Mathematical General Relativity: a Sampler
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Relativity As Taught in 1979, 1983 By
General Relativity As taught in 1979, 1983 by Joel A. Shapiro November 19, 2015 2. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro c Joel A. Shapiro, 1979, 2012 Contents 0.1 Introduction............................ 4 0.2 SpecialRelativity ......................... 7 0.3 Electromagnetism. 13 0.4 Stress-EnergyTensor . 18 0.5 Equivalence Principle . 23 0.6 Manifolds ............................. 28 0.7 IntegrationofForms . 41 0.8 Vierbeins,Connections . 44 0.9 ParallelTransport. 50 0.10 ElectromagnetisminFlatSpace . 56 0.11 GeodesicDeviation . 61 0.12 EquationsDeterminingGeometry . 67 0.13 Deriving the Gravitational Field Equations . .. 68 0.14 HarmonicCoordinates . 71 0.14.1 ThelinearizedTheory . 71 0.15 TheBendingofLight. 77 0.16 PerfectFluids ........................... 84 0.17 Particle Orbits in Schwarzschild Metric . 88 0.18 AnIsotropicUniverse. 93 0.19 MoreontheSchwarzschild Geometry . 102 0.20 BlackHoleswithChargeandSpin. 110 0.21 Equivalence Principle, Fermions, and Fancy Formalism . .115 0.22 QuantizedFieldTheory . .121 3 4. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro Note: This is being typed piecemeal in 2012 from handwritten notes in a red looseleaf marked 617 (1983) but may have originated in 1979 0.1 Introduction I am, myself, an elementary particle physicist, and my interest in general relativity has come from the growth of a field of quantum gravity. Because the gravitational inderactions of reasonably small objects are so weak, quantum gravity is a field almost entirely divorced from contact with reality in the form of direct confrontation with experiment. There are three areas of contact 1. In relativistic quantum mechanics, one usually formulates the physical quantities in terms of fields. A field is a physical degree of freedom, or variable, definded at each point of space and time. -
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial. -
On the Existence and Uniqueness of Static, Spherically Symmetric Stellar Models in General Relativity
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2015 On the Existence and Uniqueness of Static, Spherically Symmetric Stellar Models in General Relativity Josh Michael Lipsmeyer University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Cosmology, Relativity, and Gravity Commons, and the Geometry and Topology Commons Recommended Citation Lipsmeyer, Josh Michael, "On the Existence and Uniqueness of Static, Spherically Symmetric Stellar Models in General Relativity. " Master's Thesis, University of Tennessee, 2015. https://trace.tennessee.edu/utk_gradthes/3490 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Josh Michael Lipsmeyer entitled "On the Existence and Uniqueness of Static, Spherically Symmetric Stellar Models in General Relativity." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Mathematics. Alex Freire, Major Professor We have read this thesis and recommend its acceptance: Tadele Mengesha, Mike Frazier Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) On the Existence and Uniqueness of Static, Spherically Symmetric Stellar Models in General Relativity A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Josh Michael Lipsmeyer August 2015 c by Josh Michael Lipsmeyer, 2015 All Rights Reserved. -
The Reduction Problem for Einstein's Equations I
168 THE REDUCTION PROBLEM FOR EINSTEIN'S EQUATIONS Vincent Moncrief I. MOTIVATION h has long been known that the vacuum (or electro-vacuum) Einstein equations for spacetimes admitting a single (spacelike) Killing field can be locally reexpressed as a 2 + 1 dimensional system of Einstein-harmonic map equations [1, 2] . In this formulation the unknown fields are (in the vacuum case) a Lorentzian metric on the (locally defined) space of orbits of the Killing field and the norm and twist potential of this Killing field which define a harmonic map from the space of orbits to hyperbolic two-space. A natural problem is to study this formulation globally on suitably chosen manifolds and to apply standard methods of elliptic to reduce the system to its "minimal form". In physics terminology one would like to solve an elliptic set of equations for all the dependent or "non-propagating" variables and be left with an unconstrained hyperbolic system for only the independent "physical degrees of freedom" of the gravitational field. One mathematical motivation for this reduction program is that it aims to take maximal advantage of the elliptic aspects of Einstein's equations, for which the needed global analysis techniques are already at hand, and to reduce the complementary (and presumably more difficult) hyperbolic aspects of the system as much as possible. The ultimate aim of this project is to study the long time existence properties of Einstein's equations and the hope is that the reduction program should help to make such an analysis more tractable. 169 Another more "practical" motivation for this program is that it suggests a numerical method for approximately solving the Einstein equations which avoids the notorious problem of the "drifting of the constraints". -
The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. -
Dimensional Reduction and Spacetime Pathologies
Dimensional Reduction and Spacetime Pathologies by Sergei Slobodov M.Sc., The St. Petersburg Technical University, 1985 M.Sc., The University of British Columbia, 2003 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Physics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2010 c Sergei Slobodov 2010 Abstract Dimensional reduction is a well known technique in general relativity. It has been used to resolve certain singularities, to generate new solutions, and to reduce the computational complexity of numerical evolution. These ad- vantages, however, often prove costly, as the reduced spacetime may have various pathologies, such as singularities, poor asymptotics, negative en- ergy, and even superluminal matter flows. The first two parts of this thesis investigate when and how these pathologies arise. After considering several simple examples, we first prove, using pertur- bative techniques, that under certain reasonable assumptions any asymptot- ically flat reduction of an asymptotically flat spacetime results in negative energy seen by timelike observers. The next part describes the topological rigidity theorem and its consequences for certain reductions to three dimen- sions, confirming and generalizing the results of the perturbative approach. The last part of the thesis is an investigation of the claim that closed timelike curves generically appearing in general relativity are a mathematical arti- fact of periodic coordinate identifications, using, in part, the dimensional reduction techniques. We show that removing these periodic identifications results in naked quasi-regular singularities and is not even guaranteed to get rid of the closed timelike curves. ii Statement of Collaboration The research covered by this thesis is a collection of projects done either alone or in collaboration with or under supervision of Kristin Schleich, Don Witt and Johan Brannlund. -
THE GLOBAL EXISTENCE PROBLEM in GENERAL RELATIVITY 3 Played a Vital Role As Motivation and Guide in the Development of the Results Discussed Here
THE GLOBAL EXISTENCE PROBLEM IN GENERAL RELATIVITY LARS ANDERSSON1 Abstract. We survey some known facts and open questions concerning the global properties of 3+1 dimensional spacetimes containing a com- pact Cauchy surface. We consider spacetimes with an ℓ–dimensional Lie algebra of space–like Killing fields. For each ℓ ≤ 3, we give some basic results and conjectures on global existence and cosmic censorship. Contents 1. Introduction 1 2. The Einstein equations 3 3. Bianchi 15 4. G2 23 5. U(1) 30 6. 3+1 34 7. Concluding remarks 39 Appendix A. Basic Causality concepts 40 References 41 1. Introduction arXiv:gr-qc/9911032v4 28 Apr 2006 In this review, we will describe some results and conjectures about the global structure of solutions to the Einstein equations in 3+1 dimensions. We consider spacetimes (M,¯ g¯) with an ℓ–dimensional Lie algebra of space– like Killing fields. We may say that such spacetimes have a (local) isometry group G of dimension ℓ with the action of G generated by space–like Killing fields. For each value ℓ 3 of the dimension of the isometry group, we state the reduced field equations≤ as well as attempt to give an overview of the most important results and conjectures. We will concentrate on the vacuum case. In section 2, we present the Einstein equations and give the 3+1 decom- position into constraint and evolution equations, cf. subsection 2.2. Due to Date: June 27, 2004. 1Supported in part by the Swedish Natural Sciences Research Council, contract no. F-FU 4873-307, and the NSF under contract no. -
Quantization, Nonlinear Partial Differential Equations,And Operator
http://dx.doi.org/10.1090/pspum/059 Other Titles in This Series 59 William Arveson, Thomas Branson, and Irving Segal, editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. O. Wells, Jr., editor, The mathematical heritage of Hermann Weyl (Duke University, Durham, May 1987) 47 Paul Fong, editor, The Arcata conference on representations of finite groups (Humboldt State University, Arcata, California, July 1986) 46 Spencer J. -
A Poor Man's Positive Energy Theorem
A poor man’s positive energy theorem Piotr T. Chru´sciel∗ D´epartement de Math´ematiques Facult´edes Sciences Parc de Grandmont F37200 Tours, France Gregory J. Galloway† Department of Mathematics University of Miami Coral Gables, FL, 33124, USA Abstract We show that positivity of energy for stationary, asymptotically flat, non-singular domains of outer communications is a simple corol- lary of the Lorentzian splitting theorem. A milestone in mathematical general relativity is the positive energy theorem [8, 10]. It is somewhat surprising that the standard proofs of this result do not have anything to do with Lorentzian geometry. In this note we prove energy positivity using purely Lorentzian techniques, albeit for a rather restricted class of geometries; it seems that in practice our proof only applies to stationary (with or without black holes) space-times. This is a much weaker statement than the theorems in [8, 10] and their various exten- sions, but the proof here seems of interest because the techniques involved are completely different and of a quite elementary nature. Using arguments rather similar in spirit to those of the classical singularity theorems [5], our proof is a very simple reduction of the problem to the Lorentzian splitting theorem [4]. (In lieu of the Lorentzian splitting theorem, one can impose ∗Partially supported by a Polish Research Committee grant 2 P03B 073 24; email [email protected], URL www.phys.univ-tours.fr/∼piotr †Partially supported by NSF grant # DMS-0104042; email [email protected] 1 the generic condition [5, p. 101], thereby making the proof completely el- ementary.) The approach taken here bares some relation to the Penrose- Sorkin-Woolgar [7] argument for positivity of mass, and indeed arose out of an interest in understanding their work. -
Positive Energy-Momentum Theorem in Asymptotically Anti De Sitter Space-Times Daniel Maerten
Positive energy-momentum theorem in asymptotically anti de Sitter space-times Daniel Maerten To cite this version: Daniel Maerten. Positive energy-momentum theorem in asymptotically anti de Sitter space-times. 2006. hal-00005122v3 HAL Id: hal-00005122 https://hal.archives-ouvertes.fr/hal-00005122v3 Preprint submitted on 24 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Positive Energy-Momentum Theorem for AdS-Asymptotically Hyperbolic Manifolds Daniel Maerten 1 The Energy-Momentum 1.1 Introduction This paper proves a positive energy-momentum theorem under the (well known in general relativity) dominant energy condition, for AdS-asymptotically hyperbolic manifolds. An AdS-asymptotically hyperbolic manifold is by definition a manifold (M,g,k) such that at infinity, the Riemannian metric g and the symmetric 2-tensor k tend respectively to the metric and second fundamental form of a standard hyperbolic slice of Anti-de Sitter (AdS). Chru´sciel and Nagy [19] recently defined the notion of energy-momentum of an asymptoti- cally hyperbolic manifold, which generalizes the analogous notion in the asymptotically flat case. Besides Chru´sciel and Herzlich [15] recently proved a positive mass theorem for asymp- totically hyperbolic spin Riemannian manifolds (with zero extrinsic curvature). -
HARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS by Bent FUGLEDE
Ann. Inst. Fourier, Grenoble 28, 2 (1978), 107-144, HARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS by Bent FUGLEDE Introduction. The harmonic morphisms of a Riemannian manifold, M , into another, N , are the morphisms for the harmonic struc- tures on M and N (the harmonic functions on a Riemannian manifold being those which satisfy the Laplace-Beltrami equation). These morphisms were introduced and studied by Constantinescu and Cornea [4] in the more general frame of harmonic spaces, as a natural generalization of the conformal mappings between Riemann surfaces (1). See also Sibony [14]. The present paper deals with harmonic morphisms between two Riemannian manifolds M and N of arbitrary (not necessarily equal) dimensions. It turns out, however, that if dim M < dim N , the only harmonic morphisms M -> N are the constant mappings. Thus we are left with the case dim M ^ dim N . If dim N = 1 , say N = R , the harmonic morphisms M —> R are nothing but the harmonic functions on M . If dim M = dim N = 2 , so that M and N are Riemann surfaces, then it is known that the harmonic morphisms of (1) We use the term « harmonic morphisms » rather than « harmonic maps » (as they were called in the case of harmonic spaces in [4]) since it is necessary (in the present frame of manifolds) to distinguish between these maps and the much wider class of harmonic maps in the sense of Eells and Sampson [7], which also plays an important role in our discussion. 108 B. FUGLEDE M into N are the same as the conformal mappings f: M -> N (allowing for points where df= 0). -
Arxiv:1901.02380V1 [Math-Ph]
A Euclidean Signature Semi-Classical Program Antonella Marini Department of Mathematics, Yeshiva University, 500 West 185th Street, New York, NY 10033, USA. and Department of Mathematics, University of L’Aquila, Via Vetoio, 67010 L’Aquila, AQ ITALY. E-mail address: [email protected] Rachel Maitra Department of Applied Mathematics, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA 02115-5998, USA. E-mail address: [email protected] Vincent Moncrief Department of Physics and Department of Mathematics, Yale University, P.O. Box 208120, New Haven, CT 06520, USA. E-mail address: [email protected] arXiv:1901.02380v1 [math-ph] 8 Jan 2019 In this article we discuss our ongoing program to extend the scope of certain, well- developed microlocal methods for the asymptotic solution of Schr¨odinger’s equation (for suitable ‘nonlinear oscillatory’ quantum mechanical systems) to the treatment of several physically significant, interacting quantum field theories. Our main focus is on applying these ‘Euclidean-signature semi-classical’ methods to self-interacting (real) scalar fields of renormalizable type in 2, 3 and 4 spacetime dimensions and to Yang-Mills fields in 3 and 4 spacetime dimensions. A central argument in favor of our program is that the asymptotic methods for Schr¨odinger operators developed in the microlocal literature are far superior, for the quantum mechanical systems to 2 which they naturally apply, to the conventional WKB methods of the physics litera- ture and that these methods can be modified, by techniques drawn from the calculus of variations and the analysis of elliptic boundary value problems, to apply to cer- tain (bosonic) quantum field theories.