1060nm VCSEL --based 10Gbps optical interconnects

Hideyuki Nasu

FITEL Photonics Laboratory Furukawa Electric Co., Ltd.

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 Outline

 Background  Why we need optical interconnects?  Trends in optical interconnects  Advantage of 1-µm optical interconnect  InGaAs VCSEL and PD Low power consumption Higher modulation capability  Link budget  10-Gbps x 12-ch1060-nm parallel-optical module  Performance data  Future prospect

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 2 Performance trend (Super computer & Computer)

Fujitsu “Kei” is No. 1 now, but no There is correlation between computer optical link performance and bandwidth.

(FLOPS) Next next next plan

100 250 (bps/machine) Peta T

Next next plan 10PFLOPS

1 2.5 Peta T Next generation plan 360TFLOPS Computer for Earth simulator 10 plan company 25 Tera G

Supercomputer 100 Renewal of 250 Giga conventional M computer Personal computer Computer for research

1995 2000 2005 2010 2015 2020 2025 PSI symposium 2005 : Ministry of Education, Culture, Sports, Science and Technology H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 3 Bandwidth trend of Backplane (Edge Router)

There will be high possibility of accelerating time plan in consideration for power consumption.

Electrical backplane

Optical backplane High speed interface (commercial base) Router backplane band width width bandband backplanebackplane Router Router

New standard boost traffic and NW 100GbE standardized equipment bandwidth. NEDO’s project : Next generation High performance Network Device

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 4 Data rate trend in server systems

Forecast for server connection speed, supplied by Intel and Broadcom, indicates the migration from 1 to 10, then to 40 and 100 Gbit/s transmission is at hand

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 5 Power consumption in IT equipment  Power consumption trends :  5 times, from 2006 to 2025 ⇒ CO2 emission-increase  Worldwide : 9 times, from 2006 to 2025

Power consumption estimation Environmental issue (Japan)(日本)

12X Green IT Project (Japan) •Power reduction target •Data center: ≥ 30 %

TV • NW router: ≥ 30 % 5X Server NW Equipment International project •WSC / GAMS •Climate Savers •The Green Grid  Driving forward activities for power saving

Ministry of Economics, Trade and Industry, Green IT Project H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 6 I/O power trend

 Power trend on optical and electrical inter face

△ Commercial × Sample

)) ○ Research Power saving in optical transmission

Gbps (Photonic integration) Power saving in electrical transmission (Low voltage driving) Electrical Electrical Electrical

Furukawa Electric

Power consumption (W/ (W/ consumptionconsumption Power Power 7mW/Gbps (10Gbps x 12ch) year

Expectation and future perspective on optical interconnect (Technical roadmap of optical circuit packaging technology), p. 7 2010

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 7 Trend of Optical interconnection

LSI

2020 Optical circuit board Opt connector

Optical printed board Optical waveguide Optical Module LSI Opt connector

Opt connector 2012 Optical Fiber

Back plane

LSI Optical Transceiver

Now Conventional optical interconnection

Optical module will be expected more small and high speed. Connector will be more high density.

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 8 How dose electrical transmission distance affect to optical signal performance? Input Input Optical engine

RX output: Eye opening 400mm MSL=0mm MSL=400mm no PE PE3

Eye opening at BER10 -12

Eye opening and Power increase rate •10Gbps, NRZ 250 PE1 PE2 PE3 70 •12ch simultaneous operation 60 200 50 150 40 Minimizing electrical connection between optical 100 30 20 engine and LSI growth growth growth raterate (%) (%)

Eye opening(mV) opening(mV) Eye Eye 50

10 consumption consumption Power Power

0 0 (%) (%) raterate increaseincrease Power Power 0 100 200 300 400 500 no PE Powe r saving MSL length(mm) Power H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 9 Requirements on optical interconnect

 Low power consumption  xx mW/Gbps  High capacity  High speed, 10Gbps, 14Gbps, 25Gbps  Number of multiplexed signals  Longer transmission link  Covering the length of <300m  Very long distance in Enterprise: ~1km  Low cost  $xx/Gbps  $xx/m^2  Higher reliability  Huge number of modules

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 10 Advantages of 1 µm optical devices  InGaAs QW VCSEL High High speed High differential power gain Wide bandwidth Low power Low band gap Low driving energy voltage

SPIE Proceedings, vol. 4649, pp.19-24, 2002. Low current Inhibiting Al oxidization Al free High reliability density

EBIC image after aging test Slow DLD

Inhibiting DLD by Indium GaAs SQW InGaAs SQW PTL, vol. 2, no. 8, 1990  InGaAs PIN-PD High sensitivity Low power drive of VCSEL 25% increase compared with 850nm GaAs PD

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 11 Power saving ability in TX  Low power operation of 1060-nm InGaAs QW VCSEL  Clear eye openings  Error free transmission

Vpp I = 1.8 mA (mV) 150

230

A bias current of 1.8mA is sufficient for 10Gbps operation

J. B. Herou et. al, CLEO/QELS 2010, CWP3.

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 12 Low power operation by 1060nm VCSEL  1060nm VCSEL

S. Nakagawa, FOE-12, Photonix2011, Apr. 2011

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 13 Reliability of 1060nm VCSEL

K. Takaki et.al, Photonic West. Jan. 2011 S. Nakagawa, FOE-12, Fiber Optics Expo, Apr. 2011

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 14 Power saving ability in TX

 TX power vs. VCSEL bias current Power consumption in TX TX モジュールの消費電力 8.0 25˚C 850nm VCSEL 7.0 80˚C 6.0

5.0 1060-nm VCSEL 4.0

3.0

2.0

1.0

Power consumption (mW/Gbps) (mW/Gbps) consumption consumption Power Power 0.0 0 2 4 6 8 10 VCSEL bias current (mA)

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 15 Higher modulation capability  40Gbit/s direct modulation

NEC group

T. Anan et. al. International Symposium on VCSELs and Integrated Photonics, E-3, 2007  20Gbit/s parallel-optical module •12ch Transceiver •20Gbit/s, PRBS 2 7-1 •50m of GI50 MMF •Error free transmission •Minimum sensitivity: <-8.6dB at 10 -12 •Crosstalk penalty: 4dB

K. Kurata, OFC2010, OThS3. K. Yashilki et. al., ICSJ2010, 19-3

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 16 1µm VCSEL (TU Berlin)  980nm VCSEL

A. Mutig, OIDA Workshop, Apr. 2011 H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 17 Advantages of 1 µm optical link Parameters Items Parameters 1060nm 850nm RX: 0.75A/W 0.6A/W PD Sensitivity InGaAs GaAs Transmission loss 0.95dB/km 2.09dB/km Fiber optics Chromatic dispersion -34.2ps/nm/km -90.42ps/nm/km TX: Maximum output +1.5dBm -2.2dBm Eye safety power Class 1 Class 1 *1. IEC60925-1 2001, eye-safety class1. Condition:Fiberbandwidth=5000MHz.km Measured (1060nm) OM3 5 Bit rate: 10Gbps (dB) 5 Calculation (1060nm) 2000MHz·km Calculation (850nm) 4 OM2 4 penalty penalty 33

22 500MHz·km 11 Longer distance 850nm 1060nm 1300nm 00 Increase of power 300 600 900 1200 0 Conventional OM2 applicable Low cost Transmission distance (m) H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 18 Fiber transmission  Conventional OM-2 and OM-3 MMFs  1060-nm optimized MMF

Received power (dBm) Received power (dBm) Received power (dBm)

OM2: OM3: 1060-nm MMF Penalty <2dB up to 300m Penalty ~4dB at 300m Penalty ~3dB at 1000m Max. 300m recommendation Max. 150m recommendation Potential 300m or beyond

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 19 Modal bandwidth  Power penalty as a function of transmission distance  Bit rate: 10Gbps  Calculated by IEEE 802.3z link model spread sheet  Limited laser modes (1060-nm VCSEL)  Modal bandwidth is measured with frequency sweeping method

6 OM2 OM3 Modal bandwidth 1060nm MMF 5 OM-2 simulation Modal bandwidth (MHz×km) OM-3 simulation MMF type (1) (2) (1) 1060nm MMF simulation 850 nm 1060 nm 1300 nm 4 2262 (OFL) OM-2 790 1602 2612 (LLM) 3 1094 (OFL) OM-3 4509 708 1741 (LLM) 4318 (OFL) 2 1060-nm MMF - - PowerPower penaltypenalty (dB) (dB) 5433 (LLM)

1 OFL: Overfilled launch LLM: Limited laser modes 0 Note 1: Fiber bandwidth is calculated from DMD data 0 200 400 600 800 1000 Note 2: Measured by frequency sweeping method Transmission distance (m) JIS C 6824, Aug. 1997.

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 20 25Gbps optical link  Power penalty as a function of transmission distance  Bit rate: 25Gbps  Receiver bandwidth: 18.75GHz  MMF bandwidth: 4700MHz.km (OM4 level)  Tr/Tf(20% -80%)=16ps  Spectral linewidth: 0.45nm, 0.65nm Calculated by IEEE 802.3z link model spread sheet

6 100m 300m 1060nm 5 850nm 4

3

0.45nm 850nm 2

PowerPowerpenaltypenalty(dB) (dB) 0.45nm 1060nm 0.65nm 850nm 1 0.65nm 1060nm

0 0 0.1 0.2 0.3 0.4 Transmission distance (km)

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 21 Scalability to the future  Coarse wavelength division multiplexing (CWDM)  Capability of selecting lasing wavelength Cost reduction?  Wide range of wavelength sensitivity MAUI project: parallel multiwavelength optical subassemblies (PMOSAs)

6.6mW/Gbit/s: 10.42Gbit/s x 48ch LEOS2005, TuW1, Mar. 2005, JLT vol. 22, no. 9, p.2043 2004, ECTC, p.1027 2005. H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 22 Scalability to the future 1060nm  Attenuation in polymer waveguides 5000 PMMA base  Poly (methyl methacrylate) (PMMA) 4500 4000  Not available PD polymer base 3500 PF polymer base  Perdeuterated (PD) polymer 3000  Available 2500  Perfluorinated (PF) polymer 2000  Available 1500 VCSEL 1000 500 Lens Polymer waveguide 0 PCB 0.5 0.6 0.7 0.8 0.91.0 1.1 1.2 1.3 1.4 Wavelength (µ m)  Applied to silicon photonics T. Ishigure et. al, Science and Technology of Polymer and Advanced Materials, Plenum Press, New York, 1998  1060nm is in the transmittance window of Silicon

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 23 10Gbit/s x 12ch optical engine  Optical pluggable and pigtailed engines 90º-angled connector Pigtailed Heat sink Optical pluggable

Module 13X13Xt3.4mm Pluggable socket Module BW > 10GHz

21mm 21.7mm

0 0

Pluggable socket -1 -10

-2 -20 18mm 18mm S11 (dB) S11 S21 (dB) S21 -3 -30

-4 -40 S21 S11 -5 -50 0 2 4 6 8 10 Frequecncy (GHz) H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 24 12.5Gbit/s x 12ch x 4  High-density optical pluggable solution  600Gbps mezzanine card

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 25 Parallel-optical engines

 10Gbps × 12ch parallel-optical engine  1060-nm VCSEL array ,InGaAs PD array Heat sink  BiCMOS LDD/TIA  Electrical interface: pluggable socket  Capability of replacing optical modules  Wide band width >10GHz  Mechanical size: Module  Module: 13 × 13 × 3.4 mm (not to include pigtailed fiber)  Socket: 21.7 × 21 × 13.7 mm 21mm 21.7mm  Performance Pluggable socket:  Power consumption ::: <10mW/Gbps BW > 10GHz  Operating case temperature 0~70 °C  Transmission : 120Gbps error free

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 26 Module structure Thermal dissipation Schematic view Microlens VD/TIA 12-ch fiber ribbon Metal cover

MT ferrule

Multi-layer ceramic 12ch VCSEL/PD array RF path 92 LGA substrate Differential transmission lines 0 0

-5 S-parameter (EM simulation) -3 -10

-15

-6 -20 SDD21: >-3dB at 0-10GHz -25 -9 -30 SDD11(dB) SDD11(dB) >-5dB at 0-20GHz SDD21(dB) SDD21(dB) DB(|S(2,1)|) : Spara_ESA SDD11: <-15dB at 0-20GHz -35 -12 DB(|S(1,1)|) : Spara_ESA -40

-45

-15 -50 0 5 10 15 20 Frequency(GHz) H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 27 Electrical-pluggable interface  Capability of module replacement  System maintenance  Repeatability of module installation

 Wide bandwidth: >10GHz S-parameters 0 0 Cross sectional drawing -1 -10 Parallel-optical module

-2 -20 S11(dB) S21(dB) -3 -30

-4 -40 S21 Spring pin S11 -5 -50 Electrical pluggable socket 0 2 4 6 8 10 Frequecncy (GHz)

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 28 Eye diagrams

 TX output and RX output

15 °C 25 °C 50 °C 80 °C TX output

RX output

Monitor channel: Ch 7 Case temperature: 25~80 °C Bias current: 4mA, Optical power: -4.0dBm, Extinction ratio : 4.5dB Tr/Tf: (TX output) 31.6ps/47.2ps, (RX output) 36.0ps/37.6ps

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 29 BER performance  BER measurement  10Gbps × 12ch simultaneous transmission Over operating case temperature (Back to back) Transmission in MMF of 300m

80 ℃ Back to back 50 ℃ 10 -4 25 ℃ 10 -4 300m 15 ℃

10 -6 10 -6 BER BER

10 -8 10 -8

10 -10 10 -10

-12 10 -12 10 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 -18 -16 -14 -12 -10 -8 -6 Received optical power(dBm) Received optical power (dBm) Minimum sensitivity at 25 °C: -10.2dBm Power penalty: 0.6dB

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 30 Optical link power  1060nm 12ch x 10.315Gbit/s optical link  Tc=25 °C: 5.9mW/Gbit/s Minimum sensitivity: <-12dBm BER=10 12  Tc=70 °C: 6.4 mW/Gbit/s 6.4mW/ Gbit /s -10 8 5.9mW/Gbit/s ch1 -11 7 ch2 ch3 -12 6 ch4 -13 5 ch5

-14 4 ch6 ch7 -15 3 ch8

-16 2 ch9 ch10

Sensitivity(dBm) Sensitivity(dBm) -17 1 ch11 -18 0 ch12 0 20 40 60 80 average Power consumption(mW/Gbps) consumption(mW/Gbps) Power Power Case temprature(deg.C) PC

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 31 Summary  Technical trends in data centers and optical interconnects are described.  Advantages of 1-µm optical inter connects  Low power consumption  Higher modulation capability  Longer transmission distance  Low cost solution with conventional OM-2 fibers  High reliability with InGaAs devices  Expansivity of 1-µm optical inter connects  Usage of polymer waveguide  Silicon photonics  Coarse wavelength division multiplexing (CWDM)  10-Gbps x 12-channel 1060-nm parallel-optical modules  Size: 13mm x 13mm x 3.4 mm  Very Low power: <7mW/Gbps (Tc: 15 °C to 80 °C)  Electrical-pluggable socket interface  Very low power 7.0mW/Gbps over operating case temperature

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 32 Future perspective  Higher speed >25Gbps  High speed devices VCSEL, PD, CMOS (Silicon) Photonics Argument on wavelength: expectation on 1 µm wavelength  Electrical wiring : Wideband wiring, Crosstalk suppression  Bandwidth control : Equalization, Emphasis

 Optical waveguide Terabus Project  Polymer waveguide Loss, Bandwidth Optical coupling  MMF ECOC2010, Tu4G3, Sept. 2010. Bandwidth (Refractive index profile, Core diameter)  High-density  Small optical engine  3D integration, CMOS Photonics  Mounting technology  Electrical pluggable  Permanent mounting ECOC2010, Tu4G3, Sept. 2010. H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 33 Thank you!

H. Nasu/FITEL Phonics Laboratory, Furukawa Electric Co, Ltd. Technical seminar at CERN, Sept. 23 2011 34