Filters As a Language Support for Design Patterns in Object-Oriented Scripting Languages

Total Page:16

File Type:pdf, Size:1020Kb

Filters As a Language Support for Design Patterns in Object-Oriented Scripting Languages THE ADVANCED COMPUTING SYSTEMS ASSOCIATION The following paper was originally published in the 5th USENIX Conference on Object-Oriented Technologies and Systems (COOTS '99) San Diego, California, USA, May 3–7, 1999 Filters as a Language Support for Design Patterns in Object-Oriented Scripting Languages Gustaf Neumann and Uwe Zdun University of Essen, Germany © 1999 by The USENIX Association All Rights Reserved Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Filters as a Language Supp ort for Design Patterns in Ob ject-Oriented Scripting Languages Gustaf Neumann and Uwe Zdun Information Systems and Software Techniques University of Essen, Germany fgustaf.neumann,[email protected] 1 Intro duction Abstract 1.1 Scripting Languages In applications, where the emphasis lays on the exible reuse of comp onents, scripting languages, Scripting languages are designed for glueing soft- like Tcl Tool Command Language [25], are very ware comp onents together. Such languages pro- useful for a fast and high-quality development of vide features like dynamic extensibility and dynamic software. The application developmentin scripting typing with automatic conversion that make them languages di ers fundamentally from the develop- well suited for rapid application development. Al- ment in systems programming languages [26] like though these features entail runtime p enalties, mo d- C, C++ or Java, where the whole system is de- ern CPUs are fast enough to execute even large ap- velop ed in a single language. A scripting language plications in scripting languages eciently. followsatwo-level approach, distinguishing b etween comp onents reusable software mo dules and glue- ing co de, which is used to combine the comp onents Large applications typically entail complex pro- according to the application needs. This two level gram structures. Ob ject-orientation o ers the approachleads to a rapid application development means to solve some of the problems caused bythis [26]. complexity, but fo cuses only on entities up to the size of a single class. The ob ject-oriented design Scripting languages are typically interpreted and community prop oses design patterns as a solution use a dynamic typ e system with automatic conver- for complex interactions that are p o orly supp orted sion. The application develop er uses a single data by current ob ject-oriented programming languages. typ e strings for the representation of all data. In order to use patterns in an application, their im- Therefore, the interfaces of all comp onents t to- plementation has to b e scattered over several classes. gether automatically and the comp onents can be This fact makes patterns hard to lo cate in the ac- reused in unpredicted situations without change. tual co de and complicates their maintenance in an The disadvantages of scripting languages are a loss in application. eciency e.g. for dynamic conversions and metho d lo okup and the lack of reliability prop erties of a static typ e system [18]. But these disadvantages can This pap er presents a general approach to com- b e comp ensated to a certain degree: bine the ideas of scripting and ob ject-orientation in a way that preserves the bene ts of both of them. For several application tasks, the loss of e- It describ es the ob ject-oriented scripting language ciency is not necessarily relevant, b ecause the XOTcl Extended OTcl, which is equipp ed with time critical co de can be placed into comp o- several language functionalities that help in the im- nents written in ecient systems programming plementation of design patterns. We intro duce the languages. Only the co de to control these com- lter approach whichprovides a novel, intuitive, and ponents is kept in the highly exible scripting powerful language supp ort for the instantiation of language. large program structures like design patterns. to manipulate through the evolving non-lo cality in Since the comp onents are typically written in the structures. They involve a pattern-like matching a language with a static typ e system the relia- of similar b ehavior in long-term memory. The string bility argument applies only on the glue co de, as an uniform and exible interface instead of the used to combine the comp onents. To address use of p olymorphism makes the ob jects easier to b e these remaining problems we have integrated put together. They get one unique b ehavior and one an assertion concept based on pre- and p ost- unique interface. They may b e used in di erent situ- conditions and invariants see [24]. ations di erently, but the required knowledge ab out the ob ject remains the same. Since Tcl is designed for glueing comp onents to- gether, it is equipp ed with appropriate functionali- These arguments accountfor the glueing idea of ties, such as dynamic typing, dynamic extensibility the scripting language in the scop e of a single class and read/write introsp ection. Many ob ject-oriented and its environment. This scop e of a \program- Tcl-extensions do not supp ort well these abilities in ming in the small" is the strength of current ob ject- their language constructs. They integrate foreign oriented language concepts. Their weakness is the concepts and syntactic elements mostly adopted \programming in the large", where all comp onents from C++ into Tcl see e.g. [15, 9]. Even less of a system have to be con gured prop erly. The appropriate is the encouraged programming style in concepts only provide a small set of functionalities structured blo cks and the corresp onding rigid class that work on structures larger than single classes, concept, which sees classes as write-once, unchange- e.g. from languages likeJava or C++ the following able templates for their instances. This concept is are known: not compatible with the highly dynamic prop erties of the underlying scripting language. virtual prop erties are used to de ne additional ob ject- and class-prop erties, 1.2 Scripting and Ob ject Orientation abstract classes sp ecify formal interfaces and re- quirements for a set of classes, The three most imp ortant bene ts of ob ject- orientation are encapsulation of data and op erations, parametric class de nitions are used for di er- co de reuse through inheritance, and p olymorphism. entdatatyp es on one class-layout. These should help to reduce development time, to increase software reuse, to ease the maintenance of Beneath such language constructs, metho dical ap- software and to solve many other problems. proaches, like frameworks, exist. Since they are But these claims are not undoubted: For example co ded using conventional language constructs the Hatton [11] argues that the non-lo cality problems problems due to the language insuciencies are not of inheritance and p olymorphism in languages, like eliminated. The main insuciency is that classes C++,donot match the mo del of the human mind and ob jects are relatively small system-parts com- well. pared to an entire, complex system. Therefore, the wish for a language construct, which maps such a Encapsulation lets us think ab out an ob ject in iso- large structure to an instantiable entity of the pro- lation; this is related to the notion of manipulating gramming language, arises. something in short-term memory exclusively. There- fore, encapsulation ts the human reasoning. Since in scripting languages a form of co de reuse is already 1.3 OTcl { MIT Ob ject Tcl provided through reusable comp onents, the foremost reason for the use of ob ject-orientation in a scripting We b elieve OTcl [32] is an extraordinary ob ject- language is the encapsulation. For that reason, the oriented scripting language which supp orts several inheritance problem also seems less con icting, be- features for handling complexity. It preserves and cause the inheritance is mainly used to structure the extends the prop erties of Tcl likeintrosp ection and system and to put the comp onents together prop- dynamic extensibility. Therefore, weusedOTcl as erly. Inheritance in scripting applications normally the starting p oint for the developmentof XOTcl. do es not lead to large and complex classes that are strongly dep endentoneach other. In OTcl each ob ject is asso ciated with a class. Classes are ordered by the sup erclass relationship Hatton [11] criticizes the p olymorphism in C++ in a directed acyclic graph. The ro ot of the class as damaging, b ecause ob jects b ecome more dicult with do cumentation and usage constraints in the hierarchy is the class Object that contains the meth- implementation as well. ods available in all instances. A single ob ject can be instantiated directly from this class. In OTcl classes are sp ecial ob jects with the purp ose of cre- 2.1 Language Supp ort for Design Pat- ating and managing other ob jects. Classes can be terns created and destroyed dynamically like regular ob- jects. Classes contain a rep ository of instance meth- Most e orts in the literature of design patterns o ds \instpro cs" for the asso ciated ob jects and pro- collect and catalog patterns. These activities are vide a sup erclass relationship that supp orts multiple very imp ortant, since they are the basis for new soft- inheritance. ware architectures using design patterns. Soukup Since a class is a sp ecial managing kind of ob ject, [30] remarks that this basic work is not yet ended.
Recommended publications
  • Ajuba Solutions Version 1.4 COPYRIGHT Copyright © 1998-2000 Ajuba Solutions Inc
    • • • • • • Ajuba Solutions Version 1.4 COPYRIGHT Copyright © 1998-2000 Ajuba Solutions Inc. All rights reserved. Information in this document is subject to change without notice. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or mechanical, including but not limited to photocopying or recording, for any purpose other than the purchaser’s personal use, without the express written permission of Ajuba Solutions Inc. Ajuba Solutions Inc. 2593 Coast Avenue Mountain View, CA 94043 U.S.A http://www.ajubasolutions.com TRADEMARKS TclPro and Ajuba Solutions are trademarks of Ajuba Solutions Inc. Other products and company names not owned by Ajuba Solutions Inc. that appear in this manual may be trademarks of their respective owners. ACKNOWLEDGEMENTS Michael McLennan is the primary developer of [incr Tcl] and [incr Tk]. Jim Ingham and Lee Bernhard handled the Macintosh and Windows ports of [incr Tcl] and [incr Tk]. Mark Ulferts is the primary developer of [incr Widgets], with other contributions from Sue Yockey, John Sigler, Bill Scott, Alfredo Jahn, Bret Schuhmacher, Tako Schotanus, and Kris Raney. Mark Diekhans and Karl Lehenbauer are the primary developers of Extended Tcl (TclX). Don Libes is the primary developer of Expect. TclPro Wrapper incorporates compression code from the Info-ZIP group. There are no extra charges or costs in TclPro due to the use of this code, and the original compression sources are freely available from http://www.cdrom.com/pub/infozip or ftp://ftp.cdrom.com/pub/infozip. NOTE: TclPro is packaged on this CD using Info-ZIP’s compression utility.
    [Show full text]
  • 032133633X Sample.Pdf
    Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. Excerpts from the Tcl/Tk reference documentation are used under the terms of the Tcl/Tk license (http://www.tcl.tk/software/tcltk/license.html). The open source icon set used in Figures 22-1, 22-2, and 22-3 are from the Tango Desktop Project (http://tango.freedesktop.org/Tango_Desktop_Project). The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales (800) 382-3419 [email protected] For sales outside the United States please contact: International Sales [email protected] Visit us on the Web: informit.com/aw Library of Congress Cataloging-in-Publication Data Ousterhout, John K. Tcl and the Tk toolkit / John Ousterhout, Ken Jones ; with contributions by Eric Foster-Johnson . [et al.]. — 2nd ed.
    [Show full text]
  • Xotcl - Tutorial 1.6.4
    XOTcl - Tutorial 1.6.4 Gustaf Neumann and Uwe Zdun XOTcl - Tutorial 1 XOTcl - Tutorial XOTcl - Tutorial - Index Version: 1.6.4 • Introduction ♦ Language Overview ♦ Introductory Overview Example: Stack ◊ Object specific methods ◊ Refining the behavior of objects and classes ◊ Stack of integers ◊ Class specifc methods ♦ Introductory Overview Example: Soccer Club • Object and Class System • Basic Functionalities ♦ Objects ◊ Data on Objects ◊ Methods for Objects ◊ Information about Objects ♦ Classes ◊ Creating Classes and Deriving Instances ◊ Methods Defined in Classes ◊ Information about Classes ◊ Inheritance ◊ Destruction of Classes ◊ Method Chaining ♦ Dynamic Class and Superclass Relationships ♦ Meta-Classes ♦ Create, Destroy, and Recreate Methods ♦ Methods with Non-Positional Arguments • Message Interception Techniques ♦ Filter ♦ Mixin Classes ♦ Precedence Order ♦ Guards for Filters and Mixins ♦ Querying, Setting, Altering Filter and Mixin Lists ♦ Querying Call-stack Information • Slots ♦ System Slots ♦ Attribute Slots ♦ Setter and Getter Methods for Slots ♦ Backward-compatible Short-Hand Notation for Attribute Slots ♦ Experimental Slot Features ◊ Value Checking ◊ Init Commands and Value Commands for Slot Values • Nested Classes and Dynamic Object Aggregations ♦ Nested Classes 2 XOTcl - Tutorial ♦ Dynamic Object Aggregations ♦ Relationship between Class Nesting and Object Aggregation ♦ Simplified Syntax for Creating Nested Object Structures ♦ Copy/Move • Method Forwarding • Assertions • Additional Functionalities ♦ Abstract Classes ♦ Automatic Name Creation ♦ Meta-Data • Integrating XOTcl Programs with C Extensions (such as Tk) • References 3 XOTcl - Tutorial Introduction Language Overview XOTcl [Neumann and Zdun 2000a] is an extension to the object-oriented scripting language OTcl [Wetherall and Lindblad 1995] which itself extends Tcl [Ousterhout 1990] (Tool Command Language) with object-orientation. XOTcl is a value-added replacement for OTcl and does not require OTcl to compile.
    [Show full text]
  • Xotcl − Documentation −− ./Doc/Langref.Xotcl ./Doc/Langref.Xotcl
    XOTcl − Documentation −− ./doc/langRef.xotcl ./doc/langRef.xotcl Package/File Information No package provided/required Defined Objects/Classes: • Class: __unknown, allinstances, alloc, create, info, instdestroy, instfilter, instfilterguard, instforward, instinvar, instmixin, instparametercmd, instproc, new, parameter, parameterclass, recreate, superclass, unknown, volatile. • Object: abstract, append, array, autoname, check, class, cleanup, configure, copy, destroy, eval, exists, extractConfigureArg, filter, filterguard, filtersearch, forward, getExitHandler, hasclass, incr, info, instvar, invar, isclass, ismetaclass, ismixin, isobject, istype, lappend, mixin, move, noinit, parametercmd, proc, procsearch, requireNamespace, set, setExitHandler, trace, unset, uplevel, upvar, vwait. Filename: ./doc/langRef.xotcl Description: XOTcl language reference. Describes predefined objects and classes. Predefined XOTcl contains three predefined primitives: primitives: self computes callstack related information. It can be used in the following ways: • self − returns the name of the object, which is currently in execution. If it is called from outside of a proc, it returns the error message ``Can't find self''. • self class − the self command with a given argument class returns the name of the class, which holds the currently executing instproc. Note, that this may be different to the class of the current object. If it is called from a proc it returns an empty string. • self proc − the self command with a given argument proc returns the name of the currently executing proc or instproc. • self callingclass: Returns class name of the class that has called the executing method. • self callingobject: Returns object name of the object that has called the executing method. • self callingproc: Returns proc name of the method that has called the executing method. • self calledclass: Returns class name of the class that holds the target proc (in mixins and filters).
    [Show full text]
  • Tcloo: Past, Present and Future Donal Fellows University of Manchester / Tcl Core Team [email protected]
    TclOO: Past, Present and Future Donal Fellows University of Manchester / Tcl Core Team [email protected] to being universally deployed in Tcl Abstract installations to date, and the way in This paper looks at the state of Tcl’s new which you declare classes within it is object system, TclOO, looking at the forces that exceptionally easy to use. On the other lead to its development and the development hand, it shows its heritage in the C++ process itself. The paper then focuses on the model of the early 1990s, being rela- current status of TclOO, especially its interest- tively inflexible and unable to support ing features that make it well-suited to being a many advanced features of object sys- foundational Tcl object system, followed by a tems. look at its actual performance and some of the XOTcl: In many ways, XOTcl represents the uses to which it has already been put. Finally, polar opposite of itcl. It has a great set the paper looks ahead to some of the areas of basic semantic features and is enor- where work may well be focused in the future. mously flexible, both features that fit the spirit of the Tcl language itself very 1. TclOO: Past well, but it is awkward syntactically and has a strong insistence on adding a Genesis (with Phil Collins) lot of methods that are not needed everywhere, making the interface ex- One of the longest-standing complaints about Tcl posed by objects cluttered. has been its lack of an object system; this has not always been an entirely fair criticism, as Tcl has in Snit: Snit is the most interesting of the fact had rather too many of them! The most well purely scripted object systems (the known ones are Tk (in a sense), [incr Tcl], XOTcl others all have substantial C compo- and Snit.
    [Show full text]
  • Scenario-Based Component Testing Using Embedded Metadata
    Scenario-based Component Testing Using Embedded Metadata Mark Strembeck and Uwe Zdun Department of Information Systems - New Media Lab, Vienna University of Economics and BA, Austria fmark.strembeck|[email protected] Abstract We present an approach for the use case and scenario-based testing of software components. Use cases and scenarios are applied to describe the functional requirements of a software system. In our approach, a test is defined as a formalized and executable description of a scenario. Tests are derived from use case scenarios via continuous re- finement. The use case and test information can be associated with a software component as embedded component metadata. In particular, our approach provides a model-based mapping of use cases and scenarios to test cases, as well as (runtime) traceability of these links. Moreover, we describe an implementation-level test framework that can be integrated with many different programming languages. 1 Introduction Testing whether a software product correctly fulfills the customer requirements and detecting problems and/or errors is crucial for the success of each software product. Testing, however, causes a huge amount of the total software development costs (see for instance [16,24]). Stud- ies indicate that fifty percent or more of the total software development costs are devoted to testing [12]. As it is almost impossible to completely test a complex software system, one needs an effective means to select relevant test cases, express and maintain them, and automate tests whenever possible. The goal of a thorough testing approach is to significantly reduce the development time and time-to-market and to ease testing after change activities, regardless whether a change occurs on the requirements, design, or test level.
    [Show full text]
  • Langref-Xotcl.Pdf
    XOTcl − Documentation −− ./doc/langRef.xotcl ./doc/langRef.xotcl Package/File Information No package provided/required Defined Objects/Classes: • ::xotcl::Slot: • Attribute: • Class: __unknown, allinstances, alloc, create, info, instdestroy, instfilter, instfilterguard, instforward, instinvar, instmixin, instparametercmd, instproc, new, parameter, parameterclass, recreate, superclass, unknown. • Object: abstract, append, array, autoname, check, class, cleanup, configure, contains, copy, destroy, eval, exists, extractConfigureArg, filter, filterguard, filtersearch, forward, getExitHandler, hasclass, incr, info, instvar, invar, isclass, ismetaclass, ismixin, isobject, istype, lappend, mixin, move, noinit, parametercmd, proc, procsearch, requireNamespace, set, setExitHandler, subst, trace, unset, uplevel, upvar, volatile, vwait. Filename: ./doc/langRef.xotcl Description: XOTcl language reference. Describes predefined objects and classes. Predefined XOTcl contains the following predefined primitives (Tcl commands): primitives: self computes callstack related information. It can be used in the following ways: ◊ self − returns the name of the object, which is currently in execution. If it is called from outside of a proc, it returns the error message ``Can't find self''. ◊ self class − the self command with a given argument class returns the name of the class, which holds the currently executing instproc. Note, that this may be different to the class of the current object. If it is called from a proc it returns an empty string. ◊ self proc − the self command with a given argument proc returns the name of the currently executing proc or instproc. ◊ self callingclass: Returns class name of the class that has called the executing method. ◊ self callingobject: Returns object name of the object that has called the executing method. ◊ self callingproc: Returns proc name of the method that has called the executing method.
    [Show full text]
  • You Say 'JML' ? Wikipedia (En)
    You say 'JML' ? Wikipedia (en) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 06 Jan 2014 09:58:42 UTC Contents Articles Java Modeling Language 1 Design by contract 5 Formal methods 10 References Article Sources and Contributors 15 Image Sources, Licenses and Contributors 16 Article Licenses License 17 Java Modeling Language 1 Java Modeling Language The Java Modeling Language (JML) is a specification language for Java programs, using Hoare style pre- and postconditions and invariants, that follows the design by contract paradigm. Specifications are written as Java annotation comments to the source files, which hence can be compiled with any Java compiler. Various verification tools, such as a runtime assertion checker and the Extended Static Checker (ESC/Java) aid development. Overview JML is a behavioural interface specification language for Java modules. JML provides semantics to formally describe the behavior of a Java module, preventing ambiguity with regard to the module designers' intentions. JML inherits ideas from Eiffel, Larch and the Refinement Calculus, with the goal of providing rigorous formal semantics while still being accessible to any Java programmer. Various tools are available that make use of JML's behavioral specifications. Because specifications can be written as annotations in Java program files, or stored in separate specification files, Java modules with JML specifications can be compiled unchanged with any Java compiler. Syntax JML specifications are added to Java code in the form of annotations in comments. Java comments are interpreted as JML annotations when they begin with an @ sign.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Tclpro™ User's Guide
    TclPro™ User’s Guide • • • • • • Scriptics Corporation Version 1.3 COPYRIGHT Copyright © 1998, 1999 Scriptics Corporation. All rights reserved. Information in this document is subject to change without notice. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or mechanical, including but not limited to photocopying and recorded for any purpose other than the purchaser’s personal use, without the express written permission of the Scriptics Corporation. Scriptics Corporation 2593 Coast Avenue Second Floor Mountain View, CA 94043 U.S.A http://www.scriptics.com TRADEMARKS TclPro and Scriptics are trademarks of the Scriptics Corporation. Other products and company names not owned by the Scriptics Corporation that appear in this manual may be trademarks of their respective owners. ACKNOWLEDGEMENTS Michael McLennan is the primary developer of [incr Tcl] and [incr Tk]. Jim Ingham and Lee Bernhard handled the Macintosh and Windows ports of [incr Tcl] and [incr Tk]. Mark Ulferts is the primary developer of [incr Widgets], with other contributions from Sue Yockey, John Sigler, Bill Scott, Alfredo Jahn, Bret Schuhmacher, Tako Schotanus, and Kris Raney. Mark Diekhans and Karl Lehenbauer are the primary developers of Extended Tcl (TclX). Don Libes is the primary developer of Expect. TclPro Wrapper incorporates compression code from the Info-ZIP group. There are no extra charges or costs in TclPro due to the use of this code, and the original compression sources are freely available from http://www.cdrom.com/pub/infozip or ftp://ftp.cdrom.com/pub/infozip. NOTE: TclPro is packaged on this CD using Info-ZIP’s compression utility.
    [Show full text]
  • 0:Object-Oriented Programming with [Incr Tcl] 0:Building Mega-Widgets with [Incr
    0:Object-Oriented Programming with [incr Tcl] 0:Building Mega-Widgets with [incr Tk] Michael J. McLennan Bell Labs Innovations for Lucent Technologies 1247 S. Cedar Crest Blvd. Allentown, PA 18104 [email protected] Copyright © 1996 Lucent Technologies ABSTRACT Applications with short development cycles have the best chance for success in today’s marketplace. Tcl/Tk provides an interactive development environment for building Graphical User Interface (GUI) applications with incredible speed. Tcl/Tk applications look like they were constructed with the Motif toolkit, but they can be written in a fraction of the time. This is due, in part, to the high- level programming interface that the Tcl language provides. It is also due to the interpretive nature of the Tcl language; changes made to a Tcl/Tk application can be seen immediately, without waiting for the usual compile/link/run cycle. Developers can prototype new ideas, review them with customers, and deliver a finished product within a span of several weeks. The finished product will run on all of the major platforms: Unix, PC Windows, and Macintosh. But the Tcl language was not designed to support large programming projects. When Tcl/Tk scripts grow larger than a thousand lines, the code complexity can be difficult to manage. [INCR TCL] extends the Tcl language to support object- oriented programming. This allows developers to write high-level building blocks that are more easily assembled into a finished application. The resulting code has more encapsulation, and is easier to maintain and extend. [INCR TCL] is patterned after C++, so for many developers, it is easy to learn.
    [Show full text]
  • Xotcl − Documentation −− ./Doc/Langref.Xotcl ./Doc/Langref.Xotcl
    XOTcl − Documentation −− ./doc/langRef.xotcl ./doc/langRef.xotcl Package/File Information Package provided: XOTcl−langRef 1.3.3 Package required: Tcl Defined Objects/Classes: • Class: __unknown, alloc, create, info, instdestroy, instfilter, instfilterguard, instforward, instinvar, instmixin, instparametercmd, instproc, new, parameter, parameterclass, recreate, superclass, unknown, volatile. • Object: abstract, append, array, autoname, check, class, cleanup, configure, copy, destroy, eval, exists, extractConfigureArg, filter, filterguard, filtersearch, forward, getExitHandler, hasclass, incr, info, instvar, invar, isclass, ismetaclass, ismixin, isobject, istype, lappend, mixin, move, noinit, parametercmd, proc, procsearch, requireNamespace, set, setExitHandler, trace, unset, uplevel, upvar, vwait. Filename: ./doc/langRef.xotcl Description: XOTcl language reference. Describes predefined objects and classes. Predefined primitives: XOTcl contains three predefined primitives: self computes callstack related information. It can be used in the following ways: • self − returns the name of the object, which is currently in execution. If it is called from outside of a proc, it returns the error message ``Can't find self''. • self class − the self command with a given argument class returns the name of the class, which holds the currently executing instproc. Note, that this may be different to the class of the current object. If it is called from a proc it returns an empty string. • self proc − the self command with a given argument proc returns the name of the currently executing proc or instproc. • self callingclass: Returns class name of the class that has called the executing method. • self callingobject: Returns object name of the object that has called the executing method. • self callingproc: Returns proc name of the method that has called the executing method.
    [Show full text]