(Buxus L.) Accessions Based on Genic Simple Sequence Repeat Markers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Department of Planning and Zoning
Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only -
What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Buxus Sempervirens1
Fact Sheet FPS-80 October, 1999 Buxus sempervirens1 Edward F. Gilman2 Introduction Long a tradition in colonial landscapes, Boxwood is a fine- textured plant familiar to most gardeners and non-gardeners alike (Fig. 1). Eventually reaching 6- to 8-feet-tall (old specimens cab be much taller), Boxwood grows slowly into a billowing mound of soft foliage. Flowers are borne in the leaf axils and are barely noticeable to the eye, but they have a distinctive aroma that irritates some people. General Information Scientific name: Buxus sempervirens Pronunciation: BUCK-sus sem-pur-VYE-renz Common name(s): Common Boxwood, Common Box, American Boxwood Family: Buxaceae Plant type: shrub USDA hardiness zones: 6 through 8 (Fig. 2) Planting month for zone 7: year round Planting month for zone 8: year round Origin: not native to North America Figure 1. Common Boxwood. Uses: border; edging; foundation; superior hedge Availablity: generally available in many areas within its Growth rate: slow hardiness range Texture: fine Description Foliage Height: 8 to 20 feet Spread: 10 to 15 feet Leaf arrangement: opposite/subopposite Plant habit: round Leaf type: simple Plant density: dense Leaf margin: entire 1.This document is Fact Sheet FPS-80, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October, 1999 Please visit the EDIS Web site at http://edis.ifas.ufl.edu. 2.Edward F. Gilman, professor, Environmental Horticulture Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611. The Institute of Food and Agricultural Sciences is an equal opportunity/affirmative action employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, age, handicap, or national origin. -
Cylindrocladium Buxicola Nom. Cons. Prop.(Syn. Calonectria
I Promotors: Prof. dr. ir. Monica Höfte Laboratory of Phytopathology, Department of Crop Protection Faculty of Bioscience Engineering Ghent University Dr. ir. Kurt Heungens Institute for Agricultural and Fisheries Research (ILVO) Plant Sciences Unit - Crop Protection Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe II Bjorn Gehesquière Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences III Dutch translation of the title: Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) in Buxus: moleculaire karakterisering, epidemiologie, waardplantresistentie en chemische bestrijding. Please refer to this work as follows: Gehesquière B. (2014). Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control. Phd Thesis. Ghent University, Belgium The author and the promotors give authorisation to consult and to copy parts of this work for personal use only. Any other use is limited by Laws of Copyright. Permission to reproduce any material contained in this work should be obtained from the author. The promotors, The author, Prof. dr. ir. M. Höfte Dr. ir. K. Heungens ir. B. Gehesquière IV Een woordje van dank…. Dit dankwoord schrijven is ongetwijfeld het leukste onderdeel van deze thesis, en een mooie afsluiting van een interessante periode. Terugblikkend op de voorbije vier jaren kan ik enkel maar beamen dat een doctoraat zoveel meer is dan een wetenschappelijke uitdaging. Het is een levensreis in al zijn facetten, waarbij ik mezelf heb leren kennen in al mijn goede en slechte kantjes. -
Boxwoods for Pennsylvania Landscapes
Boxwoods for Pennsylvania Landscapes College of Agricultutal Sciences Agricultural Research and Cooperative Extension inter in many parts of Pennsylvania Each species contributes unique provides a stark, leafless, snow-covered characteristics, including size, color, scene among the deciduous hardwoods, insect resistance, and foliage. Common intermixed with dark green patches boxwood is a wide-spreading species of hemlock and other needle-leafed with very dense, evergreen foliage evergreens. Many homeowners look and cold tolerance to about -50F. The to enhance this beautiful scene with leaves are dark green above and yellow- 1 1 broadleaf evergreens in their landscape. green below, reaching /2" to 1 /2" in There are a number of broadleaf ever- length, and are oblong to oval in shape. green shrubs to choose from that are Japanese boxwood is a low-growing, suitable for the Pennsylvania landscape, compact, heat-tolerant shrub with including pieris, mountain laurel, leuco- bright green leaves that are elliptical 1 thoe, mahonia, pyracantha, leatherleaf to lance-shaped, and reach /4 to 1" in viburnum, rhododendron, holly, and length. Korean boxwood is a loose, boxwood. Most of these plants provide open-growing shrub that is very hardy, a rounded and spreading habit. For although the foliage may turn yellow formal gardens, hedges, or sites where a to brown in the winter. In the nursery W specific plant form is desired, Japanese and landscape trade today, numerous holly and boxwood are the most com- varieties and hybrids among these spe- mon choices. cies have been created and marketed for their unique characteristics, including Boxwoods (Buxus) are native to Europe, round, dwarf, and columnar forms, the Mediterranean, the West Indies, winter hardiness, and variegated foliage. -
Buxus Sempervirens
Estatges vegetals i canvi climàtic X. Armiñana i J. Bosch -17 Buxus sempervirens “Boix” Superegne: Eucariota Regne: Plantae Divisió: Magnoliophyta Classe: Magnoliopsida Ordre: Buxales Família: Buxaceae Gènere: Buxus Espècie: B. sempervirens Hàbitat: Rang altitudinal Es troben a la muntanya 100 m.s.m. – 1600 m.s.m. submediterrània Prefereix els terrenys calcaris Floració: Distribució: Maig i Abril Barcelona, Castelló, Girona, Lleida i Tarragona. Eurosiberiana (Submediterrània) Descripció: Encara que es tracti d'un arbre, normalment es troba com un arbust de menys de 5 metres d'alçària, ja que és de lent creixement i fa anys s'explotava molt la seva fusta. Fulles petites, ovades, enteres i coriàcies, verdes tot l'any (a l'hivern sovint vermelloses). Les flors poc vistoses i blanquinoses. Fruit en càpsula, amb 6 llavors, acabat en 2-4 apèndixs superiors. Estatges vegetals i canvi climàtic X. Armiñana i J. Bosch -18 Corylus avellana “Avellaner” Superegne: Eucariota Regne: Plantae Divisió: Magnoliophyta Classe: Magnoliopsida Ordre: Fagales Família: Betulaceae Gènere: Corylus Espècie: C. avellana Hàbitat: Rang altitudinal Com a arbre silvestre forma les 800 m.s.m. – 1200 m.s.m. avellanoses d'alta muntanya. A menor altitud es troba en torrenteres. Floració: Distribució: Gener, Febrer i Març. Eurosiberiana Descripció: Arbre de fins a 6 m d’alçada amb les fulles alternes, caduques i de marge serrat. El més característic d’aquesta planta són els fruits arrodonits i de color marró que són molt coneguts com a fruits secs (avellanes). Les flors masculines estan agrupades en denses inflorescències penjant (aments). Les avellanes estan envoltades entre dues bràctees verdoses que fan d’involucre. -
Choose Specimen Topiary
PRACTICALITY BROWN Fact sheet: Topiary We can supply a range of topiary to add some structure and decorative interest to your garden. Topiary Topiary has been used historically in many different European gardening styles, from early Roman gardens through to modern day. Topiary is the art of training plants (typically evergreen shrubs and trees) into intricate or stylized shapes and forms, which can be the culmination of years of work. Plants trained in this way will require regular maintenance to maintain the form and structure with topiary shears or hedge-cutters; suckers and unwanted branches can also be removed. The term may also be used more loosely to describe a number of garden features that rely on the close clipping and shaping of plants, including: Parterre: A style of hedging associated with lavish Italian renaissance gardens with beautifully ornate clipped box hedges swirling around them in mirrored patterns or geometric designs. Mazes and labyrinths: The Normans introduced pleasure gardens with mazes and labyrinths formed from clipped plants; there are some modern examples in private and public gardens today. Knot gardens: Formed from different coloured box planted in crisscrossing patterns so that it appeared that the ribbons of hedges had been tied up in knots, these became popular in Tudor times. Cloud Trees: This is a Japanese method of training trees and shrubs into shapes resembling clouds. From box balls to yew ‘peacocks’, topiary is versatile and striking and can be thought of as living architecture; there is always room for a clipped masterpiece! Evergreens enable the design to remain a permanent feature throughout the seasons. -
Plant Identification Presentation
Today’s Agenda ◦ History of Plant Taxonomy ◦ Plant Classification ◦ Scientific Names ◦ Leaf and Flower Characteristics ◦ Dichotomous Keys Plant Identification Heather Stoven What do you gain Looking at plants more closely from identifying plants? Why is it ◦ How do plants relate to each other? How are they important? grouped? • Common disease and insect problems • Cultural requirements • Plant habit • Propagation methods • Use for food and medicine Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Viburnum Crabapple Maple Spiraea Apple tree Ash Viburnum Crabapple Daylily Geranium Apple tree Ash Tomato Poinsettia Daylily Geranium TREES Oak Pepper Tomato Poinsettia Weeping willow Mint Oak Pepper Petunia Euonymus Weeping willow Mint Petunia Euonymus OS-Plant ID.ppt, page 1 Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Maple Spiraea Viburnum Crabapple Viburnum Crabapple Apple tree Ash Ornamental Apple tree Ash Edible Daylily Geranium Flowering Daylily Geranium Tomato Poinsettia Plants Tomato Poinsettia Crops Oak Pepper Oak Pepper Weeping willow Mint Weeping willow Mint Petunia Euonymus Petunia Euonymus Carolus Linnaeus Plant Taxonomy The Father of Taxonomy ◦ Identifying, classifying and assigning ◦ Swedish botanist scientific names to plants ◦ Developed binomial ◦ Historical botanists trace the start of nomenclature taxonomy to one of Aristotle’s students, Theophrastus (372-287 B.C.), but he didn’t ◦ Cataloged plants based on create a scientific system natural relationships—primarily flower structures (male and ◦ He relied on the common groupings of female sexual organs) folklore combined with growth: tree, shrub, undershrub or herb ◦ Published Species Naturae in ◦ Detected the process of germination and 1735 and Species Plantarum in realized the importance of climate and soil 1753 to plants ◦ Then, along came Linnaeus…. -
(Simmondsia Chinensis (LINK) Schneider) to the Site of Cultivation at Egypt
Arabian Journal of Medicinal & Aromatic Plants Response of growth and wax production of Jojoba Response of growth and wax production of Jojoba (Simmondsia Chinensis (LINK) Schneider) to the site of cultivation at Egypt. 1 2 . 1, 1 Salah M. Mahmoud , Saber F. Hendawy , Ibrahium M . F Mahmoud A. El Serafy , and Hussan A. Youssf 1 1El-Azhar Univ. Faculty of Agric, Dept of Horticulture, Nasr City Cairo, Egypt. 2Medicinal and Aromatic Plants Researches Dept., Pharmaceutical and Drug Industries Researches Division, National Research Center, Egypt Received: September 09th, 2016; Accepted: February 15th, 2017 Jojoba plant (Simmondsia Chinensis (link) Schneider), or Ho-Ho-ba or goat nut is a shrub belonging to the Simmondsiaceae family. It is well known as a useful medicinal plant and as a new crop of interest for many industrial purposes. The present study was carried out duringhe two successive seasons of 2012/ 2013 and 2013/ 2014 in private jojoba farms located as following: El-Kassasin city, El-Ismailia, Marsa Matroh, El-Sharkia, Asuite and El-Khanka governorates(Egypt). The study focused on studying the effect of the different local growing site of Egypt on the growth and wax production, and aiming to detect the best location for the suitable growing site to produce the best growth and wax yield. Nine jojoba female shrubs were selected in each farm from the growing shrubs depending on its obvious morphological growth characters and the different seeds shape and then they were marked by labels for data measurements. The monthly temperature and relative humidity average during the study seasons of culture were taken and recorded. -
Preliminary Results on Climate Change Evidence from Coprolites of Myotragus Balearicus Bate 1909 (Artiodactyla, Caprinae)
Preliminary results on climate change evidence from coprolites of Myotragus balearicus Bate 1909 (Artiodactyla, Caprinae) Rivera L., Baraza E., Alcover J., Bover P., Retuerto C., Martínez X., Bartolomé J. in Acar Z. (ed.), López-Francos A. (ed.), Porqueddu C. (ed.). New approaches for grassland research in a context of climate and socio-economic changes Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 102 2012 pages 65-68 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=6833 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Rivera L., Baraza E., Alcover J., Bover P., Retuerto C., Martínez X., Bartolomé J. Preliminary results on climate change evidence from coprolites of Myotragus balearicus Bate 1909 (Artiodactyla, Caprinae). In : Acar Z. (ed.), López-Francos A. (ed.), Porqueddu C. (ed.). New approaches for grassland research in a context of climate and socio-economic changes. Zaragoza : CIHEAM, 2012. p. 65-68 (Options Méditerranéennes : Série -
Littleleaf Boxwood Scientific Name: Buxus Microphylla Order
Common Name: Littleleaf Boxwood Scientific Name: Buxus microphylla Order: Euphorbiales Family: Buxaceae Description Littleleaf boxwood has a flat, thin, green leaf. The leaf is about 2 ½ inches long in most cases. The leaf has no hair and being the plant is an evergreen it stays green year around. Littleleaf boxwood produces a very small clumped to gather flowers. The flowers are similar to that of most grasses and are generally unnoticeable. It contains both female and male parts so it can reproduce without pollination from another plant located nearby. From the flower a very small fruit is produced. The fruit when matured has a green color and smaller than a dime. The fruit from the littleleaf boxwood is shaped much like an acorn and is very dry. The fruit is undesirable to birds, squirrels, and other small animals. Growth Habit Littleleaf boxwood is a woody shrub it can range from 3-10 Feet tall. It is not found in the wild and is grown as a shrub hedge so is often kept trimmed back. Littleleaf boxwood has a brown bark that does not flack. The plant does not have thorns as most plants do especially in the immature stage so it is a good use around the home. The diameter of the trunk does not exceed the size of a coffee mug. Under its leafy exterior are many small tangled branches can be found growing mangled. Hardiness Zone(s) Littleleaf boxwood originated from the continent of Asia. According to the USDA Boxwood Report, littleleaf boxwood grows best in USDA zones 7, 8.