Laboratory Synthesis of an Independently Reproducing Vertebrate Species

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Synthesis of an Independently Reproducing Vertebrate Species Laboratory synthesis of an independently reproducing vertebrate species Aracely A. Lutesa,b,c, Diana P. Baumannb, William B. Neavesb,d, and Peter Baumanna,b,c,1 aHoward Hughes Medical Institute and bStowers Institute for Medical Research, Kansas City, MO 64110; cDepartment of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160; and dUniversity of Missouri Kansas City, School of Medicine, Kansas City, MO 64108 Edited by David B. Wake, University of California, Berkeley, CA, and approved April 9, 2011 (received for review February 18, 2011) Speciation in animals commonly involves an extrinsic barrier to unisexual vertebrates arise (8). How the unisexual mode of re- genetic exchange followed by the accumulation of sufficient production is induced in diploid hybrids and maintained in trip- genetic variation to impede subsequent productive interbreeding. loids remains unknown. Several lines of evidence suggest that All-female species of whiptail lizards, which originated by in- hybridization events resulting in new species are exceedingly rare. terspecific hybridization between sexual progenitors, are an Firstly, histocompatibility studies support that single hybridization exception to this rule. Here, the arising species instantaneously events have given rise to each of several parthenogenetic Aspi- acquires a novel genotype combining distinctive alleles from two doscelis species (16–20). Secondly, de novo hybridization events different species, and reproduction by parthenogenesis consti- between closely related species or subspecies result in offspring tutes an effective intrinsic barrier to genetic exchange. Fertiliza- that reproduce sexually and are not reproductively isolated from tion of diploid parthenogenetic females by males of sexual species the progenitor species (21). Hybridization between more di- has produced several triploid species, but these instantaneous vergent sexual species appears to occur much less frequently and speciation events have neither been observed in nature nor have results in sterile progeny (e.g., ref. 22). In contrast, quite a few first- they been reconstituted in the laboratory. Here we report the generation hybrids between parthenogenetic Aspidoscelis species generation of four self-sustaining clonal lineages of a tetraploid and males of sexual species have been observed in field studies species resulting from fertilization of triploid oocytes from a par- over the past 40 y. When hybridization occurs between a diploid thenogenetic Aspidoscelis exsanguis with haploid sperm from parthenogenetic female and a sexual male, the hybrid offspring are Aspidoscelis inornata. Molecular and cytological analysis con- triploid (e.g., ref. 23); whereas hybridization events involving fi rmed the genetic identity of the hybrids and revealed that the triploid parthenogenetic females produce tetraploid hybrids (24– females retain the capability of parthenogenetic reproduction 27). Notably, in no case has successful reproduction of a hybrid characteristic of their triploid mothers. The tetraploid females have been documented; and with one exception (24) the animals were established self-perpetuating clonal lineages which are now in the clearly infertile where examined (e.g., ref. 28). In addition, a 29-y third generation. Our results confirm the hypothesis that second- study aimed at creating a hybrid species in the laboratory involving ary hybridization events can lead to asexual lineages of increased 74 males and 156 females of nine species produced five confirmed ploidy when favorable combinations of parental genomes are as- hybrids, which were all sterile (22). In summary, these findings sembled. We anticipate that these animals will be a critical tool in indicate that in most cases ploidy elevation coincides with a loss of understanding the mechanisms underlying the origin and subse- quent evolution of asexual amniotes. the ability to reproduce parthenogenetically in the offspring. Results hybrid speciation | polyploidy | Cnemidophorus | unisexual Generation of Tetraploid Hybrids. To gain more insight into the relationship between hybridization and infertility, we paired ew species ordinarily arise over many generations through the males of the diploid sexual species Aspidoscelis inornata with Ngradual accumulation of incremental differences that even- females of the triploid parthenogenetic species Aspidoscelis tually result in self-sustaining populations phenotypically distinc- exsanguis. This choice was inspired by the description of an ap- tive and reproductively isolated from other species including parent hybrid between A. inornata and A. exsanguis that was contemporary representatives of their progenitor species (1, 2). captured in August 1967. While in captivity, this animal laid two fi With few exceptions (e.g., ref. 3), interspeci c hybridization has fully yolked eggs, but desiccation made it impossible to de- been viewed as detrimental to the process of speciation in animals termine whether the eggs could have produced viable offspring rather than a driving force for it. However, the recent application of (24). In our present study, the A. inornata male was observed fl fl molecular tools in Heliconiusbutter ies (4), tephritid fruit ies (5), mating with A. exsanguis females on several occasions. Three and several other taxa has led to the realization that hybrid speci- clutches totaling six eggs were recovered from the enclosure and ation may be more common in animals than previously thought (6). incubated at 28 °C. Subsequent genotyping showed that all three At the extreme of instant speciation, hybridization combined with clutches had been produced by the same A. exsanguis female parthenogenesis has given rise to almost all unisexual lizards (7). following fertilization by a single A. inornata male. Hatching The incidence of such speciation events varies widely among occurred after 63–67 d, and the six offspring appeared mor- families and is unusually high in Caucasian rock lizards (genus phologically similar to A. exsanguis with the exception of subtle Darevskia) and North American whiptail lizards (Aspidoscelis; ref. 8). For example, of the 12 Aspidoscelis species found in New Mexico, 7 are parthenogenetic, and 5 of these are triploid (9, 10). Author contributions: A.A.L., W.B.N., and P.B. designed research; A.A.L., D.P.B., and W.B.N. Karyotypic and molecular evidence revealed that diploid par- performed research; A.A.L., D.P.B., W.B.N., and P.B. analyzed data; and W.B.N. and P.B. thenogenetic Aspidoscelis species arose from hybridization events wrote the paper. between sexual progenitors (11–14). Subsequent secondary hy- The authors declare no conflict of interest. bridization events between diploid parthenogenetic females and This article is a PNAS Direct Submission. males of sympatric sexual species produced triploid unisexuals. See Commentary on page 9733. Hybrid origin of parthenogenetic species has also been docu- 1To whom correspondence should be addressed. E-mail: [email protected]. mented in several other lizard families including geckos (15) and This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. appears to be the most common, if not universal, path by which 1073/pnas.1102811108/-/DCSupplemental. 9910–9915 | PNAS | June 14, 2011 | vol. 108 | no. 24 www.pnas.org/cgi/doi/10.1073/pnas.1102811108 Downloaded by guest on September 30, 2021 A B SEE COMMENTARY Fig. 1. Morphology of parental species and tetraploid hybrid animals. (A) Dorsal view of A. inornata (Left), A. exsanguis (Right), and the A. exsanguis/A. inornata hybrid (Center). (Scale bar, 10 mm.) (B) Individuals representing the first (H1, Left), second (H2, Center), and third (H3, Right) hybrid gen- eration of the tetraploid species. The H1 and H2 individuals are adults photographed on day 1,168 and 645 after hatching, respectively. The H3 individual is shown at an age of 44 d and displays the color and pattern typical for juveniles. blue pigmentation visible especially on the tail and indicative of examined by confocal microscopy to compare the chromosome a hybrid origin (Fig. 1). content with GVs from diploid sexual and parthenogenetic species. The ploidy of the animals was determined by quantifying the In diploid parthenogenetic Aspidoscelis species, meiosis com- DNA content in nucleated erythrocytes by flow cytometry. Blood mences with twice the number of chromosomes found in sexual samples from A. inornata and A. exsanguis served as diploid and species so that diploid oocytes are produced following the two triploid controls, respectively. The analysis revealed a 4C DNA meiotic divisions (30). Whether transient ploidy elevation is ac- content in somatic cells of the hybrid lizards (Fig. 2A). Tetra- complished via two rounds of replication without intervening EVOLUTION ploidy was further confirmed by karyotyping cultured fibroblasts mitosis, by failed cytokinesis or by oogonial fusion is still unclear. isolated from the heart of a hybrid female that died at 20 mo of If sexual reproduction occurred in the tetraploid hybrids, the age. The somatic cell karyotype comprised 90–92 chromosomes premeiotic nuclei would contain twice the amount of DNA (Fig. 2B), consistent with a combination of the haploid (n = 23) found in prophase I of meiosis in a sexually reproducing diploid chromosome complement of an A. inornata sperm with the un- species or the same amount as in a GV from a diploid parthe- reduced triploid (3n ∼ 69) chromosome complement of parthe- nogenetic species
Recommended publications
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Caudata Ambystoma ordinarium. Predation by a Black-necked Gartersnake (Thamnophis cyrtopsis). The Michoacán Stream Salamander (Ambystoma ordinarium) is a facultatively paedomorphic ambystomatid species. Paedomorphic adults and larvae are found in montane streams, while metamorphic adults are terrestrial, remaining near natal streams (Ruiz-Martínez et al., 2014). Streams inhabited by this species are immersed in pine, pine-oak, and fir for- ests in the central part of the Trans-Mexican Volcanic Belt (Luna-Vega et al., 2007). All known localities where A. ordinarium has been recorded are situated between the vicinity of Lake Patzcuaro in the north-central portion of the state of Michoacan and Tianguistenco in the western part of the state of México (Ruiz-Martínez et al., 2014). This species is considered Endangered by the IUCN (IUCN, 2015), is protected by the government of Mexico, under the category Pr (special protection) (AmphibiaWeb; accessed 1April 2016), and Wilson et al. (2013) scored it at the upper end of the medium vulnerability level. Data available on the life history and biology of A. ordinarium is restricted to the species description (Taylor, 1940), distribution (Shaffer, 1984; Anderson and Worthington, 1971), diet composition (Alvarado-Díaz et al., 2002), phylogeny (Weisrock et al., 2006) and the effect of habitat quality on diet diversity (Ruiz-Martínez et al., 2014). We did not find predation records on this species in the literature, and in this note we present information on a predation attack on an adult neotenic A. ordinarium by a Thamnophis cyrtopsis. On 13 July 2010 at 1300 h, while conducting an ecological study of A.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • A Review of the Cnemidophorus Lemniscatus Group in Central America (Squamata: Teiidae), with Comments on Other Species in the Group
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3722 (3): 301–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3722.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:4E9BA052-EEA9-4262-8DDA-E1145B9FA996 A review of the Cnemidophorus lemniscatus group in Central America (Squamata: Teiidae), with comments on other species in the group JAMES R. MCCRANIE1,3 & S. BLAIR HEDGES2 110770 SW 164th Street, Miami, Florida 33157-2933, USA. E-mail: [email protected] 2Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA. E-mail: [email protected] 3Corresponding author. E-mail: [email protected] Abstract We provide the results of a morphological and molecular study on the Honduran Bay Island and mainland populations of the Cnemidophorus lemniscatus complex for which we resurrect C. ruatanus comb. nov. as a full species. Morphological comparison of the Honduran populations to Cnemidophorus populations from Panama led to the conclusion that the Pan- amanian population represents an undescribed species named herein. In light of these new results, and considering past morphological studies of several South American populations of the C. lemniscatus group, we suggest that three other nominal forms of the group are best treated as valid species: C. espeuti (described as a full species, but subsequently treat- ed as a synonym of C. lemniscatus or a subspecies of C.
    [Show full text]
  • Life History of the Marbled Whiptail Lizard Aspidoscelis Marmorata from the Central Chihuahuan Desert, Mexico
    Acta Herpetologica 8(2): 81-91, 2013 Life history of the Marbled Whiptail Lizard Aspidoscelis marmorata from the central Chihuahuan Desert, Mexico Héctor Gadsden1, Gamaliel Castañeda2 1 Instituto de Ecología, A. C.-Centro Regional Chihuahua, Cubículo 29C, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, C. P. 31109, Chihuahua, Chihuahua, México. Corresponding author. E-mail: [email protected] 2 Facultad de Ciencias Biológicas. Universidad Juárez del Estado de Durango. Avenida Universidad s/n. Fraccionamiento Filadelfia. Gómez Palacio, 35070, Durango, México Submitted on 2012, 5th December; revised on 2013, 10th August; accepted on 2013, 3rd September. Abstract. The life history of a population of marbled whiptail lizard, Aspidoscelis marmorata, was examined from 1989 to 1994 in the sand dunes of the Biosphere Reserve of Mapimí, in Northern México. Lizards were studied using mark- recapture techniques. Reproduction in females occurred between May and August, with birth hatchlings matching the wet season in August. Reproductive activity was highest in the early wet season (July). Males and females reached adult size class at an average age of 1.7 years and 1.8 years, respectively. Body size of males attained an asymptote around 90 mm snout-vent length and females around 82 mm snout-vent length, at an age of approximately 3.6 years and 3.0 years, respectively. The density varied from 7 to 85 individuals / 1.0 ha. The Mexican population had late maturity, relatively long life expectancy, and fewer offspring. Overall, the observed data for A. marmorata and the expectations of life history theory for a late maturing species (K-rate selection) are in agreement.
    [Show full text]
  • Sexual Dimorphism and Natural History of the Western Mexico Whiptail, Aspidoscelis Costata (Squamata: Teiidae), from Isla Isabel, Nayarit, Mexico
    NORTH-WESTERN JOURNAL OF ZOOLOGY 10 (2): 374-381 ©NwjZ, Oradea, Romania, 2014 Article No.: 141506 http://biozoojournals.ro/nwjz/index.html Sexual dimorphism and natural history of the Western Mexico Whiptail, Aspidoscelis costata (Squamata: Teiidae), from Isla Isabel, Nayarit, Mexico Raciel CRUZ-ELIZALDE1, Aurelio RAMÍREZ-BAUTISTA1, *, Uriel HERNÁNDEZ-SALINAS1,2, Cynthia SOSA-VARGAS3, Jerry D. JOHNSON4 and Vicente MATA-SILVA4 1. Centro de Investigaciones Biológicas (CIB), Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo, Km 4.5 s/n, Colonia Carboneras, Mineral de La Reforma, A.P. 1-69 Plaza Juárez, C.P. 42001, Hidalgo, México. 2. Instituto Politécnico Nacional, CIIDIR Unidad Durango, Sigma 119, Fraccionamiento 20 de Noviembre II, Durango, Durango 34220, México. 3. Laboratorio de Herpetología, Escuela de Biología, Benemérita Universidad Autónoma de Puebla, C. U. Boulevard Valsequillo y Av. San Claudio, Edif. 76, CP. 72570, Puebla, Puebla, México. 4. Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA. *Corresponding author, A. Ramírez-Bautista, E-mail: [email protected] Received: 25. April 2014 / Accepted: 13. June 2014 / Available online: 16. October 2014 / Printed: December 2014 Abstract. Lizard populations found in insular environments may show ecological and morphological characteristics that differ from those living in continents, as a result of different ecological and evolutionary processes. In this study, we analyzed sexual dimorphism, reproduction, and diet in a population of the whiptail lizard, Aspidoscelis costata, from Isla Isabel, Nayarit, Mexico, sampled in 1977 and 1981. Males and females from Isla Isabel showed no sexual dimorphism in many morphological structures, such as snout-vent length (SVL), but they did in femur length (FL) and tibia length (TL).
    [Show full text]
  • Taxonomic Hypotheses and the Biogeography of Speciation in the Tiger Whiptail Complex (Aspidoscelis Tigris: Squamata, Teiidae)
    a Frontiers of Biogeography 2021, 13.2, e49120 Frontiers of Biogeography RESEARCH ARTICLE the scientific journal of the International Biogeography Society Taxonomic hypotheses and the biogeography of speciation in the Tiger Whiptail complex (Aspidoscelis tigris: Squamata, Teiidae) Tyler K. Chafin1* , Marlis R. Douglas1 , Whitney J.B. Anthonysamy1,2, Brian K. Sullivan3, James M. Walker1, James E. Cordes4, and Michael E. Douglas1 1 Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA; 2 St. Louis College of Pharmacy, 4588 Parkview Place, St. Louis, Missouri, 63110, USA; 3 School of Mathematical and Natural Sciences, P. O. Box 37100, Arizona State University, Phoenix, Arizona, 85069, USA; 4 Division of Mathematics and Sciences, Louisiana State University, Eunice, Louisiana, 70535, USA. *Corresponding author: Tyler K. Chafin, [email protected] Abstract Highlights Biodiversity in southwestern North America has a complex 1. Phylogeographies of vertebrates within the biogeographic history involving tectonism interspersed southwestern deserts of North America have been with climatic fluctuations. This yields a contemporary shaped by climatic fluctuations imbedded within pattern replete with historic idiosyncrasies often difficult broad geomorphic processes. to interpret when viewed from through the lens of modern ecology. The Aspidoscelis tigris (Tiger Whiptail) 2. The resulting synergism drives evolutionary processes, complex (Squamata: Teiidae) is one such group in which such as an expansion of within-species genetic taxonomic boundaries have been confounded by a series divergence over time. Taxonomic inflation often of complex biogeographic processes that have defined results (i.e., an increase in recognized taxa due to the evolution of the clade. To clarify this situation, arbitrary delineations), such as when morphological we first generated multiple taxonomic hypotheses, divergences fail to juxtapose with biogeographic which were subsequently tested using mitochondrial hypotheses.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Darevskia Raddei and Darevskia Portschinskii) May Not Lead to Hybridization Between Them
    Zoologischer Anzeiger 288 (2020) 43e52 Contents lists available at ScienceDirect Zoologischer Anzeiger journal homepage: www.elsevier.com/locate/jcz Research paper Syntopy of two species of rock lizards (Darevskia raddei and Darevskia portschinskii) may not lead to hybridization between them * Eduard Galoyan a, b, , Viktoria Moskalenko b, Mariam Gabelaia c, David Tarkhnishvili c, Victor Spangenberg d, Anna Chamkina b, Marine Arakelyan e a Severtsov Institute of Ecology and Evolution, 33 Leninskij Prosp. 119071, Moscow, Russia b Zoological Museum, Lomonosov Moscow State University, Moscow, Russia c Center of Biodiversity Studies, Institute of Ecology, Ilia State University, Tbilisi, Georgia d Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia e Department of Zoology, Yerevan State University, Yerevan, Armenia article info abstract Article history: The two species of rock lizards, Darevsia raddei and Darevskia portschinskii, belong to two different Received 19 February 2020 phylogenetic clades of the same genus. They are supposed ancestors for the hybrid parthenogenetic, Received in revised form Darevskia rostombekowi. The present study aims to identify morphological features of these two species 22 June 2020 and the potential gene introgression between them in the area of sympatry. External morphological Accepted 30 June 2020 features provided the evidence of specific morphology in D. raddei and D. portschinskii: the species Available online 14 July 2020 differed in scalation and ventral coloration pattern, however, they had some proportional similarities Corresponding Editor: Alexander Kupfer within both sexes of the two species. Males of both species had relatively larger heads and shorter bodies than females. Males of D. raddei were slightly larger than males of D.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • A Brief History of Greek Herpetology
    Bonn zoological Bulletin Volume 57 Issue 2 pp. 329–345 Bonn, November 2010 A brief history of Greek herpetology Panayiotis Pafilis 1,2 1Section of Zoology and Marine Biology, Department of Biology, University of Athens, Panepistimioupolis, Ilissia 157–84, Athens, Greece 2School of Natural Resources & Environment, Dana Building, 430 E. University, University of Michigan, Ann Arbor, MI – 48109, USA; E-mail: [email protected]; [email protected] Abstract. The development of Herpetology in Greece is examined in this paper. After a brief look at the first reports on amphibians and reptiles from antiquity, a short presentation of their deep impact on classical Greek civilization but also on present day traditions is attempted. The main part of the study is dedicated to the presentation of the major herpetol- ogists that studied Greek herpetofauna during the last two centuries through a division into Schools according to researchers’ origin. Trends in herpetological research and changes in the anthropogeography of herpetologists are also discussed. Last- ly the future tasks of Greek herpetology are presented. Climate, geological history, geographic position and the long human presence in the area are responsible for shaping the particular features of Greek herpetofauna. Around 15% of the Greek herpetofauna comprises endemic species while 16% represent the only European populations in their range. THE STUDY OF REPTILES AND AMPHIBIANS IN ANTIQUITY Greeks from quite early started to describe the natural en- Therein one could find citations to the Greek herpetofauna vironment. At the time biological sciences were consid- such as the Seriphian frogs or the tortoises of Arcadia. ered part of philosophical studies hence it was perfectly natural for a philosopher such as Democritus to contem- plate “on the Nature of Man” or to write books like the REPTILES AND AMPHIBIANS IN GREEK “Causes concerned with Animals” (for a presentation of CULTURE Democritus’ work on nature see Guthrie 1996).
    [Show full text]
  • Stephen D. Busack
    BIOGRAPHICAL SKETCH AND BIBLIOGRAPHY OF STEPHEN D. BUSACK Stephen D. Busack Rochester, New York SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 154 2018 . SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The first number of the SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE series appeared in 1968. SHIS number 1 was a list of herpetological publications arising from within or through the Smithsonian Institution and its collections entity, the United States National Museum (USNM). The latter exists now as little more than the occasional title for the registration activities of the National Museum of Natural History. No. 1 was prepared and printed by J. A. Peters, then Curator-in-Charge of the Division of Amphibians & Reptiles. The availability of a NASA translation service and assorted indices encouraged him to continue the series and distribute these items on an irregular schedule. The series continues under that tradition. Specifically, the SHIS series distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, and unlikely to be published in the normal technical journals. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such an item, please contact George Zug [zugg @ si.edu] for its consideration for distribution through the SHIS series. Our increasingly digital world is changing the manner of our access to research literature and that is now true for SHIS publications. They are distributed now as pdf documents through two Smithsonian outlets: BIODIVERSITY HERITAGE LIBRARY. www.biodiversitylibrary.org/bibliography/15728 All numbers from 1 to 131 [1968-2001] available in BHL.
    [Show full text]