tn Professor of Electrical Engineering Director, Research Laboratory for Electronics Thesis Supervisor Accepted by................I................... ................... Arthur C. Smith Chairman, Department Committee on Graduate Students BARKER MASSACHUSE1TS INSTITUTE OF TECHNOLOGY JUL 3 1 2002 LIBRARIES 2 Quantum Error Modelling and Correction in Long Distance Teleportation using Singlet States by Joe Aung Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2002, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Under a multidisciplinary university research initiative (MURI) program, researchers at the Massachusetts Institute of Technology (MIT) and Northwestern University (NU) are devel- oping a long-distance, high-fidelity quantum teleportation system. This system uses a novel ultrabright source of entangled photon pairs and trapped-atom quantum memories. This thesis will investigate the potential teleportation errors involved in the MIT/NU system. A single-photon, Bell-diagonal error model is developed that allows us to restrict possible errors to just four distinct events. The effects of these errors on teleportation, as well as their probabilities of occurrence, are determined. -
Bidirectional Quantum Controlled Teleportation by Using Five-Qubit Entangled State As a Quantum Channel
Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel Moein Sarvaghad-Moghaddam1,*, Ahmed Farouk2, Hussein Abulkasim3 to each other simultaneously. Unfortunately, the proposed Abstract— In this paper, a novel protocol is proposed for protocol required additional quantum and classical resources so implementing BQCT by using five-qubit entangled states as a that the users required two-qubit measurements and applying quantum channel which in the same time, the communicated users global unitary operations. There are many approaches and can teleport each one-qubit state to each other under permission prototypes for the exploitation of quantum principles to secure of controller. The proposed protocol depends on the Controlled- the communication between two parties and multi-parties [18, NOT operation, proper single-qubit unitary operations and single- 19, 20, 21, 22]. While these approaches used different qubit measurement in the Z-basis and X-basis. The results showed that the protocol is more efficient from the perspective such as techniques for achieving a private communication among lower shared qubits and, single qubit measurements compared to authorized users, but most of them depend on the generation of the previous work. Furthermore, the probability of obtaining secret random keys [23, 2]. In this paper, a novel protocol is Charlie’s qubit by eavesdropper is reduced, and supervisor can proposed for implementing BQCT by using five-qubit control one of the users or every two users. Also, we present a new entanglement state as a quantum channel. In this protocol, users method for transmitting n and m-qubits entangled states between may transmit an unknown one-qubit quantum state to each other Alice and Bob using proposed protocol. -
Chapter 3 Quantum Circuit Model of Computation
Chapter 3 Quantum Circuit Model of Computation 3.1 Introduction In the previous chapter we saw that any Boolean function can be computed from a reversible circuit. In particular, in principle at least, this can be done from a small set of universal logical gates which do not dissipate heat dissi- pation (so we have logical reversibility as well as physical reversibility. We also saw that quantum evolution of the states of a system (e.g. a collection of quantum bits) is unitary (ignoring the reading or measurement process of the bits). A unitary matrix is of course invertible, but also conserves entropy (at the present level you can think of this as a conservation of scalar prod- uct which implies conservation of probabilities and entropies). So quantum evolution is also both \logically" and physically reversible. The next natural question is then to ask if we can use quantum operations to perform computational tasks, such as computing a Boolean function? Do the principles of quantum mechanics bring in new limitations with respect to classical computations? Or do they on the contrary bring in new ressources and advantages? These issues were raised and discussed by Feynman, Benioff and Manin in the early 1980's. In principle QM does not bring any new limitations, but on the contrary the superposition principle applied to many particle systems (many qubits) enables us to perform parallel computations, thereby speed- ing up classical computations. This was recognized very early by Feynman who argued that classical computers cannot simulate efficiently quantum me- chanical processes. The basic reason is that general quantum states involve 1 2 CHAPTER 3. -
Arxiv:2009.07590V2 [Quant-Ph] 9 Dec 2020
Emulating quantum teleportation of a Majorana zero mode qubit He-Liang Huang,1, 2, 3 Marek Naro˙zniak,4, 5 Futian Liang,1, 2, 3 Youwei Zhao,1, 2, 3 Anthony D. Castellano,1, 2, 3 Ming Gong,1, 2, 3 Yulin Wu,1, 2, 3 Shiyu Wang,1, 2, 3 Jin Lin,1, 2, 3 Yu Xu,1, 2, 3 Hui Deng,1, 2, 3 Hao Rong,1, 2, 3 6, 7, 8 1, 2, 3 4, 8, 9, 5 1, 2, 3, 1, 2, 3 Jonathan P. Dowling ∗, Cheng-Zhi Peng, Tim Byrnes, Xiaobo Zhu, † and Jian-Wei Pan 1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China 4New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China 5Department of Physics, New York University, New York, NY 10003, USA 6Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA 7Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 8NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China 9State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, Shanghai 200062, China (Dated: December 10, 2020) Topological quantum computation based on anyons is a promising approach to achieve fault- tolerant quantum computing. -
Luigi Frunzio
THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SUD XI spécialité: Physique des solides présentée par: Luigi Frunzio pour obtenir le grade de DOCTEUR de l’UNIVERSITE PARIS-SUD XI Sujet de la thèse: Conception et fabrication de circuits supraconducteurs pour l'amplification et le traitement de signaux quantiques soutenue le 18 mai 2006, devant le jury composé de MM.: Michel Devoret Daniel Esteve, President Marc Gabay Robert Schoelkopf Rapporteurs scientifiques MM.: Antonio Barone Carlo Cosmelli ii Table of content List of Figures vii List of Symbols ix Acknowledgements xvii 1. Outline of this work 1 2. Motivation: two breakthroughs of quantum physics 5 2.1. Quantum computation is possible 5 2.1.1. Classical information 6 2.1.2. Quantum information unit: the qubit 7 2.1.3. Two new properties of qubits 8 2.1.4. Unique property of quantum information 10 2.1.5. Quantum algorithms 10 2.1.6. Quantum gates 11 2.1.7. Basic requirements for a quantum computer 12 2.1.8. Qubit decoherence 15 2.1.9. Quantum error correction codes 16 2.2. Macroscopic quantum mechanics: a quantum theory of electrical circuits 17 2.2.1. A natural test bed: superconducting electronics 18 2.2.2. Operational criteria for quantum circuits 19 iii 2.2.3. Quantum harmonic LC oscillator 19 2.2.4. Limits of circuits with lumped elements: need for transmission line resonators 22 2.2.5. Hamiltonian of a classical electrical circuit 24 2.2.6. Quantum description of an electric circuit 27 2.2.7. Caldeira-Leggett model for dissipative elements 27 2.2.8. -
ANGLAIS Durée : 2 Heures
CONCOURS D’ADMISSION 2021 FILIERE UNIVERSITAIRE INTERNATIONALE FORMATION FRANCOPHONE FUI-FF_ Session 2_Printemps Épreuve n°4 ANGLAIS Durée : 2 heures L’utilisation de dictionnaires et traducteurs électroniques n’est pas autorisée pour cette épreuve Physicists Need to Be More Careful with How They Name Things The popular term “quantum supremacy,” which refers to quantum computers outperforming classical ones, is uncomfortably reminiscent of “white supremacy” Adapted from Scientific American, By Ian Durham, Daniel Garisto, Karoline Wiesner on February 20, 2021 In 2012, quantum physicist John Preskill wrote, “We hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world.” Less than a decade later, two quantum computing systems have met that mark: Google’s Sycamore, and the University of Science and Technology of China’s Jiǔzhāng. Both solved 5 narrowly designed problems that are, so far as we know, impossible for classical computers to solve quickly. How quickly? How “impossible” ? To solve a problem that took Jiǔzhāng 200 seconds, even the fastest supercomputers are estimated to take at least two billion years. Describing what then may have seemed a far-off goal, Preskill gave it a name: “quantum supremacy.” In a blog post at the time, he explained “I’m not completely happy with this term, 10 and would be glad if readers could suggest something better.” We’re not happy with it either, and we believe that the physics community should be more careful with its language, for both social and scientific reasons. Even in the abstruse realms of matter and energy, language matters because physics is done by people. -
Optimization of Reversible Circuits Using Toffoli Decompositions with Negative Controls
S S symmetry Article Optimization of Reversible Circuits Using Toffoli Decompositions with Negative Controls Mariam Gado 1,2,* and Ahmed Younes 1,2,3 1 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21568, Egypt; [email protected] 2 Academy of Scientific Research and Technology(ASRT), Cairo 11516, Egypt 3 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK * Correspondence: [email protected]; Tel.: +203-39-21595; Fax: +203-39-11794 Abstract: The synthesis and optimization of quantum circuits are essential for the construction of quantum computers. This paper proposes two methods to reduce the quantum cost of 3-bit reversible circuits. The first method utilizes basic building blocks of gate pairs using different Toffoli decompositions. These gate pairs are used to reconstruct the quantum circuits where further optimization rules will be applied to synthesize the optimized circuit. The second method suggests using a new universal library, which provides better quantum cost when compared with previous work in both cost015 and cost115 metrics; this proposed new universal library “Negative NCT” uses gates that operate on the target qubit only when the control qubit’s state is zero. A combination of the proposed basic building blocks of pairs of gates and the proposed Negative NCT library is used in this work for synthesis and optimization, where the Negative NCT library showed better quantum cost after optimization compared with the NCT library despite having the same circuit size. The reversible circuits over three bits form a permutation group of size 40,320 (23!), which Citation: Gado, M.; Younes, A. -
Multi-Mode Ultra-Strong Coupling in Circuit Quantum Electrodynamics
www.nature.com/npjqi ARTICLE OPEN Multi-mode ultra-strong coupling in circuit quantum electrodynamics Sal J. Bosman1, Mario F. Gely1, Vibhor Singh2, Alessandro Bruno3, Daniel Bothner1 and Gary A. Steele1 With the introduction of superconducting circuits into the field of quantum optics, many experimental demonstrations of the quantum physics of an artificial atom coupled to a single-mode light field have been realized. Engineering such quantum systems offers the opportunity to explore extreme regimes of light-matter interaction that are inaccessible with natural systems. For instance the coupling strength g can be increased until it is comparable with the atomic or mode frequency ωa,m and the atom can be coupled to multiple modes which has always challenged our understanding of light-matter interaction. Here, we experimentally realize a transmon qubit in the ultra-strong coupling regime, reaching coupling ratios of g/ωm = 0.19 and we measure multi-mode interactions through a hybridization of the qubit up to the fifth mode of the resonator. This is enabled by a qubit with 88% of its capacitance formed by a vacuum-gap capacitance with the center conductor of a coplanar waveguide resonator. In addition to potential applications in quantum information technologies due to its small size, this architecture offers the potential to further explore the regime of multi-mode ultra-strong coupling. npj Quantum Information (2017) 3:46 ; doi:10.1038/s41534-017-0046-y INTRODUCTION decreasing gate times20 as well as the performance of quantum 21 Superconducting circuits such as microwave cavities and Joseph- memories. With very strong coupling rates, the additional modes son junction based artificial atoms1 have opened up a wealth of of an electromagnetic resonator become increasingly relevant, new experimental possibilities by enabling much stronger light- and U/DSC can only be understood in these systems if the multi- matter coupling than in analog experiments with natural atoms2 mode effects are correctly modeled. -
Concentric Transmon Qubit Featuring Fast Tunability and an Anisotropic Magnetic Dipole Moment
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment Cite as: Appl. Phys. Lett. 108, 032601 (2016); https://doi.org/10.1063/1.4940230 Submitted: 13 October 2015 . Accepted: 07 January 2016 . Published Online: 21 January 2016 Jochen Braumüller, Martin Sandberg, Michael R. Vissers, Andre Schneider, Steffen Schlör, Lukas Grünhaupt, Hannes Rotzinger, Michael Marthaler, Alexander Lukashenko, Amadeus Dieter, Alexey V. Ustinov, Martin Weides, and David P. Pappas ARTICLES YOU MAY BE INTERESTED IN A quantum engineer's guide to superconducting qubits Applied Physics Reviews 6, 021318 (2019); https://doi.org/10.1063/1.5089550 Planar superconducting resonators with internal quality factors above one million Applied Physics Letters 100, 113510 (2012); https://doi.org/10.1063/1.3693409 An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts Applied Physics Letters 111, 072601 (2017); https://doi.org/10.1063/1.4990491 Appl. Phys. Lett. 108, 032601 (2016); https://doi.org/10.1063/1.4940230 108, 032601 © 2016 AIP Publishing LLC. APPLIED PHYSICS LETTERS 108, 032601 (2016) Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment Jochen Braumuller,€ 1,a) Martin Sandberg,2 Michael R. Vissers,2 Andre Schneider,1 Steffen Schlor,€ 1 Lukas Grunhaupt,€ 1 Hannes Rotzinger,1 Michael Marthaler,3 Alexander Lukashenko,1 Amadeus Dieter,1 Alexey V. Ustinov,1,4 Martin Weides,1,5 and David P. Pappas2 1Physikalisches Institut, Karlsruhe Institute of Technology,