Red giants with brown dwarfs companions

Andrzej Niedzielski

Toruń Center for Astronomy, Nicolaus Copernicus University in Toruń, Poland around evolved

1992 – Wolszczan & Frail - first around other PSR B1257+12 b (c, d).

1995 – Mayor & Queloz - first planet around a solar-type star 51 Peg b.

2002 – Frink et al. - first planet around a giant – ι Dra b. Planets around evolved stars

K giants are RV variable stars (Walker et al. 1989 ApJ 343, 21) (30-300 m/s rms)

Short period variations are due to p-mode oscillation (Hatzes & Cochran 1998). Periods and amplitudes may be estimated from Kjeldsen & Bedding (1995) scaling relations: amplitudes (~L/M): of up to ~200 ms-1 2 ½ periods (~(R (Teff) )/M): ~hours-days When unresolved introduce noise (jitter) to RV.

Long-period variations may be due to: non-radial pulsations (?), rotation-induced activity (spots), low- companions.

Evolutionary track overlap. Stellar parameters (mass, age) and evolutionary stage uncertain. Planets around evolved stars

Why bother?

• Planets around M/M☉ >1 stars.

• Star-planet interactions.

• The future of the Solar System. The PennState-Toruń Planet Search planets

Star induced jitter may be huge in giants

Niedzielski, Wolszczan et al. 2015 The PennState-Toruń Planet Search (PTPS) sample. –26–

The PennState-Toruń Planet Search planets

Table 1. Stellar parameters of program stars. BD+ 49 828 b Parameter BD+49828 HD95127 HD216536

V [mag] 9.38 0.02 8.15 0.01 9.23 0.02 ± ± ± Spectral type K0–33– K0 K0 ⇡[mas] — 3.06 0.99 — ± T [K] 4943 30 4218 69 4639 45 e↵ ± ± ± log g 2.85 0.09 1.78 0.32.36 0.21 ± ± ± [Fe/H] 0.19 0.06 0.18 0.05 0.17 0.09 1 ± ± ± v sin i [kms ]1.7 0.82.6 0.72.6 0.5 rot ? ± ± ± log L?/L 1.47 0.13 2.28 0.38 1.80 0.21 ± ± ± M?/ M 1.52 0.22 1.20 0.22 1.36 0.38 ± ± ± R?/ R 7.6 1.320912.5 4.0 ± ± ± log (Age) [yr] 9.37 18 9.74 0.27 9.58 0.33 1 ± ± ± P (sin i?) [days] 226 114 389 204 243 91 1 +3±.1 +79± +15± Kosc [ms ]4.5 1.8 37 25 11 6 +0.08 +1.73 +0.56 Posc [days] 0.13 0.05 1.08 0.81 0.39 0.25 Table 5. Orbital parameters of BD+49 828 b, HD 95127 b and HD 21653 b.

Parameter BD+49828b HD95127b HD21653b

+300 +5 +0.7 p [d] 2590 180 482 5 148.6 0.7 +200 +50 +11 T0 [MJD] 55470 170 53200 50 53587 11 1 +6.2 +16 +8 K [m s ]18.8 2.0 116 9 50 4 +0 .24 +0 .15 +0 .12 e 0.35 0.10 0.11 0.06 0.38 0.10 +32 +37 +21 ! [deg] 170 30 40 40 270 20 +0 .4 +0.61 +0 .20 m2 sin i [MJ]1.6 0.2 5.01 0.44 1.47 0.12 +0 .32 +0 .01 +0.002 a [AU] 4.2 0.2 1.28 0.01 0.609 0.002 1 +1.4 +3.1 +0.7 V0 [m s ]1.1 0.5 10.5 2.3 4.9 2.1 2 ⌫ 1.35 1.14 1.29 [ms 1]11.650.923.0 pRV 1 +0.35 jitter [ m s ]4.44 1.00 47.517.9 Nobs 42 41 47 Niedzielski, Wolszczan et al. 2015 –26–

The PennState-Toruń Planet Search planets

Table 1. Stellar parameters of program stars. HD 95127 b Parameter BD+49828 HD95127 HD216536

V [mag] 9.38 0.02 8.15 0.01 9.23 0.02 ± ± ± Spectral type K0–33– K0 K0 ⇡[mas] — 3.06 0.99 — ± T [K] 4943 30 4218 69 4639 45 e↵ ± ± ± log g 2.85 0.09 1.78 0.32.36 0.21 ± ± ± [Fe/H] 0.19 0.06 0.18 0.05 0.17 0.09 1 ± ± ± v sin i [kms ]1.7 0.82.6 0.72.6 0.5 rot ? ± ± ± log L?/L 1.47 0.13 2.28 0.38 1.80 0.21 ± ± ± M?/ M 1.52 0.22 1.20 0.22 1.36 0.38 ± ± ± R?/ R 7.6 1.320912.5 4.0 ± ± ± log (Age) [yr] 9.37 18 9.74 0.27 9.58 0.33 1 ± ± ± P (sin i?) [days] 226 114 389 204 243 91 1 +3±.1 +79± +15± Kosc [ms ]4.5 1.8 37 25 11 6 +0.08 +1.73 +0.56 Posc [days] 0.13 0.05 1.08 0.81 0.39 0.25 Table 5. Orbital parameters of BD+49 828 b, HD 95127 b and HD 21653 b.

Parameter BD+49828b HD95127b HD21653b

+300 +5 +0.7 p [d] 2590 180 482 5 148.6 0.7 +200 +50 +11 T0 [MJD] 55470 170 53200 50 53587 11 1 +6.2 +16 +8 K [m s ]18.8 2.0 116 9 50 4 +0 .24 +0 .15 +0 .12 e 0.35 0.10 0.11 0.06 0.38 0.10 +32 +37 +21 ! [deg] 170 30 40 40 270 20 +0 .4 +0.61 +0 .20 m2 sin i [MJ]1.6 0.2 5.01 0.44 1.47 0.12 +0 .32 +0 .01 +0.002 a [AU] 4.2 0.2 1.28 0.01 0.609 0.002 1 +1.4 +3.1 +0.7 V0 [m s ]1.1 0.5 10.5 2.3 4.9 2.1 2 ⌫ 1.35 1.14 1.29 [ms 1]11.650.923.0 pRV 1 +0.35 jitter [ m s ]4.44 1.00 47.517.9 Nobs 42 41 47 Niedzielski, Wolszczan et al. 2015 –26–

The PennState-Toruń Planet Search planets

Table 1. Stellar parameters of program stars. HD 216536 b Parameter BD+49828 HD95127 HD216536

V [mag] 9.38 0.02 8.15 0.01 9.23 0.02 ± ± ± Spectral type K0–33– K0 K0 ⇡[mas] — 3.06 0.99 — ± T [K] 4943 30 4218 69 4639 45 e↵ ± ± ± log g 2.85 0.09 1.78 0.32.36 0.21 ± ± ± [Fe/H] 0.19 0.06 0.18 0.05 0.17 0.09 1 ± ± ± v sin i [kms ]1.7 0.82.6 0.72.6 0.5 rot ? ± ± ± log L?/L 1.47 0.13 2.28 0.38 1.80 0.21 ± ± ± M?/ M 1.52 0.22 1.20 0.22 1.36 0.38 ± ± ± R?/ R 7.6 1.320912.5 4.0 ± ± ± log (Age) [yr] 9.37 18 9.74 0.27 9.58 0.33 1 ± ± ± P (sin i?) [days] 226 114 389 204 243 91 1 +3±.1 +79± +15± Kosc [ms ]4.5 1.8 37 25 11 6 +0.08 +1.73 +0.56 Posc [days] 0.13 0.05 1.08 0.81 0.39 0.25 Table 5. Orbital parameters of BD+49 828 b, HD 95127 b and HD 21653 b.

Parameter BD+49828b HD95127b HD21653b

+300 +5 +0.7 p [d] 2590 180 482 5 148.6 0.7 +200 +50 +11 T0 [MJD] 55470 170 53200 50 53587 11 1 +6.2 +16 +8 K [m s ]18.8 2.0 116 9 50 4 +0 .24 +0 .15 +0 .12 e 0.35 0.10 0.11 0.06 0.38 0.10 +32 +37 +21 ! [deg] 170 30 40 40 270 20 +0 .4 +0.61 +0 .20 m2 sin i [MJ]1.6 0.2 5.01 0.44 1.47 0.12 +0 .32 +0 .01 +0.002 a [AU] 4.2 0.2 1.28 0.01 0.609 0.002 1 +1.4 +3.1 +0.7 V0 [m s ]1.1 0.5 10.5 2.3 4.9 2.1 2 ⌫ 1.35 1.14 1.29 [ms 1]11.650.923.0 pRV 1 +0.35 jitter [ m s ]4.44 1.00 47.517.9 Nobs 42 41 47 Niedzielski, Wolszczan et al. 2015 A. Niedzielski et al.: Tracking Advanced Planetary Systems with HARPS-N (TAPAS). The PennState-Toruń Planet Search planets

A. Niedzielski et al.: Tracking Advanced Planetary Systems with HARPS-N (TAPAS).

building a complete picture of planet formation and evolution for Table 1. Summary of the available data on TYC 1422-614-1. TYC 1422several reasons.614 First, 1 they b, allow toc extend the reach of the most versatile RV technique–not applicable on the MS due to the high Parameter value reference e↵ective temperature of the stars and their fast rotation rates–to V [mag] 10.21 Perryman & ESA (1997) o B-V [mag] 0.95 0.085 Perryman & ESA (1997) objects with significantly larger than solar (e.g UMa, a ± 3M giant with a planet - Sato et al. 2012). Second, the planetary (B-V)0 [mag] 0.997 Zielinski´ et al. (2012) systems around evolved stars are much older than those around MV [mag] 0.81 Zielinski´ et al. (2012) MS stars and therefore suitable for long term dynamical stabil- Tef f [K] 4806 45 Zielinski´ et al. (2012) logg 2.85 ±0.18 Zielinski´ et al. (2012) ity considerations (Debes & Sigurdsson 2002; Veras & Mustill [Fe/H] -0.20± 0.08 Zielinski´ et al. (2012) 2013; Mustill et al. 2014). Planetary systems around giants are 1 ± RV [kms ] 37.368 0.027 Zielinski´ et al. (2012) also subject to changes induced by (Villaver & CCF 1 ± vrot sin i? [kms ] 1.4 0.7 Nowak (2012) Livio 2007, 2009; Villaver et al. 2014), and therefore suitable to A(Li) < 1±.1 Adamow´ et al. (2014) studies of star - planet interactions (e.g. Adamow´ et al. 2012), M/M 1.15 0.18 this work and last but not least, evolved planetary systems carry informa- log(L/L ) 1.35±0.16 this work tion on the initial population of planetary systems to be found Fig.R 2./RKeplerian best fit of6.85 the±1.38 two-planetary this workmodel to the observed RV around White Dwarfs (Farihi et al. 2010). of TYClog age 1422-614-1. [yr] HET 9.77 &± HRS0.22 data are this presented work in red and TNG & ± HARPS-Nd [pc] data in green. 759The estimated181 jitter calculated due to from p-mode MV oscillations 1 ±+3.718 It is no surprise then that several projects devoted to hasV beenosc [ms added ] to the uncertainties. 4.555 1.993 this work +0.102 RV planet searches orbiting RGs were launched: McDonald Posc [d] 0.141 0.064 this work Fig. 3. Illustration of the bootstrapping analysis (105 realizations) of Observatory Planet Search (Cochran & Hatzes 1993; Hatzes Table 4. Keplerian orbital parameters of TYC 1422-614-1 b and c. & Cochran 1993), Okayama Planet Search (Sato et al. 2003), the Keplerian parameters of TYC 1422-614-1 c uncertainties, a 2D his- Tautenberg Planet Search (Hatzes et al. 2005), Lick K-giant togram of and eccentricity. Both 1D histograms are plot- 2. ObservationsParameter and TYC data 1422-614-1 reduction. b TYC 1422-614-1 c ted with the 15.87 and 83.13 percentile (i.e. 1 ) ranges shown. Survey (Frink et al. 2002), ESO Ferros planet search (Setiawan +0.42 +1.2 P (days) 198.40 0.42 559.3 1.2 et al. 2003a,b), Retired A Stars and Their Companions (Johnson TYC 1422-614-1 (2MASS+ J1017066725 +1933304)+30 is a V=10.21 T0 (MJD) 53236 22 53190 30 et al. 2007), Coralie & HARPS search (Lovis & Mayor 2007), and B-V=0.951 mag (Høg+7.0 et al. 2000) star in+4 the.5 constella- K (m s ) 82.0 233.0 Table 5. Dynamical orbital parameters of TYC 1422-614-1 b and c. tion of Leo. Since a trigonometric5.1 parallax is not4.0 available for Boyunsen Planet Search (Lee et al. 2011), and one of the e . +0.06 . +0.020 this star, its mass, age,0 06 and0.02 radius were estimated0 048 0.014 on the ba- largest, the PennState - Torun´ Centre for Astronomy Planet +50 +20 Parameter TYC 1422-614-1 b TYC 1422-614-1 c ! (deg) 50.0 43 130 20 Search (PTPS, Niedzielski et al. 2007; Niedzielski & Wolszczan sis of spectroscopically determined atmospheric parameters by m2 sin i (M )2.5 0.4 10 1 P (days) 198.44 0.64 569.2 2.1 2008a,b). Zielinski´ et al.J (2012). To± provide a better constraint± to the stel- ± ± a (AU) 0.69 0.03 1.37 0.06 T0 (MJD) 52842 40 52616 30 lar parameters1 we have constructed± a probability+2.0 ± distribution 1 ± ± V0 (m s ) 68.2 2.2 K (m s ) 82.2 3.7 232.8 3.3 Within PTPS we monitored over 1000 stars for RV varia- function using1 the algorithm of da Silva et+6.0 al. (2006), a mod- ± ± o↵set (m s ) 37758 . . . . ified version of the Bayesian estimation method6.0 idealized by e 0 07 0 04 0 049 0 014 tions with the Hobby-Eberly Telescope and its High Resolution 1 . +1.4 ± ± jitter (m s ) 12 9 1.2 ! (deg) 62 46 124 20 Spectrograph since 2004. As part of this e↵ort about 300 plane- Jørgensen & Lindegren (2005) and Nordstr om¨ et al. (2004), and ± ± 2 m2 sin i (M )2.51 0.12 10.10 0.14 tary/Brown Dwarf (BD) candidates were identified that call for stellar isochrones⌫ from (PAdova1.64 and TRieste Stellar J ± ± 1 a (AU) 0.6879 0.0015 1.3916 0.0033 Evolution (m Code, s ) Bressan et al. 2012). 18 Even.94 though our results more intense precise RV follow-up. TAPAS (Tracking Advanced pRV 1 ± . . ± agreeN very well with those of Zielinski´ 86 et al. (2012) without a V0 (m s ) 67 6 3 7 Planetary Systems with HARPS-N) is the result of intensifying obs 2 ± trigonometric parallax they are rather uncertain and model de- ⌫ 1.59 the monitoring of a selected number of PTPS identified targets, 1 (m s ) 17.17 i.e. those with potentially multiple and/or low-mass companions, pendent. The amplitude of p-mode oscillations Vosc was esti- pRV 1 N 86 Data from HETwith expected and p-mode oscillations Harps-N of few m s , as well as sys- damentalmated from radial the scalingpulsational relation period by Kjeldsen which we & estimate Bedding according(1995). obs CCFNiedzielski, Villaver et al. 2015 tems with evidence of recent or future star-planet interactions toThe the v formalismrot sin i? was of Cox obtained et al. by (1972) Nowak is (2012) expected from to Cross- be much (Li-rich giants, low orbit companions etc.). shorter,Correlation 0.52 Function days. The (CCF) longer analysis period of is about very 200 uncertain spectral and lines com- parablefollowing with the the prescription timespan of of our Carlberg observations, et al. (2011). if confirmed Adamow´ with TYC 1422-614-1 is a Red Clump selected as a futureet al. (2014), observations based on may abundance turn out calculations to be due to via another, SME (Valenti yet unre- only exception is P , for which the dynamical solution gives the & Piskunov 1996) modeling of 27 spectral lines for 6 elements, c TAPAS target since the HET observations showed that it was solved companion or long-term stellar variability. value greater by 10 days. The goodness of the fit was found to a relatively inactive giant with expected p-mode oscillations of found no chemical anomalies for TYC 1422-614-1 with respect ⇠ 1 be similar to that of the Keplerian approach. only 4 m s showing a complex RV variation pattern that called to a full sample of RG stars. A summary of all the available data for TYC 1422-614-1 is given in Table 1. The planetary system was found to be stable in a timescale for more epochs of precise data. After several of PTPS 3.2. Newtonian analysis 6 observations our continuously updated model for the rare multi- The spectroscopic observations presented in this paper of 10 yr. The SWIFT’s Regularized Mixed Variable Symplectic planetary system around this giant was still not consistent and Thewere ratio made between with the orbital 9.2 period meter e of↵ective both planets aperture is (11.1Pc/P xb = (RMVS) integrator was used to trace the behavior of orbital pa- since the very important and rare RV minimum was expected 09.8m).355, close Hobby-Eberly to a 7:20 commensurability,Telescope (HET, Ramsey what suggests et al. 1998) that the rameters. The simulation shows that ab may vary between 0.685 during the period of HET not being operational due to upgrade systemand its could High Resolution be in a mean Spectrograph motion (HRS, resonance. Tull 1998) A Newtonian in the and 0.693 AU and eb may oscillate between 0.0 and 0.1 with we chose to add this star to the TAPAS target list. modelqueue of scheduled the system mode was (Shetrone obtained et with al. the 2007), Systemic and with 2.16 the soft- a period of 190 yr. At the same time, ac and ec may range ware3.58 (Meschiarimeter Telescopio et al. Nazionale 2009). The Galileo Keplerian (TNG) orbital and its solution High from 1.368 to 1.393 AU and from 0.03 to 0.06, respectively. Accuracy Planet Searcher in the North hemi- In this paper we report the discovery of a multiple plane- provided the initial parameters for the Bulirsch–Stoer integra- The period ratio based on the Newtonian model is Pc/Pb = sphere (HARPS-N, Cosentino et al. 2012). Time-series16 of pho- tary system orbiting the giant star TYC 1422-614-1, the first tor, running with a precision parameter of 10 . The plane- 0.349, so it is even closer to the 7:20 commensurability. The planetary system result of TAPAS, our intensive monitoring with tarytometric system data was were assumed obtained to from be co-planar. the All Sky The Automated di↵erential Survey evolu- eccentricity-type resonant angles, defined as a linear combina- (ASAS, Pojmanski 2002). HARPS-N of some of the PTPS selected targets. The paper is or- tion algorithm with 5000 steps and Lavenberg-Marquardt mini- tion of mean longitudes and arguments of periastron, show no ganized as follows: in Section 2 we present the observations ob- mization were used to find the best-fitting model. The bootstrap libration. The di↵erence between arguments of periastron, de- tained for this target and we outline the reduction and measure- 5 method2.1. Hobby-Eberly with 10 trials Telescope was used data to estimate parameter uncertain- fined as ! = !c !b demonstrates a lack of apsidal alignment ments procedures; Section 3 shows the results of the Keplerian ties, calculated as median absolute deviations. The parameters and oscillations. Thus, the system is not in a dynamical reso- and Newtonian data modeling; in Section 4 we extensively dis- The HET & HRS spectra used in this paper were gathered with of the best-fitting dynamical model are given in Table 5. In most nance. Variations in eccentricities in the first thousand years are cuss the stellar activity influence on the RV variation measure- the HRS fed with a 2 arcsec fiber, working in the R=60 000 mode cases, they agree with the Keplerian model well within 1. The shown in Fig. 4. ments; and in Section 5 and 6, we discuss the results of our anal- with a gas cell (I2) inserted into the optical path. The spectra ysis and present the conclusions. consisted of 46 echelle orders recorded on the “blue” CCD chip 5 2 The PennState-Toruń Planet Search planets

PTPS 1171 M =1.86 M ,mb=5.1 MJ ⇤ PTPS 253 M =1.08 M ,mb=0.88 MJ ⇤ PTPS 657 M =1.31 M ,mb=6.64 MJ ⇤ HD 216536 b M =1.36 M ,mb=1.47 MJ ⇤ HD 95127 b M =1.20 M ,mb=5.01 MJ ⇤ BD+49 828 b M =1.52 M ,mb=1.6 MJ ⇤ TYC 1422-614-1 b, c M =1.15 M ,mb=2.5 MJ ,mc=10 MJ ⇤ HD 233604 b -mass planets M =1.5 M ,mb=6.58 MJ ⇤ HD 219415 b M =1.0 M ,mb=1.0 MJ ⇤ may be easly detected BD+15 2940 b M =1.1 M ,mb=1.11 MJ ⇤ BD+48 740 b M =1.5 M ,mb=1.6 MJ ⇤ BD+20 274 b M =0.8 M ,mb=4.2 MJ ⇤ HD 96127 b M =0.91 M ,mb=4.0 MJ ⇤ BD+48 738 b M =0.74 M ,mb=0.91 MJ ⇤ HD 240237 b M =1.69 M ,mb=5.3 MJ ⇤ BD+20 2457 b, c M =2.8 M ,mb=21.42 MJ ,mc=12.47 MJ ⇤ HD 240210 b M =0.82 M ,mb=6.9 MJ ⇤ BD+14 4559 b M =0.86 M ,mb=1.47 MJ ⇤ HD 102272 b, c M =1.9 M ,mb=5.9 MJ ,mc=2.6 MJ ⇤ HD 17092 b M =2.3 M ,mb=4.6 MJ ⇤ 0 1 2 3 4 a[AU] Planets around evolved stars –34–

Table 6. Basic parameters of planets around stars at various stages of stellar evolution (from .eu). Mean and median values as well as dispersion are presented for every set of data. See–35– text for details. Inventory of known systems around evolved stars

Parameter M? range dwarfs subgiants giants bright giants mean Table 6—Continuedmean mean mean median median median median

Parameter M? range dwarfs subgiants giants bright giants mean mean mean mean Nplanet 1-2 M 267 73 23 9 median median median median all 458 77 41 14 1-2 M (RV) 138 60 22 9 all(RV)0.140 236 0.140 64 -0.056 40 -0.255 14 1-2 M (RV) 0.178 0.012 0.109 0.023 -0.018 0.046 -0.222 0.055 log(g) all0.210 4.378 0.009 0.140 3.540 0.037 -0.060 2.574 0.039 -0.260 1.594 0.077 4.377 3.394 2.594 1.663 m sini/m all1-2 M 2.0464.285 0.147 0.008 2.702 3.533 0.399 0.037 6.391 2.533 0.987 0.054 7.798 1.529 1.186 0.100 P J 0.9554.282 1.800 3.386 4.500 2.501 6.300 1.521 1-2all(RV) M 2.459 4.392 0.212 0.013 2.705 3.485 0.416 0.038 4.557 2.564 0.592 0.038 7.688 1.594 0.854 0.077 1.3084.392 1.800 3.369 3.200 2.582 7.800 1.663 .eu all(RV)1-2 M (RV) 2.250 4.296 0.200 0.012 2.956 3.473 0.467 0.038 6.533 2.514 1.001 0.053 7.798 1.529 1.186 0.100 Niedzielski, Wolszczan et al. 2015 1.1354.300 1.850 3.350 4.900 2.501 6.300 1.521 1-2 M (RV) 2.532 0.256 2.977 0.492 4.731 0.592 7.688 0.854 M?/M all1.658 1.039 0.011 1.850 1.428 0.027 3.260 1.870 0.090 7.800 1.464 0.120 1.031 1.450 1.900 1.395 1-2 M 1.179 0.009 1.453 0.025 1.499 0.060 1.457 0.084 eall0.1620.0100.1850.0180.1870.0310.2200.048 0.0721.140 0.160 1.470 0.110 1.500 0.167 1.400 1-2all(RV) M 0.165 0.997 0.013 0.015 0.178 1.446 0.018 0.031 0.177 1.885 0.045 0.091 0.207 1.464 0.068 0.120 0.0701.030 0.157 1.475 0.090 1.900 0.140 1.395 1-2 M (RV) 1.140 0.010 1.478 0.028 1.507 0.062 1.457 0.084 all(RV) 0.244 0.014 0.212 0.019 0.190 0.032 0.220 0.048 0.2011.100 0.185 1.480 0.111 1.500 0.167 1.400 1-2 M (RV) 0.260 0.018 0.205 0.019 0.182 0.047 0.207 0.068 [Fe/H] all0.225 0.071 0.010 0.179 0.086 0.022 0.095 -0.032 0.032 0.140 -0.247 0.058 0.090 0.120 -0.052 -0.255 1-2 M 0.114 0.011 0.099 0.020 -0.012 0.045 -0.222 0.055 a/AU all 1.116 0.193 1.331 0.111 1.476 0.172 1.487 0.085 0.0940.140 1.310 0.140 1.200 -0.030 1.470 -0.260 1-2all(RV) M 1.442 0.102 0.324 0.014 1.358 0.093 0.115 0.026 1.119 -0.036 0.113 0.033 1.517 -0.247 0.119 0.058 0.095 1.310 1.160 1.540 all(RV) 1.506 0.108 1.568 0.112 1.511 0.173 1.487 0.085 0.983 1.450 1.235 1.470 Properties of planets around evolved stars No Hot , no -like planets (yet?)

Planets around massive stars are more frequent. (Lovis & Mayor 2007, Johnson et al. 2007, Kennedy & Kenyon 2008, Johnson et al. 2010)

No planets within a<0.6 AU (primordial or due to engulfment?). (Villaver & Livio 2007, 2009, Johnson et al. 2007, Burkert & Ida 2007, Sato 2008, Currie 2009, Kunitomo et al. 2011)

Stellar mass – planetary system mass relation. (Lovis & Mayor 2007, Bowler et. 2010)

No planet occurrence – relation (?). (Pasquini et al. 2008, Zieliński et al. 2009, Ghezzi et al. 2010, Mortier et al. 2013)

Brown dwarfs more common than around MS stars (Mitchell et al. 2013; Niedzielski et al. 2013) Red giants with brown dwarfs companions

Brown dwarfs around evolved stars more common than around MS stars:

about a dozen out of ~60 companions in BD mass range

BD occurence ratio around giants >1%. No desert?

significant increase of average companion mass for evolved stars –35–

Table 6—Continued –35–

Parameter M? range dwarfs subgiants giants bright giants mean mean mean mean Red giants withTable 6—Continuedbrown dwarfs companions median median median median

Parameter M? range dwarfs subgiants giants bright giants 0.140mean 0.140mean mean -0.056 mean -0.255 1-2 M (RV) 0.178median 0.012 0.109 median 0.023 median -0.018 0.046 median -0.222 0.055 0.210 0.140 -0.060 -0.260

0.140 0.140 -0.056 -0.255 m sini/m all 2.046 0.147 2.702 0.399 6.391 0.987 7.798 1.186 P J 1-2 M (RV) 0.178 0.012 0.109 0.023 -0.018 0.046 -0.222 0.055 0.955 1.800 4.500 6.300 0.210 0.140 -0.060 -0.260 1-2 M 2.459 0.212 2.705 0.416 4.557 0.592 7.688 0.854 1.308 1.800 3.200 7.800 m sini/m all 2.046 0.147 2.702 0.399 6.391 0.987 7.798 1.186 P J all(RV) 2.250 0.200 2.956 0.467 6.533 1.001 7.798 1.186 0.955 1.800 4.500 6.300 1.135 1.850 4.900 6.300 1-2 M 2.459 0.212 2.705 0.416 4.557 0.592 7.688 0.854 1-2 M (RV) 2.532 0.256 2.977 0.492 4.731 0.592 7.688 0.854 1.308 1.800 3.200 7.800 all(RV)1.658 2.250 0.200 1.850 2.956 0.467 6.533 3.260 1.001 7.798 7.800 1.186 1.135 1.850 4.900 6.300 eall0.1620.0100.1850.0180.1870.0310.2200.0481-2 M (RV) 2.532 0.256 2.977 0.492 4.731 0.592 7.688 0.854 0.0721.658 0.160 1.850 3.260 0.110 7.800 0.167 1-2 M 0.165 0.013 0.178 0.018 0.177 0.045 0.207 0.068 eall0.1620.0100.1850.0180.1870.0310.2200.0480.070 0.157 0.090 0.140 all(RV) 0.2440.072 0.014 0.212 0.160 0.019 0.110 0.190 0.032 0.167 0.220 0.048 1-2 M 0.2010.165 0.013 0.185 0.178 0.018 0.177 0.111 0.045 0.207 0.167 0.068 1-2 M (RV) 0.2600.070 0.018 0.205 0.157 0.019 0.090 0.182 0.047 0.140 0.207 0.068 all(RV)0.225 0.244 0.014 0.179 0.212 0.019 0.190 0.095 0.032 0.220 0.140 0.048 0.201 0.185 0.111 0.167 a/AU all1-2 M (RV) 1.116 0.260 0.193 0.018 1.331 0.205 0.1110.019 0.182 1.476 0.047 0.172 0.207 1.487 0.068 0.085 exoplanet.eu 0.0940.225 1.310 0.179 0.095 1.200 0.140 1.470 1-2 M 1.442 0.324 1.358 0.115 1.119Niedzielski, 0.113 1.517 Wolszczan 0.119 et al. 2015 a/AU all0.095 1.116 0.193 1.310 1.331 0.111 1.476 1.160 0.172 1.487 1.540 0.085 all(RV) 1.5060.094 0.108 1.568 1.310 0.112 1.200 1.511 0.173 1.470 1.487 0.085 1-2 M 0.9831.442 0.324 1.450 1.358 0.115 1.119 1.235 0.113 1.517 1.470 0.119 0.095 1.310 1.160 1.540 all(RV) 1.506 0.108 1.568 0.112 1.511 0.173 1.487 0.085 0.983 1.450 1.235 1.470 –35–

Table 6—Continued –35–

Parameter M? range dwarfs subgiants giants bright giants mean mean mean mean Red giants withTable 6—Continuedbrown dwarfs companions median median median median

Parameter M? range dwarfs subgiants giants bright giants 0.140mean 0.140mean mean -0.056 mean -0.255 1-2 M (RV) 0.178median 0.012 0.109 median 0.023 median -0.018 0.046 median -0.222 0.055 0.210 0.140 -0.060 -0.260

0.140 0.140 -0.056 -0.255 m sini/m all 2.046 0.147 2.702 0.399 6.391 0.987 7.798 1.186 P J 1-2 M (RV) 0.178 0.012 0.109 0.023 -0.018 0.046 -0.222 0.055 0.955 1.800 4.500 6.300 0.210 0.140 -0.060 -0.260 1-2 M 2.459 0.212 2.705 0.416 4.557 0.592 7.688 0.854 1.308 1.800 3.200 7.800 m sini/m all 2.046 0.147 2.702 0.399 6.391 0.987 7.798 1.186 P J all(RV) 2.250 0.200 2.956 0.467 6.533 1.001 7.798 1.186 0.955 1.800 4.500 6.300 1.135 1.850 4.900 6.300 1-2 M 2.459 0.212 2.705 0.416 4.557 0.592 7.688 0.854 1-2 M (RV) 2.532 0.256 2.977 0.492 4.731 0.592 7.688 0.854 1.308 1.800 3.200 7.800 all(RV)1.658 2.250 0.200 1.850 2.956 0.467 6.533 3.260 1.001 7.798 7.800 1.186 1.135 1.850 4.900 6.300 eall0.1620.0100.1850.0180.1870.0310.2200.0481-2 M (RV) 2.532 0.256 2.977 0.492 4.731 0.592 7.688 0.854 0.0721.658 0.160 1.850 3.260 0.110 7.800 0.167 1-2 M 0.165 0.013 0.178 0.018 0.177 0.045 0.207 0.068 eall0.1620.0100.1850.0180.1870.0310.2200.0480.070 0.157 0.090 0.140 mall(RV)P sin 0.2440.072i ≃ 0.0148 M 0.212 0.160J → 0.019 m 0.110 0.190P ≃ 0.032 13 0.167 0.220 MJ 0.048 1-2 M 0.2010.165 0.013 0.185 0.178 0.018 0.177 0.111 0.045 0.207 0.167 0.068 1-2 M (RV) 0.2600.070 0.018 0.205 0.157 0.019 0.090 0.182 0.047 0.140 0.207 0.068 all(RV)0.225 0.244 0.014 0.179 0.212 0.019 0.190 0.095 0.032 0.220 0.140 0.048 0.201 0.185 0.111 0.167 a/AU all1-2 M (RV) 1.116 0.260 0.193 0.018 1.331 0.205 0.1110.019 0.182 1.476 0.047 0.172 0.207 1.487 0.068 0.085 exoplanet.eu 0.0940.225 1.310 0.179 0.095 1.200 0.140 1.470 1-2 M 1.442 0.324 1.358 0.115 1.119Niedzielski, 0.113 1.517 Wolszczan 0.119 et al. 2015 a/AU all0.095 1.116 0.193 1.310 1.331 0.111 1.476 1.160 0.172 1.487 1.540 0.085 all(RV) 1.5060.094 0.108 1.568 1.310 0.112 1.200 1.511 0.173 1.470 1.487 0.085 1-2 M 0.9831.442 0.324 1.450 1.358 0.115 1.119 1.235 0.113 1.517 1.470 0.119 0.095 1.310 1.160 1.540 all(RV) 1.506 0.108 1.568 0.112 1.511 0.173 1.487 0.085 0.983 1.450 1.235 1.470 Red giants with brown dwarfs companions

Why the planetary mass increases?

Jean Schneider’s exoplanet encyclopedia too kind for us?

RV precision good enough?

Stellar jitter prevents low-mass planet detection?

Stellar masses overestimated (Lloyd 2011)? … or is it a selection effect? –34–

Table 6. Basic parameters of planets around–35– stars at various stages of stellar evolution (from exoplanets.eu). Mean and median values as well as dispersion are presented for every set of data. See text for details. Table 6—Continued –35– Parameter M? range dwarfs subgiants giants bright giants mean mean mean mean Parameter M? range dwarfs subgiants giants bright giants median median median median mean mean mean mean overestimatedTable 6—Continued or selection effect? median median median median

Nplanet 1-2 M 267 73 23 9 Parameter M? range dwarfs subgiants giants bright giants all 458 77 41 14 0.140mean 0.140mean mean -0.056 mean -0.255 1-2 M (RV) 138 60 22 9 1-2 M (RV) 0.178median 0.012 0.109 median 0.023 median -0.018 0.046 median -0.222 0.055 all(RV) 236 64 40 14 0.210 0.140 -0.060 -0.260

log(g) all 4.3780.140 0.009 3.5400.140 0.037 -0.056 2.574 0.039 -0.255 1.594 0.077 mP sini/mJ all 2.046 0.147 2.702 0.399 6.391 0.987 7.798 1.186 1-2 M (RV)4.377 0.178 0.012 3.3940.109 0.023 -0.018 2.594 0.046 -0.222 1.663 0.055 0.955 1.800 4.500 6.300 1-2 M 4.2850.210 0.008 3.5330.140 0.037 -0.060 2.533 0.054 -0.260 1.529 0.100 1-2 M 2.459 0.212 2.705 0.416 4.557 0.592 7.688 0.854 4.282 3.386 2.501 1.521 1.308 1.800 3.200 7.800 mP sini/mJ all(RV)all 4.392 2.046 0.013 0.147 3.4852.702 0.399 0.038 6.391 2.564 0.987 0.038 7.798 1.594 1.186 0.077 all(RV) 2.250 0.200 2.956 0.467 6.533 1.001 7.798 1.186 0.955 1.800 4.500 6.300 1.1354.392 1.850 3.369 4.900 2.582 6.300 1.663 1-21-2 M M (RV) 4.2962.459 0.012 0.212 3.4732.705 0.416 0.038 4.557 2.514 0.592 0.053 7.688 1.529 0.854 0.100 1-2 M (RV) 2.532 0.256 2.977 0.492 4.731 0.592 7.688 0.854 4.3001.308 3.3501.800 3.200 2.501 7.800 1.521 all(RV)1.658 2.250 0.200 1.850 2.956 0.467 6.533 3.260 1.001 7.798 7.800 1.186 1.135 1.850 4.900 6.300 M?/M all 1.039 0.011 1.428 0.027 1.870 0.090 1.464 0.120 eall0.1620.0100.1850.0180.1870.0310.2200.048 1-2 M (RV) 2.532 0.256 2.977 0.492 4.731 0.592 7.688 0.854 1.031 1.450 1.900 1.395 0.0721.658 0.160 1.850 3.260 0.110 7.800 0.167 1-2 M 1.179 0.009 1.453 0.025 1.499 0.060 1.457 0.084 1-2 M 0.165 0.013 0.178 0.018 0.177 0.045 0.207 0.068 1.140 1.470 1.500 1.400 eall0.1620.0100.1850.0180.1870.0310.2200.0480.070 0.157 0.090 0.140 all(RV) 0.997 0.015 1.446 0.031 1.885 0.091 1.464 0.120 all(RV) 0.2440.072 0.014 0.212 0.160 0.019 0.110 0.190 0.032 0.167 0.220 0.048 1.030 1.475 1.900 1.395 1-2 M 0.2010.165 0.013 0.185 0.178 0.018 0.177 0.111 0.045 0.207 0.167 0.068 1-2 M (RV) 1.140 0.010 1.478 0.028 1.507 0.062 1.457 0.084 1-2 M (RV) 0.2600.070 0.018 0.205 0.157 0.019 0.090 0.182 0.047 0.140 0.207 0.068 1.100 1.480 1.500 1.400 all(RV)0.225 0.244 0.014 0.179 0.212 0.019 0.190 0.095 0.032 0.220 0.140 0.048 0.201 0.185 0.111 0.167 a/AU[Fe/H] all all1-2 M (RV) 1.116 0.071 0.260 0.193 0.010 0.018 1.331 0.0860.205 0.1110.019 0.022 0.182 1.476 -0.032 0.047 0.172 0.032 0.207 1.487 -0.247 0.068 0.085 0.058 exoplanet.eu 0.0940.0900.225 1.310 0.1200.179 0.095 1.200 -0.052 0.140 1.470 -0.255 1-2 M 0.114 0.011 0.099 0.020 -0.012 0.045 -0.222 0.055 1-2 M 1.442 0.324 1.358 0.115 1.119Niedzielski, 0.113 1.517 Wolszczan 0.119 et al. 2015 a/AU all0.0950.140 1.116 0.193 1.310 0.1401.331 0.111 1.476 1.160 -0.030 0.172 1.487 1.540 -0.260 0.085 all(RV)all(RV) 1.506 0.1020.094 0.108 0.014 1.568 0.0931.310 0.112 0.026 1.200 1.511 -0.036 0.173 0.033 1.470 1.487 -0.247 0.085 0.058 1-2 M 0.9831.442 0.324 1.450 1.358 0.115 1.119 1.235 0.113 1.517 1.470 0.119 0.095 1.310 1.160 1.540 all(RV) 1.506 0.108 1.568 0.112 1.511 0.173 1.487 0.085 0.983 1.450 1.235 1.470 Stellar mass overestimated or selection effect?

PTPS 500 Wang et al. 2011 Takeda et al. 2008 Liu et al. 2010 400 Reffert et al. 2015 Jones et al. 2011

300 N

200

100

0 0 1 2 3 4 5 6 7 M/M Stellar mass overestimated or selection effect?

250 PTPS Wang et al. 2011 Takeda et al. 2008 200 Liu et al. 2010 Reffert et al. 2015 Alves et al. 2015 Jones et al. 2011 150 N

100

50

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 log g Stellar mass overestimated or selection effect?

MR/M =1.04 ± 0.07 R=0.977 Stellar mass overestimated or selection effect?

MT/M =1.29 ± 0.24 MW/M =1.28 ± 0.15 R=0.911 R=0.948

ML/M =1.43 ± 0.24 MJ/M =1.15 ± 0.10 R=0.851 R=0.941 Conclusions:

YES - masses for some giants may be overestimated.

NO - it will not lower companion masses much.

Evolved stars indeed host more massive planets or BDs.

BUT what is the role of stellar mass-loss? what is actuall precision of various RV planet searches?