(Teleostei: Schizothorax) in the Central Himalayas Binod Regmi University of Arkansas, Fayetteville

Total Page:16

File Type:pdf, Size:1020Kb

(Teleostei: Schizothorax) in the Central Himalayas Binod Regmi University of Arkansas, Fayetteville University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2019 Phylogenomics and Geometric Morphometrics Define pS ecies Flocks of Snowtrout (Teleostei: Schizothorax) in the Central Himalayas Binod Regmi University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Developmental Biology Commons, Evolution Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Regmi, Binod, "Phylogenomics and Geometric Morphometrics Define peS cies Flocks of Snowtrout (Teleostei: Schizothorax) in the Central Himalayas" (2019). Theses and Dissertations. 3170. https://scholarworks.uark.edu/etd/3170 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Phylogenomics and Geometric Morphometrics Define Species Flocks of Snowtrout (Teleostei: Schizothorax) in the Central Himalayas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences by Binod Regmi Tribhuvan University, Institute of Forestry, Nepal Bachelor of Science in Forestry, 2001 Wildlife Institute of India Post Graduate Diploma (Honors) in Wildlife Management, 2007 University of Louisiana Master of Science in Biology, 2012 University of Arkansas Master of Science in Statistics and Analytics, 2018 May 2019 University of Arkansas The dissertation is approved for recommendation to the Graduate Council. ____________________________________ Marlis R. Douglas, Ph.D. Dissertation Director _______________________________ ____________________________________ Michael E. Douglas, Ph.D. Andrew J. Alverson, Ph.D. Committee Member Committee Member ____________________________ David R. Edds, Ph.D. Committee Member Abstract Schizothorax (Snowtrout) is a genus of medium-sized minnows (Cypriniformes) inhabiting glacier-fed streams, rivers, and lakes in the Himalayas. There are more than 30 species of Schizothorax across the region. The speciation and diversity of the Snowtrout in the vast hinterlands of the Himalayan Region has not been fully explored. Three species in Lake Rara, Western Nepal are considered a species flock, comprising endemic ecotypes that are morphologically differentiated and reproductively isolated. My dissertation research examined the diversity of Schizothorax in the Central Himalayan region and evolutionary relationships among species distributed in the Tibet, Central and Southeast Asia. Chapter I describes the historical biogeography and distribution of Schizothorax species in the Himalayas and Tibetan Region. In Chapter II, morphological and genetic variation was examined among Schizothorax collected from three major drainage systems in Nepal using 18 anatomical landmarks (number of images, N=565) and mitochondrial gene (cytochrome b) sequence analysis (n=115). In Chapter III, machine learning algorithms were evaluated to discriminate morphological species based on head and body shape using Procrustes aligned data generated in Chapter 2. In Chapter IV, a phylogenetic tree of Schizothorax was constructed comprising Central (Nepal, haplotypes=14) and Eastern (Bhutan, haplotypes=18) Himalayan species to explore their evolutionary relationships within in a global species phylogeny based on GenBank data (n=51, outgroups=5). Chapter V employed a phylogenomic approach to examine fine-scale relationships amongst Schizothorax in Nepal and assess uniqueness of endemic forms in Lake Rara. Double digest restriction associated DNA (ddRAD)sequences were generated to extract 20,000 single nucleotide polymorphism (SNPs) loci. These data were used to trace the selection driven phenotypic convergence among species isolated largely due to the geographical and ecological barriers. Both species and basins were significant predictors of the shape. Classifiers, such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), assigned individuals to morphological species with high accuracy. However, a strong geographic structure was reflected in the mitochondrial (cytochrome b) gene sequence data. Conversely, phylogenomic analysis of SNPs uncovered basin-specific upstream and downstream clades, as well as Lake Rara endemic species as a monophyletic group that mitochondrial gene analyses failed to resolve in previous studies. Table of Content Chapter I Introduction……………………………………………………………………..1 References ................................................................................................................ 10 Appendix .................................................................................................................. 13 Chapter II Morphological and genetic variability in a species-complex of Central Himalayan fish (Cyprinidae:Schizothorax) inhabiting Lake Rara in Nepal Abstract .................................................................................................................... 15 Introduction .............................................................................................................. 17 Methods .................................................................................................................... 20 Results ...................................................................................................................... 25 Discussion ................................................................................................................. 29 Conclusion ................................................................................................................ 31 Acknowledgements .................................................................................................... 32 References ................................................................................................................ 33 Appendix .................................................................................................................. 37 Chapter III Can machine learning accurately delimit morphological species: Central Himalayan Snowtrout (Schizothorax) as a test case Abstract .................................................................................................................... 53 Background ............................................................................................................... 54 Methods .................................................................................................................... 58 Results ...................................................................................................................... 63 Discussion ................................................................................................................. 66 Conclusion ................................................................................................................ 69 Abbreviations ............................................................................................................ 70 Acknowledgements .................................................................................................... 71 Funding ..................................................................................................................... 71 References ................................................................................................................ 72 Appendix .................................................................................................................. 76 Chapter IV Paleodrainages and the biogeography of Snowtrout (Cyprinidae: Schizothorax) in South and Central Asia Abstract .................................................................................................................... 87 Introduction .............................................................................................................. 89 Methods .................................................................................................................... 91 Results ...................................................................................................................... 96 Discussion ................................................................................................................. 98 Conclusion .............................................................................................................. 103 Acknowledgement ................................................................................................... 103 References .............................................................................................................. 105 Appendix ................................................................................................................ 113 Chapter V Species flocks of Snowtrout (Schizothorax) in the Central Himalayas: convergent evolution along elevation gradient Abstract .................................................................................................................. 122 Introduction ............................................................................................................ 123 Methods .................................................................................................................. 125 Results .................................................................................................................... 127 Discussion ..............................................................................................................
Recommended publications
  • Advanced Morphometric Techniques Applied to The
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN ADVANCED MORPHOMETRIC TECHNIQUES APPLIED TO THE STUDY OF HUMAN BRAIN ANATOMY TESIS DOCTORAL Yasser Alemán Gómez Ingeniero en Tecnologías Nucleares y Energéticas Máster en Neurociencias Madrid, 2015 DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN PHD THESIS ADVANCED MORPHOMETRIC TECHNIQUES APPLIED TO THE STUDY OF HUMAN BRAIN ANATOMY AUTHOR Yasser Alemán Gómez Ing. en Tecnologías Nucleares y Energéticas MSc en Neurociencias ADVISOR Manuel Desco Menéndez, MScE, MD, PhD Madrid, 2015 Departamento de Ingeniería Electrónica Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad Politécnica de Madrid Ph.D. Thesis Advanced morphometric techniques applied to the study of human brain anatomy Tesis doctoral Técnicas avanzadas de morfometría aplicadas al estudio de la anatomía cerebral humana Author: Yasser Alemán Gómez Advisor: Manuel Desco Menéndez Committee: Andrés Santos Lleó Universidad Politécnica de Madrid, Madrid, Spain Javier Pascau Gonzalez-Garzón Universidad Carlos III de Madrid, Madrid, Spain Raymond Salvador Civil FIDMAG – Germanes Hospitalàries, Barcelona, Spain Pablo Campo Martínez-Lage Universidad Autónoma de Madrid, Madrid, Spain Juan Domingo Gispert López Universidad Pompeu Fabra, Barcelona, Spain María Jesús Ledesma Carbayo Universidad Politécnica de Madrid, Madrid, Spain Juan José Vaquero López Universidad Carlos III de Madrid, Madrid, Spain Esta Tesis ha sido desarrollada en el Laboratorio de Imagen Médica de la Unidad de Medicina y Cirugía Experimental del Instituto de Investigación Sanitaria Gregorio Marañón y en colaboración con el Servicio de Psiquiatría del Niño y del Adolescente del Departamento de Psiquiatría del Hospital General Universitario Gregorio Marañón de Madrid, España. Tribunal nombrado por el Sr.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • A REVIEW of the STATUS and THREATS to WETLANDS in NEPAL Re! on the Occasion Of3 I UCN World Conservation Congress, 2004
    A REVIEW OF THE STATUS AND THREATS TO WETLANDS IN NEPAL re! On the occasion of3 I UCN World Conservation Congress, 2004 A REVIEW OF THE STATUS AND THREATS TO WETLANDS IN NEPAL IUCN Nepal 2004 IUCN The World Conservation Union IUCN The World Conservation Union The support of UNDP-GEF to IUCN Nepal for the studies and design of the national project on Wetland Conservation and Sustainable Use and the publication of this document is gratefully acknowledged. Copyright: © 2004 IUCN Nepal Published June 2004 by IUCN Nepal Country Office Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: IUCN Nepal (2004). A Review o(the Status andThreats to Wetlands in Nepal 78+v pp. ISBN: 99933-760-9-4 Editing: Sameer Karki and Samuel Thomas Cover photo: Sanchit Lamichhane Design & Layout: WordScape, Kathmandu Printed by: Jagadamba Press, Hattiban, Lalitpur Available from: IUCN Nepal, P.O. Box 3923, Kathmandu, Nepal Tel: (977-1) 5528781,5528761,5526391, Fax:(977-I) 5536786 email: [email protected], URL: http://www.iucnnepal.org Foreword This document is the result of a significant project development effort undertaken by the IUCN Nepal Country Office over the last two years, which was to design a national project for conservation and sustainable use of wetlands in the country.This design phase was enabled by a UNDP-GEF PDF grant.
    [Show full text]
  • The Utility of Geometric Morphometrics to Elucidate Pathways of Cichlid Fish Evolution
    SAGE-Hindawi Access to Research International Journal of Evolutionary Biology Volume 2011, Article ID 290245, 8 pages doi:10.4061/2011/290245 Review Article The Utility of Geometric Morphometrics to Elucidate Pathways of Cichlid Fish Evolution Michaela Kerschbaumer and Christian Sturmbauer Department of Zoology, Karl-Franzens University of Graz, Universit¨atsplatz 2, 8010 Graz, Austria Correspondence should be addressed to Michaela Kerschbaumer, [email protected] Received 22 December 2010; Accepted 29 March 2011 Academic Editor: Tetsumi Takahashi Copyright © 2011 M. Kerschbaumer and C. Sturmbauer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fishes of the family Cichlidae are famous for their spectacular species flocks and therefore constitute a model system for the study of the pathways of adaptive radiation. Their radiation is connected to trophic specialization, manifested in dentition, head morphology, and body shape. Geometric morphometric methods have been established as efficient tools to quantify such differences in overall body shape or in particular morphological structures and meanwhile found wide application in evolutionary biology. As a common feature, these approaches define and analyze coordinates of anatomical landmarks, rather than traditional counts or measurements. Geometric morphometric methods have several merits compared to traditional morphometrics, particularly for the distinction and analysis of closely related entities. Cichlid evolutionary research benefits from the efficiency of data acquisition, the manifold opportunities of analyses, and the potential to visualize shape changes of those landmark-based methods. This paper briefly introduces to the concepts and methods of geometric morphometrics and presents a selection of publications where those techniques have been successfully applied to various aspects of cichlid fish diversification.
    [Show full text]
  • Nepal Society
    TIIE BRITAIN-NEPAL SOCIETY Journal Number 18 1994 ( " Remote Welfare CelUre tU Pinhi Set in the wilds of mid-eastern Nepal See article Aid in Nepal, page 21 Photo: Captain Sean El/ioft THE BRITAIN-NEPAL SOCIETY Journal Number 18 London Electricity 1994 wishes continued CONTENTS The mayor ofKathmandu and the Lord Mayor of success to the London with our Chainnan and Mr Madhab P. Khanal, Minister Counsellor, Royal Nepalese Embassy, at the Britain - Nepal Mansion House in London Society. 5 • Editorial 7 • The Society'S News by Pat Mellor 8 • The Nepal-Britain Society by Mayura Brown 9 • A Flying Visit to Lo Mantang by Gerry Birch 13 • Summer Outing to Blenheim Palace by Iris Perowne Bolton 15 • The British Cemetery, Kathmandu by Sir Michael Scott 19 • Annual N epali Supper by Mayura Brown 21 • Aid in Nepal by Captain Sean Elliott 27 • Himalayan Voices (MJ. Hutt) Review by Mark Temple 29 • Nepalese Textiles (Susi Dunsmore) Review by Mayura Brown 30 • Wars Bring Scars (E.D. Smith) Review by Lt. Col. T.M. Lowe 32 • Addresses Templar House 34 • Obituary (Joyce Denson) 81-87 High Holborn ~:= LONDON 35 • Notes on the Society London WC 1V 6NU ~ ELECTRICITY Telephone 071 2429050 3 EDITORIAL Members who were present at Burlington course the Fair Rosamund (twelfth cen­ House to hear about 'The Wanderings of tury) and her well. ZENECA a Military Attache in Nepal', the reminis­ Last year we printed a fascinating con­ Public Health cences of Lieutenant Colonel Gerry Birch, tribution from Mark Temple on 'The and who enjoyed his dramatic account of Ruins of Khola Songbre'.
    [Show full text]
  • A Practical Introduction to Landmark-Based Geometric Morphometrics
    A PRACTICAL INTRODUCTION TO LANDMARK-BASED GEOMETRIC MORPHOMETRICS MARK WEBSTER Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 and H. DAVID SHEETS Department of Physics, Canisius College, 2001 Main Street, Buffalo, NY 14208 ABSTRACT.—Landmark-based geometric morphometrics is a powerful approach to quantifying biological shape, shape variation, and covariation of shape with other biotic or abiotic variables or factors. The resulting graphical representations of shape differences are visually appealing and intuitive. This paper serves as an introduction to common exploratory and confirmatory techniques in landmark-based geometric morphometrics. The issues most frequently faced by (paleo)biologists conducting studies of comparative morphology are covered. Acquisition of landmark and semilandmark data is discussed. There are several methods for superimposing landmark configu- rations, differing in how and in the degree to which among-configuration differences in location, scale, and size are removed. Partial Procrustes superimposition is the most widely used superimposition method and forms the basis for many subsequent operations in geometric morphometrics. Shape variation among superimposed con- figurations can be visualized as a scatter plot of landmark coordinates, as vectors of landmark displacement, as a thin-plate spline deformation grid, or through a principal components analysis of landmark coordinates or warp scores. The amount of difference in shape between two configurations can be quantified as the partial Procrustes distance; and shape variation within a sample can be quantified as the average partial Procrustes distance from the sample mean. Statistical testing of difference in mean shape between samples using warp scores as variables can be achieved through a standard Hotelling’s T2 test, MANOVA, or canonical variates analysis (CVA).
    [Show full text]
  • ZSL National Red List of Nepal's Birds Volume 5
    The Status of Nepal's Birds: The National Red List Series Volume 5 Published by: The Zoological Society of London, Regent’s Park, London, NW1 4RY, UK Copyright: ©Zoological Society of London and Contributors 2016. All Rights reserved. The use and reproduction of any part of this publication is welcomed for non-commercial purposes only, provided that the source is acknowledged. ISBN: 978-0-900881-75-6 Citation: Inskipp C., Baral H. S., Phuyal S., Bhatt T. R., Khatiwada M., Inskipp, T, Khatiwada A., Gurung S., Singh P. B., Murray L., Poudyal L. and Amin R. (2016) The status of Nepal's Birds: The national red list series. Zoological Society of London, UK. Keywords: Nepal, biodiversity, threatened species, conservation, birds, Red List. Front Cover Back Cover Otus bakkamoena Aceros nipalensis A pair of Collared Scops Owls; owls are A pair of Rufous-necked Hornbills; species highly threatened especially by persecution Hodgson first described for science Raj Man Singh / Brian Hodgson and sadly now extinct in Nepal. Raj Man Singh / Brian Hodgson The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of participating organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of any participating organizations. Notes on front and back cover design: The watercolours reproduced on the covers and within this book are taken from the notebooks of Brian Houghton Hodgson (1800-1894).
    [Show full text]
  • Speckled Dace, Rhinichthys Osculus, in Canada, Prepared Under Contract with Environment and Climate Change Canada
    COSEWIC Assessment and Status Report on the Speckled Dace Rhinichthys osculus in Canada ENDANGERED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Speckled Dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 51 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Previous report(s): COSEWIC 2006. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 27 pp. (www.sararegistry.gc.ca/status/status_e.cfm). COSEWIC 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 36 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Peden, A. 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada, in COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-36 pp. Peden, A.E. 1980. COSEWIC status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. 1-13 pp. Production note: COSEWIC would like to acknowledge Andrea Smith (Hutchinson Environmental Sciences Ltd.) for writing the status report on the Speckled Dace, Rhinichthys osculus, in Canada, prepared under contract with Environment and Climate Change Canada.
    [Show full text]
  • 1 CURRICULAM VITAE Name Bijay Kumar Pokhrel Current Position Ph
    CURRICULAM VITAE Name Bijay Kumar Pokhrel Current position Ph.D. student of Agricultural Economics at Louisiana State University, Baton Rouge, Louisiana, USA Address for 3450 Nicholson Dr, Apartment No. 1049 correspondence Zip: 70802, Baton Rouge, Louisiana, USA Email: [email protected] [email protected] [email protected] Cell.no. 225-916-7873 Key Qualification Mr. Bijay Kumar Pokhrel has over 20 years of professional experiences in different disciplines of Civil Engineering namely: Irrigation, Road, Building, Water Supply and Sanitation, and Hydrology. In these disciplines, he has involved in project planning, design, estimate and construction supervision, monitoring and evaluation, contractor and consultant hiring, research works etc. Now Mr. Pokhrel is a Ph.D. student of Agricultural Economics at Louisiana State University, Baton Rouge, He has served government of Nepal as a senior divisional hydrologist in the Department of Hydrology and Meteorology. He has comprehensive experiences in hydro-meteorology and involving in hydrological evaluation, covering Deterministic and Stochastic hydrology, with particular expertise in water resources planning, flood estimation, rainfall intensity and flood frequency analysis, rainfall- runoff hydrological modeling, flood forecasting, flood zoning, reservoir sedimentation, spillway design flood estimation and evaluation, Hydropower design flood estimation and evaluation, design, estimate and supervision of civil works. Similarly, Hydro-meteorological network design, hydro-meteorological data collection, processing and publication, GIS and Remote Sensing. Mr. Pokhrel was involved as a resource person of DHM for the research work namely "Impact of Climate Change on Snow and Glacier at Nepalese Himalaya" was carried out with the IRD, France and Nagoya University, of Japan. Mr. Pokhrel was a key person for joint research work with WWf Nepal and DHM for Impact of Climate change on surface flow of Koshi Basin of Nepal.
    [Show full text]
  • Rara Lake to Jumla
    Xtreme Climbers Treks And Expedition Pvt Ltd Website:https://xtremeclibers.com XtremeImage not Climbers found or typeand unknownExpedition Pvt . Ltd Email:[email protected] Phone No:977 - 9801027078,977 - 9851027078 P.O.Box:9080, Kathmandu, Nepal Address: Bansbari, Kathmandu, Nepal Rara Lake to Jumla Image not found or type unknown Introduction Rara Lake, The unique opportunity to be among those who have treated on the remote trails of western Nepal. It is biggest and deepest freshwater lake in the Nepal’s Himalayas. It is the main feature of Rara National Park, located in Jumla and Mugu Districts. In September 2007, it was declared a Ramsar site, covering 1,583 ha including the surrounding wetland. followed by a flight to Nepalgunj and then to Jumla. From Jumla, you will set forth on a journey that promises greater solitude and a chance to be in the presence of the fantastic Rara Lake. It is the highest lake in Nepal and proudly addressed by the Nepalese as the Queen of Lakes . which showcases nestled snow-capped mountains and leads you through accessible forest. This trek puts you to walk in a solitary path, wherein you follow off-the-beaten trail and enjoy the gifts of nature in a full swing; above all, you experience a variety of nature. All these that you see and where you walk, take place in the Rara National Park, a habitual place for musk deer, Himalayan black bear, leopard, Himalayan goral, Red Panda, and “Danfe” Besides this, the park also abounds with coniferous trees, such as pine, juniper, and spruce.
    [Show full text]
  • Multivariate Allometry
    MULTIVARIATE ALLOMETRY Christian Peter Klingenberg Department of Biological Sciences University of Alberta Edmonton, Alberta T6G 2E9, Canada ABSTRACT The subject of allometry is variation in morphometric variables or other features of organisms associated with variation in size. Such variation can be produced by several biological phenomena, and three different levels of allometry are therefore distinguished: static allometry reflects individual variation within a population and age class, ontogenetic allometry is due to growth processes, and evolutionary allomctry is thc rcsult of phylogcnctic variation among taxa. Most multivariate studies of allometry have used principal component analysis. I review the traditional technique, which can be interpreted as a least-squares fit of a straight line to the scatter of data points in a multidimensional space spanned by the morphometric variables. I also summarize some recent developments extending principal component analysis to multiple groups. "Size correction" for comparisons between groups of organisms is an important application of allometry in morphometrics. I recommend use of Bumaby's technique for "size correction" and compare it with some similar approaches. The procedures described herein are applied to a data set on geographic variation in the waterstrider Gerris costae (Insecta: Heteroptera: Gcrridac). In this cxamplc, I use the bootstrap technique to compute standard errors and perform statistical tcsts. Finally, I contrast this approach to the study ofallometry with some alternatives, such as factor analytic and geometric approaches, and briefly analyze the different notions of allometry upon which these approaches are based. INTRODUCTION Variation in sizc of organisms usually is associated with variation in shape, and most mctric charactcrs arc highly corrclatcd among one another.
    [Show full text]
  • Joseph R. Tomelleri 28 27
    Nevada 29 34 35 32 2 31 30 3 1 33 20 18 6 4 19 5 8 17 16 12 7 23 15 24 9 21 25 22 10 26 14 13 11 41 36 39 40 38 37 Illustrations by JOSEPH R. TOMELLERI 28 27 N A T I V E F I S H E S O F N E V A D A G R O U P IN G S B Y F A M ILY KILLIFISHES ∙ Cyprinodontidae 11. Big Spring spinedace ∙ Lepidomeda mollispinis pratensis† POOLFISHES ∙ Empetrichthyidae 31. Mountain sucker ∙ Catostomus platyrhynchus 1. Devils Hole pupfish ∙ Cyprinodon diabolis* 12. Moapa dace ∙ Moapa coriacea* 22. Preston White River springfish ∙ Crenichthys baileyi albivallis 32. Warner sucker ∙ Catostomus warnerensis† 2. Ash Meadows Amargosa pupfish ∙ Cyprinodon nevadensis mionectes* 13. Woundfin ∙ Plagopterus argentissimus* 23. Hiko White River springfish ∙ Crenichthys baileyi grandis* 33. Wall Canyon sucker ∙ Catostomus sp. 3. Warm Springs Amargosa pupfish ∙ Cyprinodon nevadensis pectoralis* 14. Colorado pikeminnow ∙ Ptychocheilus lucius* 24. Moapa White River springfish ∙ Crenichthys baileyi moapae 34. Cui-ui ∙ Chasmistes cujus* 25. Railroad Valley springfish ∙ Crenichthys nevadae† 35. Razorback sucker ∙ Xyrauchen texanus* MINNOWS ∙ Cyprinidae 15. Northern pikeminnow ∙ Ptychocheilus oregonesis 26. Pahrump poolfish ∙ Empetrichthys latos* 4. Desert dace ∙ Eremichthys acros† 16. Relict dace ∙ Relictus solitarius TROU T S ∙ Salmonidae 17. Moapa speckled dace ∙ Rhinichthys osculus moapae 5. Humpback chub ∙ Gila cypha* S CUL P INS ∙ Cottidae 36. Mountain whitefish ∙ Prosopium williamsoni 18. Ash Meadows speckled dace ∙ Rhinichthys osculus nevadensis* † 6. Bonytail chub ∙ Gila elegans* 27. Mottled sculpin ∙ Cottus bairdii 37. Lahontan cutthroat trout ∙ Onchorhynchus clarkii henshawi 19. White River speckled dace ∙ Rhinichthys osculus ssp.
    [Show full text]