The Science Behind SUDOKU Solving a Sudoku Puzzle Requires No Math, Not Even Arithmetic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MODULAR MAGIC SUDOKU 1. Introduction 1.1. Terminology And
MODULAR MAGIC SUDOKU JOHN LORCH AND ELLEN WELD Abstract. A modular magic sudoku solution is a sudoku solution with symbols in f0; 1; :::; 8g such that rows, columns, and diagonals of each subsquare add to zero modulo nine. We count these sudoku solutions by using the action of a suitable symmetry group and we also describe maximal mutually orthogonal families. 1. Introduction 1.1. Terminology and goals. Upon completing a newspaper sudoku puzzle one obtains a sudoku solution of order nine, namely, a nine-by-nine array in which all of the symbols f0; 1;:::; 8g occupy each row, column, and subsquare. For example, both 7 2 3 1 8 5 4 6 0 1 8 0 7 5 6 4 2 3 4 0 5 3 2 6 1 8 7 2 3 4 8 0 1 5 6 7 6 1 8 4 0 7 2 3 5 6 7 5 3 4 2 0 1 8 1 7 0 6 3 2 5 4 8 8 4 6 5 1 3 2 7 0 (1) 5 4 6 8 1 0 7 2 3 and 7 0 2 4 6 8 1 3 5 8 3 2 7 5 4 0 1 6 3 5 1 0 2 7 6 8 4 2 6 4 0 7 8 3 5 1 5 1 3 2 7 0 8 4 6 3 5 7 2 6 1 8 0 4 4 6 8 1 3 5 7 0 2 0 8 1 5 4 3 6 7 2 0 2 7 6 8 4 3 5 1 are sudoku solutions. -
Mathematics of Sudoku I
Mathematics of Sudoku I Bertram Felgenhauer Frazer Jarvis∗ January 25, 2006 Introduction Sudoku puzzles became extremely popular in Britain from late 2004. Sudoku, or Su Doku, is a Japanese word (or phrase) meaning something like Number Place. The idea of the puzzle is extremely simple; the solver is faced with a 9 × 9 grid, divided into nine 3 × 3 blocks: In some of these boxes, the setter puts some of the digits 1–9; the aim of the solver is to complete the grid by filling in a digit in every box in such a way that each row, each column, and each 3 × 3 box contains each of the digits 1–9 exactly once. It is a very natural question to ask how many Sudoku grids there can be. That is, in how many ways can we fill in the grid above so that each row, column and box contains the digits 1–9 exactly once. In this note, we explain how we first computed this number. This was the first computation of this number; we should point out that it has been subsequently confirmed using other (faster!) methods. First, let us notice that Sudoku grids are simply special cases of Latin squares; remember that a Latin square of order n is an n × n square containing each of the digits 1,...,n in every row and column. The calculation of the number of Latin squares is itself a difficult problem, with no general formula known. The number of Latin squares of sizes up to 11 × 11 have been worked out (see references [1], [2] and [3] for the 9 × 9, 10 × 10 and 11 × 11 squares), and the methods are broadly brute force calculations, much like the approach we sketch for Sudoku grids below. -
Latin Square Design and Incomplete Block Design Latin Square (LS) Design Latin Square (LS) Design
Lecture 8 Latin Square Design and Incomplete Block Design Latin Square (LS) design Latin square (LS) design • It is a kind of complete block designs. • A class of experimental designs that allow for two sources of blocking. • Can be constructed for any number of treatments, but there is a cost. If there are t treatments, then t2 experimental units will be required. Latin square design • If you can block on two (perpendicular) sources of variation (rows x columns) you can reduce experimental error when compared to the RBD • More restrictive than the RBD • The total number of plots is the square of the number of treatments • Each treatment appears once and only once in each row and column A B C D B C D A C D A B D A B C Facts about the LS Design • With the Latin Square design you are able to control variation in two directions. • Treatments are arranged in rows and columns • Each row contains every treatment. • Each column contains every treatment. • The most common sizes of LS are 5x5 to 8x8 Advantages • You can control variation in two directions. • Hopefully you increase efficiency as compared to the RBD. Disadvantages • The number of treatments must equal the number of replicates. • The experimental error is likely to increase with the size of the square. • Small squares have very few degrees of freedom for experimental error. • You can’t evaluate interactions between: • Rows and columns • Rows and treatments • Columns and treatments. Examples of Uses of the Latin Square Design • 1. Field trials in which the experimental error has two fertility gradients running perpendicular each other or has a unidirectional fertility gradient but also has residual effects from previous trials. -
Lightwood Games Makes Sudoku a Party with Unique Online Gameplay for Ios
prMac: Publish Once, Broadcast the World :: http://prmac.com Lightwood Games makes Sudoku a Party with unique online gameplay for iOS Published on 02/10/12 UK based Lightwood Games today introduces Sudoku Party 1.0, their latest iOS app to put a new spin on a classic puzzle. As well as offering 3 different levels of difficulty for solo play, Sudoku Party introduces a unique online mode. In Party Play, two players work together to solve the same puzzle, but also compete to see who can control the largest number of squares. Once a player has placed a correct answer, their opponent has just a few seconds to respond or they lose claim to that square. Stoke-on-Trent, United Kingdom - Lightwood Games today is delighted to announce the release of Sudoku Party, their latest iPhone and iPad app to put a new spin on a classic puzzle game. Featuring puzzles by Conceptis, Sudoku Party gives individual users a daily challenge at three different levels of difficulty, and also introduces a unique multi-player mode for online play. In Party Play, two players must work together to solve the same puzzle, but at the same time compete to see who can control the largest number of squares. Once a player has placed a correct answer, their opponent has just a few seconds to respond or they lose claim to that square for ever. Players can challenge their friends or jump straight into an online game against the next available opponent. The less-pressured solo mode features a range of beautiful, symmetrical, uniquely solvable sudoku puzzles designed by Conceptis Puzzles, the world's leading supplier of logic puzzles. -
Competition Rules
th WORLD SUDOKU CHAMPIONSHIP 5PHILADELPHIA APR MAY 2 9 0 2 2 0 1 0 Competition Rules Lead Sponsor Competition Schedule (as of 4/25) Thursday 4/29 1-6 pm, 10-11:30 pm Registration 6:30 pm Optional transport to Visitor Center 7 – 10:00 pm Reception at Visitor Center 9:00 pm Optional transport back to hotel 9:30 – 10:30 pm Q&A for puzzles and rules Friday 4/30 8 – 10 am Breakfast 9 – 1 pm Self-guided tourism and lunch 1:15 – 5 pm Individual rounds, breaks • 1: 100 Meters (20 min) • 2: Long Jump (40 min) • 3: Shot Put (40 min) • 4: High Jump (35 min) • 5: 400 Meters (35 min) 5 – 5:15 pm Room closed for team round setup 5:15 – 6:45 pm Team rounds, breaks • 1: Weakest Link (40 min) • 2: Number Place (42 min) 7:30 – 8:30 pm Dinner 8:30 – 10 pm Game Night Saturday 5/1 7 – 9 am Breakfast 8:30 – 12:30 pm Individual rounds, breaks • 6: 110 Meter Hurdles (20 min) • 7: Discus (35 min) • 8: Pole Vault (40 min) • 9: Javelin (45 min) • 10: 1500 Meters (35 min) 12:30 – 1:30 pm Lunch 2:00 – 4:30 pm Team rounds, breaks • 3: Jigsaw Sudoku (30 min) • 4: Track & Field Relay (40 min) • 5: Pentathlon (40 min) 5 pm Individual scoring protest deadline 4:30 – 5:30 pm Room change for finals 5:30 – 6:45 pm Individual Finals 7 pm Team scoring protest deadline 7:30 – 10:30 pm Dinner and awards Sunday 5/2 Morning Breakfast All Day Departure Competition Rules 5th World Sudoku Championship The rules this year introduce some new scoring techniques and procedures. -
How Do YOU Solve Sudoku? a Group-Theoretic Approach to Human Solving Strategies
How Do YOU Solve Sudoku? A Group-theoretic Approach to Human Solving Strategies Elizabeth A. Arnold 1 James Madison University Harrisonburg, VA 22807 Harrison C. Chapman Bowdoin College Brunswick, ME 04011 Malcolm E. Rupert Western Washington University Bellingham, WA 98225 7 6 8 1 4 5 5 6 8 1 2 3 9 4 1 7 3 3 5 3 4 1 9 7 5 6 3 2 Sudoku Puzzle P How would you solve this Sudoku puzzle? Unless you have been living in a cave for the past 10 years, you are probably familiar with this popular number game. The goal is to fill in the numbers 1 through 9 in such a way that there is exactly one of each digit in each row, column and 3 × 3 block. Like most other humans, you probably look at the first row (or column or 3 × 3 block) and say, \Let's see.... there is no 3 in the first row. The third, 1Corresponding author: [email protected] 1 sixth and seventh cell are empty. But the third column already has a 3, and the top right block already contains a 3. Therefore, the 3 must go in the sixth cell." We call this a Human Solving Strategy (HSS for short). This particular strategy has a name, called the \Hidden Single" Strategy. (For more information on solving strategies see [8].) Next, you may look at the cell in the second row, second column. This cell can't contain 5, 6 or 8 since these numbers are already in the second row. -
A Flowering of Mathematical Art
A Flowering of Mathematical Art Jim Henle & Craig Kasper The Mathematical Intelligencer ISSN 0343-6993 Volume 42 Number 1 Math Intelligencer (2020) 42:36-40 DOI 10.1007/s00283-019-09945-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media, LLC, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self- archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy For Our Mathematical Pleasure (Jim Henle, Editor) 1 have argued that the creation of mathematical A Flowering of structures is an art. The previous column discussed a II tiny genre of that art: numeration systems. You can’t describe that genre as ‘‘flowering.’’ But activity is most Mathematical Art definitely blossoming in another genre. Around the world, hundreds of artists are right now creating puzzles of JIM HENLE , AND CRAIG KASPER subtlety, depth, and charm. We are in the midst of a renaissance of logic puzzles. A Renaissance The flowering began with the discovery in 2004 in England, of the discovery in 1980 in Japan, of the invention in 1979 in the United States, of the puzzle type known today as sudoku. -
Bastian Michel, "Mathematics of NRC-Sudoku,"
Mathematics of NRC-Sudoku Bastian Michel December 5, 2007 Abstract In this article we give an overview of mathematical techniques used to count the number of validly completed 9 × 9 sudokus and the number of essentially different such, with respect to some symmetries. We answer the same questions for NRC-sudokus. Our main result is that there are 68239994 essentially different NRC-sudokus, a result that was unknown up to this day. In dit artikel geven we een overzicht van wiskundige technieken om het aantal geldig inge- vulde 9×9 sudokus en het aantal van essentieel verschillende zulke sudokus, onder een klasse van symmetrie¨en,te tellen. Wij geven antwoorden voor dezelfde vragen met betrekking tot NRC-sudoku's. Ons hoofdresultaat is dat er 68239994 essentieel verschillende NRC-sudoku's zijn, een resultaat dat tot op heden onbekend was. Dit artikel is ontstaan als Kleine Scriptie in het kader van de studie Wiskunde en Statistiek aan de Universiteit Utrecht. De begeleidende docent was dr. W. van der Kallen. Contents 1 Introduction 3 1.1 Mathematics of sudoku . .3 1.2 Aim of this paper . .4 1.3 Terminology . .4 1.4 Sudoku as a graph colouring problem . .5 1.5 Computerised solving by backtracking . .5 2 Ordinary sudoku 6 2.1 Symmetries . .6 2.2 How many different sudokus are there? . .7 2.3 Ad hoc counting by Felgenhauer and Jarvis . .7 2.4 Counting by band generators . .8 2.5 Essentially different sudokus . .9 3 NRC-sudokus 10 3.1 An initial observation concerning NRC-sudokus . 10 3.2 Valid transformations of NRC-sudokus . -
PDF Download Journey Sudoku Puzzle Book : 201
JOURNEY SUDOKU PUZZLE BOOK : 201 PUZZLES (EASY, MEDIUM AND VERY HARD) PDF, EPUB, EBOOK Gregory Dehaney | 124 pages | 21 Jul 2017 | Createspace Independent Publishing Platform | 9781548978358 | English | none Journey Sudoku Puzzle Book : 201 puzzles (Easy, Medium and Very Hard) PDF Book Currently you have JavaScript disabled. Home 1 Books 2. All rights reserved. They are a great way to keep your mind alert and nimble! A puzzle with a mini golf course consisting of the nine high-quality metal puzzle pieces with one flag and one tee on each. There is work in progress to improve this situation. Updated: February 10 th You are going to read about plants. Solve online. Receive timely lesson ideas and PD tips. You can place the rocks in different positions to alter the course You can utilize the Sudoku Printable to apply the actions for fixing the puzzle and this is going to help you out in the future. Due to the unique styles, several folks get really excited and want to understand all about Sudoku Printable. Now it becomes available to all iPhone, iPod touch and iPad puzzle lovers all over the World! We see repeatedly that the stimulation provided by these activities improves memory and brain function. And those we do have provide the same benefits. You can play a free daily game , that is absolutely addictive! The rules of Hidato are, as with Sudoku, fairly simple. These Sudokus are irreducible, that means that if you delete a single clue, they become ambigous. Let us know if we can help. Move the planks among the tree stumps to help the Hiker across. -
Latin Squares in Experimental Design
Latin Squares in Experimental Design Lei Gao Michigan State University December 10, 2005 Abstract: For the past three decades, Latin Squares techniques have been widely used in many statistical applications. Much effort has been devoted to Latin Square Design. In this paper, I introduce the mathematical properties of Latin squares and the application of Latin squares in experimental design. Some examples and SAS codes are provided that illustrates these methods. Work done in partial fulfillment of the requirements of Michigan State University MTH 880 advised by Professor J. Hall. 1 Index Index ............................................................................................................................... 2 1. Introduction................................................................................................................. 3 1.1 Latin square........................................................................................................... 3 1.2 Orthogonal array representation ........................................................................... 3 1.3 Equivalence classes of Latin squares.................................................................... 3 2. Latin Square Design.................................................................................................... 4 2.1 Latin square design ............................................................................................... 4 2.2 Pros and cons of Latin square design................................................................... -
Chapter 30 Latin Square and Related Designs
Chapter 30 Latin Square and Related Designs We look at latin square and related designs. 30.1 Basic Elements Exercise 30.1 (Basic Elements) 1. Di®erent arrangements of same data. Nine patients are subjected to three di®erent drugs (A, B, C). Two blocks, each with three levels, are used: age (1: below 25, 2: 25 to 35, 3: above 35) and health (1: poor, 2: fair, 3: good). The following two arrangements of drug responses for age/health/drugs, health, i: 1 2 3 age, j: 1 2 3 1 2 3 1 2 3 drugs, k = 1 (A): 69 92 44 k = 2 (B): 80 47 65 k = 3 (C): 40 91 63 health # age! j = 1 j = 2 j = 3 i = 1 69 (A) 80 (B) 40 (C) i = 2 91 (C) 92 (A) 47 (B) i = 3 65 (B) 63 (C) 44 (A) are (choose one) the same / di®erent data sets. This is a latin square design and is an example of an incomplete block design. Health and age are two blocks for the treatment, drug. 2. How is a latin square created? True / False Drug treatment A not only appears in all three columns (age block) and in all three rows (health block) but also only appears once in every row and column. This is also true of the other two treatments (B, C). 261 262 Chapter 30. Latin Square and Related Designs (ATTENDANCE 12) 3. Other latin squares. Which are latin squares? Choose none, one or more. (a) latin square candidate 1 health # age! j = 1 j = 2 j = 3 i = 1 69 (A) 80 (B) 40 (C) i = 2 91 (B) 92 (C) 47 (A) i = 3 65 (C) 63 (A) 44 (B) (b) latin square candidate 2 health # age! j = 1 j = 2 j = 3 i = 1 69 (A) 80 (C) 40 (B) i = 2 91 (B) 92 (A) 47 (C) i = 3 65 (C) 63 (B) 44 (A) (c) latin square candidate 3 health # age! j = 1 j = 2 j = 3 i = 1 69 (B) 80 (A) 40 (C) i = 2 91 (C) 92 (B) 47 (B) i = 3 65 (A) 63 (C) 44 (A) In fact, there are twelve (12) latin squares when r = 3. -
THE MATHEMATICS BEHIND SUDOKU Sudoku Is One of the More Interesting and Potentially Addictive Number Puzzles. It's Modern Vers
THE MATHEMATICS BEHIND SUDOKU Sudoku is one of the more interesting and potentially addictive number puzzles. It’s modern version (adapted from the Latin Square of Leonard Euler) was invented by the American Architect Howard Ganz in 1979 and brought to worldwide attention through promotion efforts in Japan. Today the puzzle appears weekly in newspapers throughout the world. The puzzle basis is a square n x n array of elements for which only a few of the n2 elements are specified beforehand. The idea behind the puzzle is to find the value of the remaining elements following certain rules. The rules are- (1)-Each row and column of the n x n square matrix must contain each of n numbers only once so that the sum in each row or column of n numbers always equals- n n(n 1) k k 1 2 (2)-The n x n matrix is broken up into (n/b)2 square sub-matrixes, where b is an integer divisor of n. Each sub-matrix must also contain all n elements just once and the sum of the elements in each sub-matrix must also equal n(n+1)/2. It is our purpose here to look at the mathematical aspects behind Sudoku solutions. To make things as simple as possible, we will start with a 4 x 4 Sudoku puzzle of the form- 1 3 1 4 3 2 Here we have 6 elements given at the outset and we are asked to find the remaining 10 elements shown as dashes. There are four rows and four columns each plus 4 sub- matrixes of 2 x 2 size which read- 1 3 4 3 A B C and D 1 2 Any element in the 4 x 4 square matrix is identified by the symbol ai,j ,where i is the row number and j the column number.