The Premier Electrical Maintenance and Safety Event

Hosted by

VLF-MWT – How to apply the new way of cable condition assessment

Jenny, M., BAUR Prüf- und Messtechnik GmbH, Sulz, Austria, [email protected] Gerstner, A., BAUR Prüf- und Messtechnik GmbH, Sulz, Austria, [email protected] Daniels, T.A., HV Technologies, Manassas, U.S., [email protected]

Abstract Condition-based maintenance is an important and necessary strategy for coping with today's asset management requirements for an electric utility system operator. However, this requires an exact knowledge of cable conditions. Testing and diagnostic methods which provide meaningful results and are simple and economical to apply in the field are a prerequisite. The Monitored Withstand Test (MWT) meets these requirements. The MWT consists of a combination of established methods for cable testing and diagnostics and provides the system operators additional information on the cables condition for optimal planning of repairs or replacements to minimize downtimes.

I. Introduction Operators of medium voltage networks and distribution networks worldwide are facing similar challenges: Existing cable systems must be maintained most economically and investments in new lines must be secured while maintaining or improving the quality of the network. Many operators today use diagnostic procedures to resolve the conflicts in these objectives in the best manner from technical and economic perspectives. Simple cable testing is a common method described in various IEC, IEEE, CENELEC and other national standards. Various test levels and times are used which depend on the voltage type (Direct Current DC, Very Low Frequency VLF, 50/60Hz). Faulty locations are forced to breakdown by application of a test voltage higher than nominal voltage (x*Uo). The wide acceptance of this method and the years of testing experience have also shown its limitations. The simple “passed” or “failed” statement allows no estimation about the remaining lifetime of the cable.

This circumstance has led to a broader acceptance of cable diagnostics, which provides information on the cable's condition. As [1] indicates, VLF testing, tan-delta measurement and partial discharge measurement have become established methods for this. Evaluation of single measurement results and the combination of tan-delta and partial discharge (PD) measurement provides the operator with important information about the condition of a particular cable. Although cable diagnostics provides more relevant information for decision-making than a simple cable test, it cannot reveal how the cable would respond to the application of an increased test voltage over a longer period (15 minutes to an hour). Section 3 shows a practical example of how this can lead to misinterpretations in specific cases. Up to now, cable testing has lacked the ability to adapt the test duration to the condition of the cable and thus reduce overstress by the increased test voltage and save time and money.

Page 1 / Jenny, Gerstner, Daniels

To avoid the disadvantages of these individual methods, the National Electric Energy Test, Research and Applications Centre (NEETRAC) developed the VLF Monitored Withstand Test (MWT). A combination of VLF cable testing and diagnostics enables the measurement limitations described to be compensated in the best manner and significant additional value to be generated through additional information with a flexible test period.

II. VLF cable testing – a field proven method VLF (Very Low Frequency) was introduced to test the insulation of Medium Voltage (MV) underground cables after new installations, after repairs or as a routine measure at regular intervals. It became important when it was recognized, that testing of PE/XLPE-insulated cables with DC voltages is ineffective in detecting hidden defects in XLPE insulations. It was found, that DC testing could induce trapped space charges in the polymeric material. After successfully passing the DC voltage test, these cables would breakdown shortly after being re-energized. This behavioural pattern was observed for medium voltage cables failures. [4]

The reasons for voltage testing are according to [5]:  Detection of weak points which put reliable operation at risk using low test voltage levels  Conversion or evolution of conductive inhomogeneous defects (water treeing) at low test levels into first partial discharge channels ()  Bringing partial-discharge defects rapidly to breakdown by means of high channel growth speeds

Figure 1 Development of electrical tree out of a water tree By comparing different voltage sources (VLF Sinus, VLF Cos-Rect, 50/60Hz AC, Oscillating Voltage) it was found, that especially the VLF Sinus voltage is suitable for testing medium voltage- and especially PE/XLPE cables. The combination of a low PD incipient voltage, high channel growth speed and the capability to perform diagnostics must be considered [5]. These are the preconditions, to convert inhomogeneous defects and to bring partial-discharge defects rapidly to breakdown.

A typical VLF withstand test is performed with voltages between 2 and 3*Uo for the maximum time of one hour. Due to the representation in different standards (IEC60060-3 (horizontal standard), CENELEC HD620/HD621, IEEE 400.2) and the easy application on site, VLF cable testing became a widely adopted method worldwide. But voltage withstand testing has its limitations. The simple result (Pass/Fail) only offers the statement that the cable was ready for operation or damaged at the time of testing. But it provides no estimate of how long the cable can remain in operation nor when the next check should be performed. That’s the reason, why diagnostic methods like tan-delta- or partial discharge measurement became more popular in the last few years.

Page 2 / Jenny, Gerstner, Daniels

III. VLF tan-delta diagnostics – more valuable information The tan-delta measurement is an important extension to the simple withstand test, because more information about the cable condition is available. This can be used, to optimize the maintenance strategy of a utility.

The tan-delta method is an integral measurement which can be adopted for all cable types and gives a statement about the condition of the whole cable line. Although there is no location information available, the interpretation of various tan-delta parameters allows differentiating between different types of defects of the cable line. These measurements allow the system operator to define follow-up measurements like partial discharge- or cable sheath testing. With the combination of these methods it is possible, to interpret and locate different types of defects. For modelling, the cable insulation system is simply represented by a (representing the cable with a perfect insulation material) and a (representing the defective insulation).

Figure 2 Equivalent cable circuit When a voltage is applied to the cable, the total current is the sum of the capacitive- (Ic) and resistive current (IR) through the cable. (Figure 2) The measured angle δ increases with decreasing value of R, which represents the imperfections of an insulation material. The tan-δ is ratio between the resistor current and the capacitor current. If the resistor current is 0 due to a perfect insulation material, the tan δ also becomes 0.

It is also possible to measure different tan-delta values at different voltage stages (e.g. 0.5, 1.0, 1.5 and 2.0*Uo)  MTD: Mean tan-delta: Average or mean value of tan-delta values at constant test voltage  ΔTD: Delta tan-delta: Change in tan-delta with changing test voltage  SDTD: Stability or standard deviation of tan-delta values at constant test voltage

The measurement of these values allows an interpretation of different types. A high MTD value is an indicator of the presence of water trees. If the ΔTD is high (increasing TD over test voltage), this could be an indicator for partial discharges or also for water trees. A negative ΔTD (decreasing TD over test voltage) could be an indicator for a vaporisation effect, e.g. in terminations.

And the SDTD (stability at a voltage level) is another helpful indicator. A low SDTD indicates that the cable is in a good condition. An increasing SDTD indicates the presence of partial discharges. High SDTD values are an indicator for water ingress in joints.

Page 3 / Jenny, Gerstner, Daniels

IV. The Monitored Withstand Test (MWT) – an ingenious combination Before describing the MWT, let us examine the disadvantages of simple cable testing once again. As [2] explains, there are essentially three disadvantages:  No estimate of the cable line's quality can be made before the test voltage is applied.  The duration cannot be adapted to the condition of the cable.  No estimate can be made of how well the cable test was passed nor whether the cable will fail in an hour or in ten years.

Combining VLF cable testing and VLF tan-delta diagnostics can avoid these limitations. It makes sense, to perform the MWT in two stages:  a “ramp-up”- and  a "MWT"-or "hold" stage

A. Ramp-up stage Non-destructive tan-delta measurement as described before is performed prior to the actual MWT stage. Continuous monitoring of the measurement values (mean tan-delta, tan-delta stability, delta tan-delta) enables an initial estimation of the cable's condition to be made. As Figure 3 shows, tan-delta measurements are performed typically at 0.5xUo, 1.0xUo and 1.5xUo.

Figure 3 Sequence of the ramp-up stage

Various tan-delta indicators are determined and evaluated at each stage:

Ramp-up stage Indicator Calculation tan δ stability (SDTD) Standard deviation of 6-10 measurements at Uo delta tan δ (ΔTD) Difference of the average values at 1.5 Uo and 0.5 Uo mean tan δ (MTD) Average value of 6-10 measurements at Uo Table 1 Indicators during the ramp-up stage

The advantages of the ramp-up stage are apparent:  An initial assessment of the cable line's condition is enabled.  Excessive stress from high test voltages on aged cable lines can be avoided by an initial condition evaluation.  Tan-delta measurement is an established, commonly used method. Application experience and limit values are available.

Page 4 / Jenny, Gerstner, Daniels

B. MWT or hold stage Cable testing and diagnostics are combined in the MWT stage. According to [2], the MWT is only passed if  no breakdown occurred during the MWT  the tan-delta values determined prove to be stable (i.e. have a low standard deviation)  the average tan-delta value is low

Figure 4 Sequence of the MWT stage Figure 4 shows the sequence of the MWT stage. Various tan-delta measurement values are also determined and evaluated during application of the voltage. (See Table 2.)

MWT stage Indicator Calculation tan δ stability (SDTD) Standard deviation of 6-10 measurements at Uo mean tan δ (MTD) Average value of 6-10 measurements at Uo Change in tan δ vs. time The difference in the tan δ value from (tΔTD) 0 to 10 minutes. Table 2 Indicators during the MWT stage

Continuous evaluation of the measurement data from the ramp-up and MWT stages enables the optimum test duration for the cable line to be determined during testing. The user can adapt the time to the cable's condition based on the measurement results or the test system can suggest optimal test duration. In addition to the time saved, shorter tests have the advantage of exposing the cable to the higher test voltage only for the time actually necessary. But the user can also extend the test to cause existing weak points in the insulation to break down.

The benefits of the MWT stage can be summarized as follows:  The condition of the cable line can be evaluated.  The test duration can be adjusted to the cable's condition.  The influence of the higher test voltage on the cable can be assessed.  MWT is a useful combination of established, accepted methods.

Page 5 / Jenny, Gerstner, Daniels

V. Case study Here is a practical example of why monitored withstand testing represents an important advance of previous testing and diagnostic measurements. The cable tested (11 kV) has a total length of 234 metres and is composed of various cable types (in other words, a mixed cable line).

Figure 5 Structure of the cable line tested prior to the first repair in June 2010

In June 2010, there was a cable fault in an XLPE-insulated cable line produced in 1989 (first generation). Cables produced during this period are known to develop water trees. An 11 metre section of this line was replaced by an XLPE cable of a newer type.

Figure 6 Structure of the cable line tested after the first repair in June 2010

Diagnostic measurements (VLF tan-delta and partial discharge measurement) were performed after the repair. The tan-delta results showed that the cable line was heavily aged by service. (See Figure 7) Although the measurement values were below the TD limits for mixed cable lines, for the section of line at risk for water trees, the delta tan-delta (DTD) limit for XLPE cable was applied (DTD > 1.0E-3 as high operating risk). Here L2 and L3 showed a strong rise with increasing voltage, indicating water tree damage to the cable.

Figure 7 Tan-delta measurement after repair Page 6 / Jenny, Gerstner, Daniels

The TD standard deviations (SDTD) for L1, L2 and L3 were also used to assess the situation (Figure 8).

Figure 8 SDTD – tan-delta standard deviation for conductors L1-L3

In Figure 8 it can be seen that the SDTDs for L2 and L3 increase. This indicates the presence of water trees. Partial discharge measurement was carried out afterwards (Figure 9).

Figure 9 PD measurement result

The PD measurement data show partial discharges at the transition joints (on the PILC cable line) at 199 and 224 metres. Evaluation of the partial discharge and tan-delta measurement revealed that the high tan- delta values were caused by water trees. This is indicated by higher TD standard deviations for L2 and L3 at voltages below 1.0xUo and the increasing trend of tan-delta without partial discharge. Moreover, the partial discharge level is of an order of magnitude which does not affect the delta tan-delta. Afterwards, a 15 minute VLF cable test was performed at 2xUo. The result was that all three conductors passed the test despite the high tan-delta values. So the cable was put back into operation. Four days later there was a cable fault at 125 metres, i.e. in the section endangered by water trees. Severe water tree damage was found in this part of the line (Figure 10).

Figure 10 Cable line severely damaged by water trees

This example shows quite clearly how a VLF Monitored Withstand Test would have been helpful at this location to avoid the cable fault shortly after restoration of service. 1) The 15 minute VLF test made the water trees more severe, but at the end of the test the progress could not be determined. Here a VLF sinusoidal MWT would have indicated by the progression of the mean tan-delta (rising TD values) and tan-delta standard deviation that the faults had been exacerbated. 2) The test duration could have been extended during the measurement (to 30 minutes, for example). The weak points (water trees in this case) would have grown worse and finally led to breakdown. Page 7 / Jenny, Gerstner, Daniels

3) Thus the MWT could have shown the influence of the test voltage on the cable. 4) It would have been possible to estimate the "margin" of passing from the condition of the cable at the end of the MWT. 5) Tan-delta measurement and cable testing as described in the example would have been possible in a single automated run.

VI. Application It is important for the application of the VLF MWT, that the measurement is simple and automated. This requires a VLF sine voltage, because this voltage shape allows a precise and combined tan-delta measurement. Additionally it is possible to perform the tan-delta measurement at a constant frequency, where limits are available and where a comparison of different measurement results is possible. This fact allows the electric utility system operator to gain the experience with cable diagnostics.

As seen from Section V, it is useful to split the MWT into two stages: Ramp-up and MWT (or hold). For an easy application in the field it is necessary to automate the whole measurement sequence. An example of how these requirements can be implemented is the portable VLF truesinus® generator with an integrated tan-delta measurement like frida TD from BAUR (Figure 9).

Figure 9 MWT application with the BAUR frida TD

Here an integrated tan-delta measurement function enables the same connection to be used for cable testing and tan-delta diagnostics. This facilitates fully automated measurement runs without additional external devices.

It is also important for the various measurement results to be displayed clearly and continuously so the user can make decisions (for example, regarding the length of the MWT) during measurement. An example can be seen in the screenshot in Figure 10. The evaluation of results is also displayed continuously (with smileys) along with the details of individual measurement results.

Figure 10 Screen display during MWT measurement (BAUR frida TD)

Page 8 / Jenny, Gerstner, Daniels

frida TD also allows to consider surface currents in open terminations (subject to pollution, humidity and mechanical damage) during the tan-delta measurement. These unwanted surface currents can heavily influence the tan-delta result, especially for XLPE cables.

Figure 11 Application example: Collection and consideration of unwanted surface currents

VII. Conclusion and outlook The Monitored Withstand Test (MWT) is being promoted in North America and has already found a place in various standards. The latest revision of IEEE400-2012 [3] (the IEEE Guide for Field Test and Evaluation of the Insulation of Shielded Power Cable System Rated 5kV and above) defines and describes the Monitored Withstand Test.

The IEEE400.2-2004 standard (IEEE Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF)) is also currently undergoing revision, and MWT will play a role in it as well. A key factor for evaluating the condition of various cable types is comparison with defined limit values (see the examples in Section VI as well). Limits for various types of cable are shown in [2]. These were developed recently for the North American region and will probably be included in the latest version of IEEE400.2.

The prerequisites for using the tan-delta MWT have been met. The first versions of the standards and the necessary measurement technology are available. Now it is a matter of using tan-delta MWT in the field and applying the experience from this in future discussions of limit values, also for various regions.

VIII. Bibliography [1] Diagnostic Testing of Underground Cable Systems (Cable Diagnostic Focused Initiative, CDFI), December 2010 [2] Fletcher, Hampton, Hernandez, Hesse, Pearman, Perkel, Wall, Zenger: First practical utility implementations of monitored withstand diagnostics in the USA, Jicable 11, A.10.2 [3] IEEE400-2012 IEEE Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems Rated 5kV and Above [4] S.C. Moh: Very Low Frequency Testing – it´s effectiveness in detecting hidden defects in cables. CIRED 17th international Conference on Electricity Distribution, Barcelona 2003 [5] Bach: Testing and Diagnostic Techniques for assessing medium-voltage service aged cables and new cable techniques for avoiding cable faults in the future

Page 9 / Jenny, Gerstner, Daniels

IX. Vita

Martin Jenny was born in Austria in 1972 and is Product Manager for Cable Testing & Diagnostics. Martin is leading the product management for BAUR’s cable testing and diagnostics product portfolio since more than four years. BAUR’s portable VLF testers were one of the innovations that Martin drove forward in the last years. He has more than ten years of experience in testing and measurement in different industries.

Alexander Gerstner was born in Germany in 1969 and is the Head of Global Marketing and Product Management at Baur in Austria. Alexander is an Electrical Engineer with more than 16 years of experience in Product Management and Product Development for technology products in global markets. For more than four years he is responsible for BAUR’s innovation initiatives, Product Management and global customer communication. His special focus is on customer value focused solution design, User Experience, Communication and Information Technology.

Timothy “Tad” Daniels is currently the HV Sales and Marketing Manager for HV TECHNOLOGIES Inc. in Manassas, VA. Tad has worked in the Electric Utility Industry since 1984 with McGraw Edison, Cooper Power Systems, SPX Solutions formerly Waukesha Electric, and Weidmann Electrical Technology. Tad holds a BSEE from Tulane University. He is a member of the IEEE and is active in ICC IEEE PES and IEEE Committee Standards Groups.

Page 10 / Jenny, Gerstner, Daniels

frida and frida TD Monitored Withstand Test MWT BAUR VLF tester and diagnostics devices in accordance with IEEE 400 • MWT with tan δ • Full MWT with tan δ and PD test (with the PD-TaD 60)

Features

frida and frida TD

▪▪ Max. test voltage 24 kVrms / 34 kVpeak ▪▪ Voltage shapes: VLF truesinus®, VLF square wave voltage and DC voltage ▪▪ VLF truesinus® test technology enables load-independent, reproducible sinusoidal ▪▪ Cable testing according to: The new cable condition evaluation generation DIN VDE 0276-620/621 (CENELEC HD 620/621), IEEE 400-2012, IEEE 400.2-2013, ↗↗ Cable testing and dissipation factor diagnostics in one device IEC 60060-3 ▪▪ Cable sheath testing according to IEC 60502/ ↗↗ Easy and quick test setup IEC 60229 ↗↗ Automatic testing and diagnostic sequences ▪▪ Voltage withstand test on electrical equipment according to IEEE 433 ↗↗ Compact dimensions and lightweight frida TD ▪▪ Dissipation factor testing of electrical equipment and medium-voltage cables up to The portable BAUR frida and frida TD devices are used 20 kV –– for testing medium-voltage cables and electrical equipment (generators, ▪▪ Highly precise dissipation factor measurement with precision of 1 x 10-4 transformers and ) ▪ Detection of leakage currents using VSE box –– for cable sheath testing ▪ (option) –– for cable diagnostics (frida TD): ▪▪ Better overview of the cable condition with -- Dissipation factor measurement and Monitored Withstand Test with tan δ Full Monitored Withstand Test in combination -- Partial discharge measurement* with the PD-TaD 60 -- Full Monitored Withstand Test with tan δ and partial discharge Full MWT = VLF cable testing with paral- measurement* lel dissipation factor and partial discharge measurement The VLF testing makes it possible to locate insulation faults in plastic- and paper-in- See page 2 for available methods and sulated mass-impregnated cables in the shortest of testing times without impairing combinations of methods the quality of the surrounding insulating material. ▪▪ Fully automated and individually programmable diagnostic sequences incl. The dissipation factor diagnostics with 0.1 Hz VLF truesinus® provides differentiat- evaluation ed information on the ageing condition of paper-insulated mass-impregnated and General Information PE/XLPE cables. In the case of PE/XLPE cables, the dissipation factor measurement is capable of differentiating between new, slightly or severely “water tree”-damaged ▪▪ Data transfer via USB interface cables. This makes it possible to prioritise the need to replace cables. ▪▪ Management of test and measurement data with PC software The Monitored Withstand Test with tan delta combines the cable testing and dis- ▪▪ Automatic discharge unit sipation factor measurement, allowing an accurate and comprehensive assessment ▪▪ Optionally expandable of the cable condition. In addition, there is minimum load on the cable due to the –– frida: to a PD diagnostics system optimised test duration. –– frida TD: to a PD and full MWT diagnostics system * in combination with the BAUR PD-TaD 60 PD diagnostics system.

BAUR GmbH · Raiffeisenstraße 8, 6832 Sulz, Austria · T +43 (0)5522 4941-0 · F +43 (0)5522 4941-3 · [email protected] · Full Monitored Withstand Test Combination of methods for more significant information

With the BAUR frida TD VLF tester and diagnostics device and in combination with the PD-TaD 60 PD portable diagnostics system, you can measure losses and test the cable route for partial discharges during the VLF cable testing. This combination of methods is called Full MWT and provides significantly more information than the cable test alone. While the cable test shows whether the cable system can withstand a load over a specified test duration, the dissipation factor measurement enables an evaluation of the condition of the cable insulation. Moreover, a partial discharge measurement shows and locates the PD faults precisely. The highlight of MWT is the condition-based test duration: Provided it is permitted, the test duration can be shortened, which in turn lowers costs. This way, the cable is only exposed to the increased test voltage for the required duration.

VLF truesinus® - A voltage shape for all methods and method combinations

VLF truesinus® is the only voltage shape that enables both the reliable voltage tests as well as precise dissipation factor and partial discharge measurements. Unlike other voltage shapes, the VLF truesinus® voltage is load-independent, symmetrical and continuous. This is a prerequisite for high precision as well as reproducibility and comparability of measurement results.

Available methods and combinations of methods

Method Significance and benefits BAUR equipment

VLF testing ▪▪ Easy voltage test (Verdict: Pass / Fail) frida tan δ measure- frida TD ▪ Evaluation of the dielectric condition of the insulation, indication of PD ment ▪

PD test ▪▪ Diagnostics of local weak points and their location frida & PD-TaD 60

Simultaneous ▪▪ Combination of statements of a tan δ measurement and PD measurement frida TD & PD-TaD 60 tan δ and PD ▪▪ Shorter test duration with simultaneous tan δ and PD measurement measurement ▪▪ Better detection of hidden faults (e.g. moist joints) through conditioning of weak points and simultaneous monitoring of tan δ values and PD activities

MWT with tan δ ▪▪ Evaluation of the dielectric condition of the insulation, indication of PD frida TD & PD-TaD 60 ▪▪ Intelligent withstand voltage test ▪▪ Shorter test duration for cables in good condition

VLF cable testing ▪▪ Localisation of faults in the cable insulation frida & PD-TaD 60 with parallel PD ▪▪ Intelligent withstand voltage test test

Full MWT ▪▪ Evaluation of the dielectric condition of the insulation, indication of PD frida TD & PD-TaD 60 ▪▪ Localisation of faults in the cable insulation ▪▪ Intelligent withstand voltage test with shorter test duration for cables in good condition ▪▪ Shorter test duration with simultaneous tan δ and PD measurement ▪▪ Better detection of hidden faults (e.g. moist joints) through conditioning of weak points and simultaneous monitoring of tan δ values and PD activities

Data sheet: BAUR GmbH · 826-095-3 · 10.2015 · Subject to modifications Technical data

Output voltage Measurement range 1 x 10-4 – 21 000 x 10-3 Frequency range 0.01 – 0.1 Hz tan d measuring frequency 0.1 Hz

VLF truesinus® 1 – 24 kVrms (34 kVpeak) Automatic detection and with VSE box (optional) VLF square wave voltage 1 – 34 kV compensation of leakage currents DC voltage ±1 – 34 kV Diagnostic Reporter Resolution 0.1 kV Used to process and evaluate test and measurement logs Accuracy 1% Based on MS Excel From version MS Excel 2007 Load range (VLF testing) 1 nF – 8 μF General Output current Input voltage 100 – 260 V, 50/60 Hz Measurement range 0 – 14 mA Power consumption Max. 300 VA Resolution 1 µA Degree of protection IP 54 Accuracy 1% Data interface USB 2.0 Max. capacitive load 0.5 μF at 0.1 Hz, Dimensions (W x H x D) 438 x 456 x 220 mm 24 kVrms / 34 kVpeak (≈ 2 km)* 1 μF at 0.05 Hz, Weight Approx. 22 kg (incl. HV test lead) 24 kVrms / 34 kVpeak (≈ 4.2 km)* 8 μF at 0.01 Hz, Ambient temperature -10°C to +50°C (operational) 18 kVrms / 25 kVpeak (≈ 33 km)* * max. cable length at a cable capacity of Storage temperature -20°C to +60°C 0.24 µF/km Safety and EMC CE-compliant in accordance with Low Voltage Directive (2006/95/EC), EMC Dissipation factor measurement (frida TD) Directive (2004/108/EC),

VLF truesinus® 1 – 24 kVrms EN 60068-2-ff Environmental testing Load range 10 nF – 8 µF User interface available in Czech, Chinese (CN), Chinese (TW), Dutch, Resolution 1 x 10-6 13 languages English, French, German, Italian, Korean, Polish, Portuguese, Russian, Spanish Accuracy 1 x 10-4

Data sheet: BAUR GmbH · 826-095-3 · 10.2015 · Subject to modifications frida standard delivery frida TD standard delivery

▪▪ BAUR frida VLF tester, incl. ▪▪ BAUR frida TD VLF tester and diagnostics device, incl. –– HV connection cable, 5 m (fix mounted) –– HV connection cable, 5 m (fix mounted) –– GDR 40-136 discharge and earth rod –– BAUR tan delta kit –– Earth cable, 5 m –– GDR 40-136 discharge and earth rod –– Mains supply cord, 2.5 m –– Earth cable, 5 m –– Diagnostic Reporter* –– Mains supply cord, 2.5 m Excel-based application used to process and evaluate test and –– Diagnostic Reporter* measurement logs Excel-based application used to process and evaluate test and –– Video tutorial* measurement logs –– User manual –– Video tutorial* –– Pocket guide –– User manual * on USB drive –– Pocket guide * on USB drive

Options Options

▪ VSE connection set (for the detection and compensation of leakage ▪▪ PD-TaD 60 portable PD diagnostics system ▪ currents) ▪▪ External emergency stop unit with signal lamps, 25 m or 50 m ▪▪ PD-TaD 60 portable PD diagnostics system ▪▪ External emergency stop unit with signal lamps, 25 m or 50 m

Diagnostic Reporter – Sample log (extract)

Data sheet: BAUR GmbH · 826-095-3 · 10.2015 · Subject to modifications