Theory, and Hyperbolic Groups

Total Page:16

File Type:pdf, Size:1020Kb

Theory, and Hyperbolic Groups K-Theory 6: 235-265, 1992. © 1992 Kfuwer Academic Publishers. Printed in the Netherlands. 235 Assembly Maps, K-Theory, and Hyperbolic Groups C. OGLE Department of Mathematics, Ohio State University, Columbus, 0H43210, U.S.A. (Received: March 1992) Abstraet. Following Connes and Moscovici,we show that the Baum-Connes assembly map for K,(C~*n) is rationally injectivewhen n is word-hyperbolic,implying the Equivariant Novikov conjecture for such groups. Using this result in topological K-theory and BoreI-Karoubi regulators, we also show that the corresponding generalized assembly map in algebraic K-theory is rationally injective. Key words. Cyclic cohomology,elliptic group ¢ocycles, generalized assembly map, hyperbolic groups. Introduction The classical assembly map for K-theory arises in the following way (cf. [Lod]): given a commutative ring R, an algebra A over R with unit and a representa- tion p: F ~ GL(A), where F is a discrete group, there is a map of spectra ~BV+ A K(R)~K(A). (1) To define this map, note first that p determines a map of spaces Bfi:BF-~ K(A), where K(A) is the zeroth space of the spectrum K(A), hence upon passing to adjoints a map of spectra ~B~:__Z~BF+ --, K(A). (2) The algebra structure of A over R makes K(A) a module-spectrum over the ring- spectrum K(R). This means that there is a well-defined pairing K(A) /~ K(R) _~(A,R) , ~_K(A); (3) (1) is then the composition determined by (2) and (3) Z~BF+ A K(R) -Z-~BpAid-K(A) A K(R) __~A,R), ~K(A). (4) 236 c. OGLE The above description works in both the algebraic and topological cases. In the algebraic case, R is a discrete or simplicial commutative ring, A is usually R[F], and K(S) denotes the Quillen (or Waldhausen) K-theory spectrum of S. In the topological case, R is typically a commutative Banach algebra and A a topological algebra over R containing R[F]. For example, one could take R = C, and A = C*F a suitable C*-algebra completion of C[F], in which case the assembly map (4) would then give the usual operator algebra K-theory assembly map for C*F. In recent years, this map has been considerably generalized, one motivation being to account for the part of K-theory or Witt theory arising from torsion in F. The first such generalization of note was due to Quinn for algebraic K-theory ([Q1], [Q2]; see also [FJ]) who showed that for polycyctic groups the resulting map is an equivalence ([Q2]). In a similar vein, but completely independently, Baum and Connes [BC1] have defined an assembly map K,(Er) K,(C*r). (5) Their definition is essentially analytical. The group on the left is a certain direct limit of equivariant Kasparov KK-groups, where EF is the universal space for proper F actions. This group admits a Chern character which produces an isomorphism K,(EF) (~ C ~ ~ H,(BCg;C)~) (K,(C) ~) C). (6) z (a) c z ord(g) < o~ The sum on the right-hand side is over all conjugacy classes in F of finite order, where Cg = centralizer of g in F. Baum and Connes have conjectured that #(F) in (5) is an isomorphism for all discrete groups F. The aim of this paper is to compute the image of the rationalized Baum-Connes (BC) assembly map for hyperbolic groups. To do this, we begin with a homotopic reformulation of their map in Section 1 (the proof that these two descriptions agree rationally will appear in [BHO]). As a consequence of this homotopy-theoretic description, we are able to define analogues of the BC assembly map in both algebraic and Hermitian K-theory (hence, also Witt theory after inverting 2). Unlike the usual assembly map, this requires that the coefficient ring R satisfy certain properties. Let Sr=•[tp,eFfl 2~P/ [~geFwithord(g)<ooandp[ord(g) }3. Our generalized assembly map for algebraic K-theory is then a homomorphism (see (1.22)): A(r): @ U,(BC.;K_°"(Sr)) ® Sr K ,(sr[r:l) ® st. (7) (a) z z ord(0) < oo H,(X+;Kalg(sr)) as usual denotes the homology of X+ with coefficients in the algebraic K-theory spectrum Kalg(Sr). It is important in our case that we work with ASSEMBLY MAPS, K-THEORY, AND HYPERBOLIC GROUPS 237 the nonconnective K-theory spectrum of Sr, because of the way Ko(Sr) comes into play. Restricted to, or localized at the conjugacy class (1) this assembly map is just the usual one of (4) tensored (over Z) with St. The topological case works the same way. An interesting consequence of the above-mentioned [BHO] is that the usual BC assembly map (after complexification) factors as (~ H,(BCg;C ) @ K.(C)~ K~'(C[F])[fi -t] @ C <a> z or.(0) < (8) top --, K, (c r) ® c ;g where K~P(C[F])[f1-1] denotes the Bott-periodized topological K-theory (in the sense of Snaith and Thomason) of C[F], where C[F] is topologized by the fine topology. Having defined our map, we proceed in Section 2 to derive the explicit formulas in cyclic theory needed later on to detect the image of the assembly map. The basic result here is due to Burghelea [Bull who computed the cyclic homology and cohomology of R[F] for suitable R. Burghelea's results show that the left-hand side of (8) appear as a summand of the cyclic homology group HC.(C[F]). Our main result in this section is an explicit formula for the elliptic cyclic cocycle ~c,<g> e C"(R[F]) = cyclic n-cochains (over R) on R[F] determined by a normalized cocycle c e Cn(BCg; R). We now deal with the injectivity question, For a given discrete group F, the conjecture that KU,(BF) (~) Q --* K,(C*F) @ Q (9) z 2 is injective is due to Kasparov ([K1]) who has labelled it the (rationalized) Strong Novikov conjecture (SNC), and shown that injectivity of (9) implies the standard Novikov Conjecture on the homotopy-invariance of the higher Hirzebruch signa- tures of an even-dimensional closed, oriented manifold M 2" with rcl(M ~') = F. Kasparov [K1] has shown SNC to be true when F is a discrete subgroup of a Lie group G (rcoG finite); more recently, Connes and Moscovici [CM] have shown that SNC is true for finitely-generated word hyperbolic groups in the sense of Gromov [Gr]. Our main result, proved in Section 5 is THEOREM A (cf. Theorem 5.1). The assembly map At°P(F; C) @ C: (~) H,(BCo;K.(C)) @ C ~ K~°P(C*F) @ C (g) z z oN(o) < oo is injective if F is a finitely-generated word-hyperbolic group (in the sense of Gromov), Of course, localized at (1) this is the result of Connes and Moscovici. For hyperbolic groups with torsion, this extension of the Connes-Moscovici result is nontrivial. In order to prove it, we follow the approach of [CM], suitably adapted to 238 c. OGLE handle the elliptic conjugacy classes (g) # 1. There are two main difficulties in generalizing their approach. First, it may happen that the set of elements So of elements conjugate to g (So ~ F/Cg) is infinite. Second, the Jolissaint estimate ([Jol], p. 61) used in computing an upper bound for the norm of a cyclic cocycle derived from a (complex) group cocycle on BF does not work naturally in cyclic theory at the elliptic conjugacy classes (g)# (1). To deal with the first point, in Section 3 we introduce a modification of the Haagarup algebra, denoted H~,C,L(F). H~c,L(F) is contained in the Haagarup algebra. When F is word-hyperbolic, H~,c,z(F) is dense and holomor- phically closed in C*F. This type of rapid decay algebra was first studied by Harish- Chandra in the context of representation theory (I thank H. Moscovici for pointing this out to me). The main technical result used in the proof of Theorem A is THEOREM B (cf. Theorem 4.1). Let F be a finitely generated word-hyperbolic group, L a (hyperbolic) word-length function on F. Then there exists a constant C >1 1 such that for each elliptic class (g), integer n >~ 0, complex-valued cohomology class [~o] ~ H"(BCo; C) and (normalized) representative ~o of [~0], ze,(0> extends to a cyclic n-cocycle on H~,C,L(F) with values in l ~ where m = ord(g). The proof of Theorem B given in Section 4 uses a number of deep properties of hyperbolic groups, among them the result of Gersten and Short [GS] that the subgroups C o are hyperbolic, as well as the solution of the conjugacy problem for hyperbolic groups due to Gromov (see [Gr]). In the simplest case n = 0, [~o] = t, the theorem shows that the traces associated with an elliptic conjugacy class (g) extend over H~,c.L(F). In Section 5, we complete the proof of Theorem A by applying Theorem B to detect the image of our assembly map in K-theory under the Connes-Karoubi chern character. In Section 6, we axiomatize the properties F should satisfy in order that the proof of injectivity for At°p(F; C) apply. Among other classes, our axioms apply to finite Cartesian products of word-hyperbolic groups. Finally, in Section 7 we show that Karoubi's generalized Borel regulators (constructed in [Karl), together with the results of Section 5, imply the algebraic analogue of Theorem A.
Recommended publications
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • On Controlled Assembly Maps
    RIMS Kôkyûroku Bessatsu B39 (2013), 197214 On Controlled Assembly Maps By * Masayuki Yamasaki Abstract Theorem 3.9 of [9] says that the L^{-\infty} homology theory and the controlled L^{-\infty} theory of a simplicially stratified control map p:E\rightarrow X are equivalent. Unfortunately the proof given there contains serious errors. In this paper I give a correct statement and a correct proof. §1. Introduction For a covariant functor \mathrm{J}=\{\mathrm{J}_{n}\} from spaces to spectra and a map p : E\rightarrow X, Quinn defined a homology spectrum \mathbb{H}(X;\mathrm{J}(p))[4]. \mathbb{H} \mathrm{J} defines a covariant functor which sends a pair (X, p : E\rightarrow X) to a - spectrum \mathbb{H}(X;\mathrm{J}(p)) . Suppose we are given a covariant functor \mathrm{J} ) which sends a pair (X, p) to a spectrum \mathrm{J}(X;p) . Then we can define a covariant functor, also denoted from to . And then we obtain a \mathrm{J} , spaces spectra by \mathrm{J}(E)=\mathrm{J}(*;E\rightarrow*) homology spectrum \mathbb{H}(X;\mathrm{J}(p)) for a map p:E\rightarrow X . Quinn showed that, if the original functor \mathrm{J} -) satisfies three axioms (the restriction, continuity, and inverse limit axioms) and p is nice ( i.e . it is a stratified system of fibrations [4]), then there is a homotopy equivalence A:\mathbb{H}(X;\mathrm{J}(p))\rightarrow \mathrm{J}(X;p) when X is compact [4, Characterization Theorem, p.421]. If X is non‐compact, we need to consider a locally‐finite homology theory.
    [Show full text]
  • Homotopy Invariance of Higher Signatures and 3-Manifold Groups
    HOMOTOPY INVARIANCE OF HIGHER SIGNATURES AND 3-MANIFOLD GROUPS MICHEL MATTHEY, HERVE´ OYONO-OYONO AND WOLFGANG PITSCH Abstract. For closed oriented manifolds, we establish oriented homotopy in- variance of higher signatures that come from the fundamental group of a large class of orientable 3-manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable 3-manifolds if the Thurston Geometrization Conjec- ture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients holds. The non-oriented case is also discussed. 1. Introduction and statement of the main results We assume all manifolds to be non-empty, pointed (i.e. we fix a base-point), sec- ond countable, Hausdorff and smooth. Given a closed connected oriented manifold m M of dimension m, let [M] denote either orientation classes in Hm(M; Q) and m 4∗ in H (M; Z), and let LM ∈ H (M; Q) be the Hirzebruch L-class of M, which is defined as a suitable rational polynomial in the Pontrjagin classes of M (see [20, pp. 11–12] or [34, Ex. III.11.15]). Denote the usual Kronecker pairing for M, with rational coefficients, by ∗ h .,. i : H (M; Q) × H∗(M; Q) −→ Q . If M is of dimension m = 4k, then the Hirzebruch Signature Theorem (see [20, Thm. 8.2.2] or [34, p. 233]) says that the rational number hLM , [M]i is the signature of the cup product quadratic form 2k 2k 4k H (M; Z) ⊗ H (M; Z) −→ H (M; Z) = Z·[M] =∼ Z , (x, y) 7−→ x ∪ y .
    [Show full text]
  • Mapping Surgery to Analysis III: Exact Sequences
    K-Theory (2004) 33:325–346 © Springer 2005 DOI 10.1007/s10977-005-1554-7 Mapping Surgery to Analysis III: Exact Sequences NIGEL HIGSON and JOHN ROE Department of Mathematics, Penn State University, University Park, Pennsylvania 16802. e-mail: [email protected]; [email protected] (Received: February 2004) Abstract. Using the constructions of the preceding two papers, we construct a natural transformation (after inverting 2) from the Browder–Novikov–Sullivan–Wall surgery exact sequence of a compact manifold to a certain exact sequence of C∗-algebra K-theory groups. Mathematics Subject Classifications (1991): 19J25, 19K99. Key words: C∗-algebras, L-theory, Poincare´ duality, signature operator. This is the final paper in a series of three whose objective is to construct a natural transformation from the surgery exact sequence of Browder, Novikov, Sullivan and Wall [17,21] to a long exact sequence of K-theory groups associated to a certain C∗-algebra extension; we finally achieve this objective in Theorem 5.4. In the first paper [5], we have shown how to associate a homotopy invariant C∗-algebraic signature to suitable chain complexes of Hilbert modules satisfying Poincare´ duality. In the second paper, we have shown that such Hilbert–Poincare´ complexes arise natu- rally from geometric examples of manifolds and Poincare´ complexes. The C∗-algebras that are involved in these calculations are analytic reflections of the equivariant and/or controlled structure of the underlying topology. In paper II [6] we have also clarified the relationship between the analytic signature, defined by the procedure of paper I for suitable Poincare´ com- plexes, and the analytic index of the signature operator, defined only for manifolds.
    [Show full text]
  • Spaces Over a Category and Assembly Maps in Isomorphism Conjectures in K- and L-Theory
    K-Theory 15: 201–252, 1998. 201 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Spaces over a Category and Assembly Maps in Isomorphism Conjectures in K- and L-Theory JAMES F. DAVIS?1 and WOLFGANG LUCK¨ 2 1Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A. e-mail: [email protected] 2 Institut fur¨ Mathematik, Westfaelische Wilhelms-Universtitaet, 48149 Muenster, Germany e-mail: [email protected] (Received: April 1997) Abstract. We give a unified approach to the Isomorphism Conjecture of Farrell and Jones on the algebraic K- and L-theory of integral group rings and to the Baum–Connes Conjecture on the topological K-theory of reduced C∗-algebras of groups. The approach is through spectra over the orbit category of a discrete group G. We give several points of view on the assembly map for a family of subgroups and characterize such assembly maps by a universal property generalizing the results of Weiss and Williams to the equivariant setting. The main tools are spaces and spectra over a category and their associated generalized homology and cohomology theories, and homotopy limits. Mathematics Subject Classification (1991). 57-XX. Key words: Algebraic K- and L-theory, Baum–Connes Conjecture, assembly maps, spaces and spectra over a category. 0. Introduction Glen Bredon [5] introduced the orbit category Or(G) of a group G. Objects are homogeneous spaces G/H , considered as left G-sets, and morphisms are G-maps. This is a useful construct for organizing the study of fixed sets and quotients of G- actions. If G acts on a set X, there is the contravariant fixed point functor Or(G) −→ H SETS given by G/H 7→ X = mapG(G/H, X) and the covariant quotient space functor Or(G) −→ SETS given by G/H 7→ X/H = X ×G G/H .
    [Show full text]
  • The Structure Set of an Arbitrary Space, the Algebraic Surgery Exact
    The structure set of an arbitrary space, the algebraic surgery exact sequence and the total surgery obstruction Andrew Ranicki∗ Department of Mathematics and Statistics University of Edinburgh, Scotland, UK arXiv:math/0111316v1 [math.AT] 30 Nov 2001 Lecture given at the: Summer School on High-dimensional Manifold Topology Trieste, 21 May – 8 June 2001 LNS ∗[email protected] Abstract The algebraic theory of surgery gives a necessary and sufficient chain level condition for a space with n-dimensional Poincar´eduality to be homotopy equivalent to an n- dimensional topological manifold. A relative version gives a necessary and sufficient chain level condition for a simple homotopy equivalence of n-dimensional topological manifolds to be homotopic to a homeomorphism. The chain level obstructions come from a chain level interpretation of the fibre of the assembly map in surgery. The assembly map A : Hn(X; L•) → Ln(Z[π1(X)]) is a natural transformation from the generalized homology groups of a space X with coefficients in the 1-connective simply-connected surgery spectrum L• to the non-simply-connected surgery obstruc- tion groups L∗(Z[π1(X)]). The (Z, X)-category has objects based f.g. free Z-modules with an X-local structure. The assembly maps A are induced by a functor from the (Z, X)-category to the category of based f.g. free Z[π1(X)]-modules. The generalized homology groups H∗(X; L•) are the cobordism groups of quadratic Poincar´ecomplexes over (Z, X). The relative groups S∗(X) in the algebraic surgery exact sequence of X A ···→ Hn(X; L•) −→ Ln(Z[π1(X)]) → Sn(X) → Hn−1(X; L•) → .
    [Show full text]
  • Arxiv:1506.05408V1 [Math.AT]
    NOVIKOV’S CONJECTURE JONATHAN ROSENBERG Abstract. We describe Novikov’s “higher signature conjecture,” which dates back to the late 1960’s, as well as many alternative formulations and related problems. The Novikov Conjecture is perhaps the most important unsolved problem in high-dimensional manifold topology, but more importantly, vari- ants and analogues permeate many other areas of mathematics, from geometry to operator algebras to representation theory. 1. Origins of the Original Conjecture The Novikov Conjecture is perhaps the most important unsolved problem in the topology of high-dimensional manifolds. It was first stated by Sergei Novikov, in various forms, in his lectures at the International Congresses of Mathematicians in Moscow in 1966 and in Nice in 1970, and in a few other papers [84, 87, 86, 85]. For an annotated version of the original formulation, in both Russian and English, we refer the reader to [37]. Here we will try instead to put the problem in context and explain why it might be of interest to the average mathematician. For a nice book- length exposition of this subject, we recommend [65]. Many treatments of various aspects of the problem can also be found in the many papers in the collections [38, 39]. For the typical mathematician, the most important topological spaces are smooth manifolds, which were introduced by Riemann in the 1850’s. However, it took about 100 years for the tools for classifying manifolds (except in dimension 1, which is trivial, and dimension 2, which is relatively easy) to be developed. The problem is that manifolds have no local invariants (except for the dimension); all manifolds of the same dimension look the same locally.
    [Show full text]
  • Arxiv:Math/9807156V1 [Math.GT] 27 Jul 1998
    SURGERY AND STRATIFIED SPACES Bruce Hughes and Shmuel Weinberger 0. Introduction The past couple of decades has seen significant progress in the theory of strat- ified spaces through the application of controlled methods as well as through the applications of intersection homology. In this paper we will give a cursory intro- duction to this material, hopefully whetting your appetite to peruse more thorough accounts. In more detail, the contents of this paper are as follows: the first section deals with some examples of stratified spaces and describes some of the different cate- gories that have been considered by various authors. For the purposes of this paper, we will work in either the PL category or a very natural topological category intro- duced by Quinn [Q4]. The next section discusses intersection homology and how it provides one with a rich collection of self dual sheaves. These can be manipulated by ideas long familiar to surgery theorists who have exploited Poincar´eduality from the start. We will give a few applications of the tight connection between an im- portant class of stratified spaces (Witt spaces), self dual sheaves, and K-theory; one last application will appear in the final section of the paper (where we deal with the classification of “supernormal” spaces with only even codimensional strata). Section three begins an independent direction, more purely geometric. We de- scribe the local structure of topological stratified spaces in some detail, in particular explaining the teardrop neighborhood theorem ([HTWW], [H2]) and giving appli- cations to isotopy theorems and the like. The last three sections describe the theory of surgery on stratified spaces, building on our understanding of teardrop neigh- borhoods, and some applications to classification problems (other applications can also be found in the survey [CW4]).
    [Show full text]
  • Complex Quantum Groups and a Deformation of the Baum-Connes Assembly Map
    COMPLEX QUANTUM GROUPS AND A DEFORMATION OF THE BAUM-CONNES ASSEMBLY MAP ANDREW MONK AND CHRISTIAN VOIGT Abstract. We define and study an analogue of the Baum-Connes assembly map for complex semisimple quantum groups, that is, Drinfeld doubles of q- deformations of compact semisimple Lie groups. Our starting point is the deformation picture of the Baum-Connes assembly map for a complex semisimple Lie group G, which allows one to express the K-theory of the reduced group C∗-algebra of G in terms of the K-theory of its associated Cartan motion group. The latter can be identified with the semidirect product of the maximal compact subgroup K acting on k∗ via the coadjoint action. In the quantum case the role of the Cartan motion group is played by the Drinfeld double of the classical group K, whose associated group C∗-algebra is the crossed product of C(K) with respect to the adjoint action of K. Our quantum assembly map is obtained by varying the deformation parameter in the Drinfeld double construction applied to the standard deformation Kq of K. We prove that the quantum assembly map is an isomorphism, thus providing a description of the K-theory of complex quantum groups in terms of classical topology. Moreover, we show that there is a continuous field of C∗-algebras which encodes both the quantum and classical assembly maps as well as a natural deformation between them. It follows in particular that the quantum assembly map contains the classical Baum-Connes assembly map as a direct summand. 1.
    [Show full text]
  • Assembly Maps in Bordism-Type Theories
    Assembly maps in bordism-type theories Frank Quinn Preface This paper is designed to give a careful treatment of some ideas which have been in use in casual and imprecise ways for quite some time, partic- ularly some introduced in my thesis. The paper was written in the period 1984{1990, so does not refer to recent applications of these ideas. The basic point is that a simple property of manifolds gives rise to an elaborate and rich structure including bordism, homology, and \assembly maps." The essential property holds in many constructs with a bordism fla- vor, so these all immediately receive versions of this rich structure. Not ev- erything works this way. In particular, while bundle-type theories (including algebraic K-theory) also have assembly maps and similar structures, they have them for somewhat di®erent reasons. One key idea is the use of spaces instead of sequences of groups to orga- nize invariants and obstructions. I ¯rst saw this idea in 1968 lecture notes by Colin Rourke on Dennis Sullivan's work on the Hauptvermutung ([21]). The idea was expanded in my thesis [14] and article [15], where \assembly maps" were introduced to study the question of when PL maps are ho- motopic to block bundle projections. This question was ¯rst considered by Andrew Casson, in the special case of bundles over a sphere. The use of ob- struction spaces instead of groups was the major ingredient of the extension to more general base spaces. The space ideas were expanded in a di®erent direction by Buoncristiano, Rourke, and Sanderson [4], to provide a setting for generalized cohomology theories.
    [Show full text]
  • New York Journal of Mathematics a Description of the Assembly Map For
    New York Journal of Mathematics New York J. Math. 25 (2019) 668{686. A description of the assembly map for the Baum-Connes conjecture with coefficients Mario Vel´asquez Abstract. In this note we set a configuration space description of the equivariant connective K-homology groups with coefficients in a unital C*-algebra for proper actions. Over this model we define a connective assembly map and prove that in this setting is possible to recover the analytic assembly map. Contents 1. Introduction 668 2. Preliminaries 669 3. Equivariant connective K-homology and configuration spaces 671 3.1. Configuration space 671 3.2. Connective K-homology 674 3.3. Recovering K-homology 682 4. The analytic assembly map 682 5. Final remarks 685 References 685 1. Introduction Let G be a discrete group and B a separable G-C∗-algebra. The purpose of this note is to give a configuration space description of G-equivariant con- nective K-homology groups with coefficients in B on the category of proper G-CW-complex. We use that model to give a description of the analytic assembly map for the Baum-Connes conjecture with coefficients. This work is a continuation of [18], and most of the results and proofs in Section 2 are generalizations of this paper. The Baum-Connes conjecture with coefficients predicts that the assembly map G G µi : RKKi (C0(EG);B) ! KKi(C;B or G) Received January 14, 2017. 1991 Mathematics Subject Classification. Primary 19L41, 19L47; Secondary 55N91, 19K35. Key words and phrases. equivariant K-homology, configuration spaces, assembly map, Baum-Connes conjecture.
    [Show full text]
  • Manifold Aspects of the Novikov Conjecture
    Manifold aspects of the Novikov Conjecture James F. Davis§ 4 Let LM H §(M; Q) be the Hirzebruch L-class of an oriented manifold M. Let Bº2 (or K(º, 1)) denote any aspherical space with fundamental group º. (A space is aspherical if it has a contractible universal cover.) In 1970 Novikov made the following conjecture. Novikov Conjecture. Let h : M 0 M be an orientation-preserving ho- motopy equivalence between closed,! oriented manifolds.1 For any discrete group º and any map f : M Bº, ! f h (LM [M 0]) = f (LM [M]) H (Bº; Q) § ± § 0 \ § \ 2 § Many surveys have been written on the Novikov Conjecture. The goal here is to give an old-fashioned point of view, and emphasize connections with characteristic classes and the topology of manifolds. For more on the topology of manifolds and the Novikov Conjecture see [58], [47], [17]. This article ignores completely connections with C§-algebras (see the articles of Mishchenko, Kasparov, and Rosenberg in [15]), applications of the Novikov conjecture (see [58],[9]), and most sadly, the beautiful work and mathemat- ical ideas uncovered in proving the Novikov Conjecture in special cases (see [14]). The level of exposition in this survey starts at the level of a reader of Milnor-StasheÆ’s book Characteristic Classes, but by the end demands more topological prerequisites. Here is a table of contents: § Partially supported by the NSF. This survey is based on lectures given in Mainz, Germany in the Fall of 1993. The author wishes to thank the seminar participants as well as Paul Kirk, Chuck McGibbon, and Shmuel Weinberger for clarifying conversations.
    [Show full text]