Density Functional Theory Techniques for Electron Energy Loss Analysis of Lithium Materials

Total Page:16

File Type:pdf, Size:1020Kb

Density Functional Theory Techniques for Electron Energy Loss Analysis of Lithium Materials Density Functional Theory Techniques for Electron Energy Loss Analysis of Lithium Materials Quentin Stoyel, Mining and Materials Engineering, McGill University, Montreal November 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Masters of Science ©Quentin Stoyel 2018 Contents Table of Contents....................................i Abstract......................................... iii Abr´eg´e.......................................... iv Acknowledgements...................................v Contribution of Authors................................ vi 1 Introduction1 2 Literature Review4 2.1 Electron Energy Loss Spectroscopy (EELS)...................4 2.1.1 Electron Microscopy...........................4 2.1.2 EELS in Experiment........................... 10 2.1.3 Beam Damage............................... 13 2.1.4 Lithium in EELS............................. 15 2.1.5 Preprocessing............................... 16 2.1.6 Other Experimental Techniques..................... 19 2.2 Density Functional Theory (DFT)........................ 21 2.2.1 DFT Background............................. 22 2.2.2 Formulation................................ 22 2.2.3 WIEN2k.................................. 28 2.2.4 Quantum Theory of Atoms in Molecules................ 29 2.2.5 Lithium in DFT.............................. 30 i 2.3 EELS Calculations................................ 30 2.3.1 Time Dependent Density Functional Theory (TDDFT)........ 32 2.3.2 Cross Section Approach......................... 34 2.3.3 Beth Salpeter Equations (BSE)..................... 34 2.3.4 Core Hole Approximations........................ 35 3 Methods 40 3.1 Improvement to Core Hole Shielding Calculations............... 40 3.2 Implementation.................................. 43 3.3 Calculation Details................................ 43 3.4 Experimental Details............................... 44 4 Results and Discussion 45 4.1 Lithium Oxide................................... 45 4.2 Metallic Lithium................................. 47 4.3 Lithium Fluoride................................. 50 4.4 Li-LiF Mixture.................................. 51 4.5 Discussion..................................... 53 5 Conclusion 56 A Calculation Details 58 A.1 Crystal Structures................................ 58 A.2 DFT Parameters................................. 59 ii Abstract Electron energy loss spectroscopy (EELS) is an electron microscopy technique ideal for char- acterizing lightweight elements. The technique relies on using reference spectra to fingerprint and analyze results. These references can be obtained either through experiments on stan- dards or through simulation. Simulations provide the ability to produce spectra for previ- ously unstudied or sensitive materials, but rely on numerous approximations. Central to the simulation of EELS are the approximations treating core holes and shielding. In this work, a new method of calculating the magnitude of core hole screening in the case of lithium ma- terials is developed and implemented in density functional theory calculations. The method is used to verify the validity of performing electron energy loss spectroscopy at 30 keV to reduce beam damage. EELS fine structure are calculated for metallic lithium, Li2O, and LiF and marked improvements in agreement between calculation and experiment are observed. The technique uses linear response theory to relate the electron density to the core hole shielding contribution. This contribution is then implemented via a non integer core hole in final state rule density functional theory calculations. The improvements enabled by the technique open the possibility of conducting increasingly quantitative EELS analysis. iii Abr´eg´e La spectroscopie par perte d'´energiedes ´electrons(EELS) est une technique de caract´erisation sensible aux ´el´ements de faible masse. L'analyse EELS requiert des spectres de r´ef´erences pour valider les r´esultats obtenus. Les simulations de spectres offrent une faon d'obtenir des r´ef´erencespour des nouveaux mat´eriaux. Bien que les simulations soient utiles, elles requi`erent des ajustements de param`etres. Un de ces param`etre est la fa¸conde g´ererun trou d'´etatde cœur. Une nouvelle technique pour calcul´eel'intensit´ede masquage des trous d'´electronsest propos´ee,ce qui a pour effet d'augmenter la pr´ecisiondes spectres EELS des mat´eriauxcontenant du lithium. La m´ethode est appliqu´eepour v´erifierla pertinence de conduire des exp´eriencesEELS `a30 keV, ce qui a pour effet de minimiser l'endommagement des ´echantillons induits par de le faisceau d'´electron.La m´ethode est bas´eesur la th´eoriede la r´eponse lin´eaire,qui relie la densit´edes ´electronsaux effets de masquage. Ces effets sont par la suite repr´esent´espar un trou partiel dans les calculs par la th´eoriede la fonctionnelle de la densit´ed'´etatsd'´electrons. En utilisant la technique propos´eedans ce travaille, les spectres EELS calcul´eespour le Li2O, le LiF et le lithium m´etallique sont en meilleur accor- dance avec les r´esultatsexp´erimentaux de ces mat´eriaux. Ces r´esultatsouvrent la porte `a des m´ethode quantitatives bas´eesur la spectroscopie EELS. iv Acknowledgements Many people need to be acknowledged for helping make this work possible. Foremost are my supervisors, Professor Raynald Gauvin and Professor George P. Demopoulos for all their support, guidance, and valuable discussions. Equally essential to this work are Fr´ed´eric Voisard and Nicolas Brodusch who provided all the experimental results needed to verify the theoretical ones presented here. I would also like to thank Motoki Nakamura for taking the time to read and help edit my thesis and Fr´ed´ericVoisard for assistance in writing the French abstract. Acknowledgement is also due to the agencies who helped fund this work: NSERC and IREQ. Support also came from a multitude of places in ways that were not always appreciated in the moment. To this end, I would like to thank everyone who helped instill me with love and excitement for physics and science. Whether it was in a classroom, a pub, or wandering the streets, those willing to seek out and discuss the world's interesting problems inspired me into making this work happen. Finally, I would like to thank my parents for knowing that this was my path well before I did, and supporting me every step of the way. v Contribution of Authors In this thesis, the author developed the calculation method presented in Chapter3 and performed all of the density functional theory and Bader theory calculations for the results presented in Chapter4. The author also performed all of the analysis and processing of the experimental spectra. The lithium K edge experimental spectra in Chapters2 and4, as well as the carbon K edge spectra in Figure 2.7 were obtained by Nicolas Brodusch and Fr´ed´eric Voisard. Prof. Raynald Gauvin and Prof. George P. Demopoulos supervised the research project. vi Chapter 1 Introduction The study of lithium materials has become increasingly relevant in recent years [1]. In par- ticular, the field has been driven by the need to develop improved and more cost effective battery materials [1]. This drive has come from increasing demands for electric vehicles and portable electrical devices demanding longer lifetimes and faster charging. Many aspects of batteries can be improved as the theoretical limits have not yet been achieved in fundamental areas such as capacity, charge density, and charge/discharge rates. The theoretical limits in the case of lithium ion batteries are especially high, as lithium offers a range of advantages relative to other charge carriers. As the third element on the periodic table, lithium is extremely lightweight, allowing lithium ion batteries to be smaller and lighter without sacrificing lifetime [2]. Lithium's small ion size makes it highly mobile, which leads to superior discharge rates [2]. Furthermore, as an alkali earth metal with a single weakly bound valence electron, lithium is highly electropositive. As a result, lithium ion batteries can achieve higher operating voltages than alternatives such as nickle-cadmium or lead-acid batteries [2]. Some of these comparative performance advantages to these alter- natives are illustrated in Fig 1.1[2]. The pursuit of further improving the performance of lithium batteries has shifted analysis 1 Figure 1.1: Plot illustrating the the power and energy densities achievable by three types of battery, as well as the minimum requirements for various types of electric vehicle, including hybrid electric vehicles (HEV), plug in hybrids (light vehicle). From Etacheri, 2011 [2]. of these materials increasingly towards measuring microstructure properties [3{5]. Identify- ing microscale features such as crystal structure, diffusion mechanics, and composition is an essential component of characterizing new battery materials [6]. These features are being increasingly analyzed through electron microscopy, which offers the high spatial resolution needed to analyze them and is becoming increasing accessibility [7{9]. Lithium materials however, present a range of challenges to electron microscopy. Battery materials are becoming increasingly intricate and lithium's light weight and ionizable nature make it particularly susceptible to electron beams [10]. This sensitivity limits analysis largely to low dosage techniques to avoid damaging the samples long enough to acquire results. One such technique that is targeted for light elements, such as lithium, is electron energy
Recommended publications
  • Solid-State NMR Techniques for the Structural Characterization of Cyclic Aggregates Based on Borane–Phosphane Frustrated Lewis Pairs
    molecules Review Solid-State NMR Techniques for the Structural Characterization of Cyclic Aggregates Based on Borane–Phosphane Frustrated Lewis Pairs Robert Knitsch 1, Melanie Brinkkötter 1, Thomas Wiegand 2, Gerald Kehr 3 , Gerhard Erker 3, Michael Ryan Hansen 1 and Hellmut Eckert 1,4,* 1 Institut für Physikalische Chemie, WWU Münster, 48149 Münster, Germany; [email protected] (R.K.); [email protected] (M.B.); [email protected] (M.R.H.) 2 Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland; [email protected] 3 Organisch-Chemisches Institut, WWU Münster, 48149 Münster, Germany; [email protected] (G.K.); [email protected] (G.E.) 4 Instituto de Física de Sao Carlos, Universidad de Sao Paulo, Sao Carlos SP 13566-590, Brazil * Correspondence: [email protected] Academic Editor: Mattias Edén Received: 20 February 2020; Accepted: 17 March 2020; Published: 19 March 2020 Abstract: Modern solid-state NMR techniques offer a wide range of opportunities for the structural characterization of frustrated Lewis pairs (FLPs), their aggregates, and the products of cooperative addition reactions at their two Lewis centers. This information is extremely valuable for materials that elude structural characterization by X-ray diffraction because of their nanocrystalline or amorphous character, (pseudo-)polymorphism, or other types of disordering phenomena inherent in the solid state. Aside from simple chemical shift measurements using single-pulse or cross-polarization/magic-angle spinning NMR detection techniques, the availability of advanced multidimensional and double-resonance NMR methods greatly deepened the informational content of these experiments. In particular, methods quantifying the magnetic dipole–dipole interaction strengths and indirect spin–spin interactions prove useful for the measurement of intermolecular association, connectivity, assessment of FLP–ligand distributions, and the stereochemistry of adducts.
    [Show full text]
  • TBTK: a Quantum Mechanics Software Development Kit
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System TBTK A quantum mechanics software development kit Bjornson, Kristofer Published in: SoftwareX DOI: 10.1016/j.softx.2019.02.005 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Bjornson, K. (2019). TBTK: A quantum mechanics software development kit. SoftwareX, 9, 205-210. https://doi.org/10.1016/j.softx.2019.02.005 Download date: 09. apr.. 2020 SoftwareX 9 (2019) 205–210 Contents lists available at ScienceDirect SoftwareX journal homepage: www.elsevier.com/locate/softx Original software publication TBTK: A quantum mechanics software development kit Kristofer Björnson Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK–2100, Copenhagen, Denmark article info a b s t r a c t Article history: TBTK is a software development kit for quantum mechanical calculations and is designed to enable the Received 7 August 2018 development of applications that investigate problems formulated on second-quantized form. It also Received in revised form 21 February 2019 enables method developers to create solvers for tight-binding, DFT, DMFT, quantum transport, etc., that Accepted 22 February 2019 can be easily integrated with each other. Both through the development of completely new solvers, Keywords: as well as front and back ends to already well established packages. TBTK provides data structures Quantum mechanics tailored for second-quantization that will encourage reusability and enable scalability for quantum SDK mechanical calculations. C++ ' 2019 The Author.
    [Show full text]
  • An Overview on the Libxc Library of Density Functional Approximations
    An overview on the Libxc library of density functional approximations Susi Lehtola Molecular Sciences Software Institute at Virginia Tech 2 June 2021 Outline Why Libxc? Recap on DFT What is Libxc? Using Libxc A look under the hood Wrapup GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 2/28 Why Libxc? There are many approximations for the exchange-correlation functional. But, most programs I ... only implement a handful (sometimes 5, typically 10-15) I ... and the implementations may be buggy / non-standard GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 3/28 Why Libxc, cont'd This leads to issues with reproducibility I chemists and physicists do not traditionally use the same functionals! Outdated(?) stereotype: B3LYP vs PBE I how to reproduce a calculation performed with another code? GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 4/28 Why Libxc, cont'd The issue is compounded by the need for backwards and forwards compatibility: how can one I reproduce old calculations from the literature done with a now-obsolete functional (possibly with a program that is proprietary / no longer available)? I use a newly developed functional in an old program? GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 5/28 Why Libxc, cont'd A standard implementation is beneficial! I no need to keep reinventing (and rebuilding) the wheel I use same collection of density functionals in all programs I new functionals only need to be implemented in one place I broken/buggy functionals only need to be fixed in one place I same implementation can be used across numerical approaches, e.g.
    [Show full text]
  • Electronic Structure Study of Copper-Containing Perovskites
    Electronic Structure Study of Copper-containing Perovskites Mark Robert Michel University College London A thesis submitted to University College London in partial fulfilment of the requirements for the degree of Doctor of Philosophy, February 2010. 1 I, Mark Robert Michel, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Mark Robert Michel 2 Abstract This thesis concerns the computational study of copper containing perovskites using electronic structure methods. We discuss an extensive set of results obtained using hybrid exchange functionals within Density Functional Theory (DFT), in which we vary systematically the amount of exact (Hartree-Fock, HF) exchange employed. The method has enabled us to obtain accurate results on a range of systems, particularly in materials containing strongly correlated ions, such as Cu2+. This is possible because the HF exchange corrects, at least qualitatively, the spurious self-interaction error present in DFT. The materials investigated include two families of perovskite-structured oxides, of potential interest for technological applications due to the very large dielectric constant or for Multi-Ferroic behaviour. The latter materials exhibit simultaneously ferroelectric and ferromagnetic properties, a rare combination, which is however highly desirable for memory device applications. The results obtained using hybrid exchange functionals are highly encouraging. Initial studies were made on bulk materials such as CaCu3Ti4O12 (CCTO) which is well characterised by experiment. The inclusion of HF exchange improved, in a systematic way, both structural and electronic results with respect to experiment. The confidence gained in the study of known compounds has enabled us to explore new compositions predictively.
    [Show full text]
  • Pyscf: the Python-Based Simulations of Chemistry Framework
    PySCF: The Python-based Simulations of Chemistry Framework Qiming Sun∗1, Timothy C. Berkelbach2, Nick S. Blunt3,4, George H. Booth5, Sheng Guo1,6, Zhendong Li1, Junzi Liu7, James D. McClain1,6, Elvira R. Sayfutyarova1,6, Sandeep Sharma8, Sebastian Wouters9, and Garnet Kin-Lic Chany1 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125, USA 2Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA 3Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4Department of Chemistry, University of California, Berkeley, California 94720, USA 5Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom 6Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA 7Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China 8Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80302, USA 9Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium arXiv:1701.08223v2 [physics.chem-ph] 2 Mar 2017 Abstract PySCF is a general-purpose electronic structure platform designed from the ground up to emphasize code simplicity, so as to facilitate new method development and enable flexible ∗[email protected] [email protected] 1 computational workflows. The package provides a wide range of tools to support simulations of finite-size systems, extended systems with periodic boundary conditions, low-dimensional periodic systems, and custom Hamiltonians, using mean-field and post-mean-field methods with standard Gaussian basis functions. To ensure ease of extensibility, PySCF uses the Python language to implement almost all of its features, while computationally critical paths are implemented with heavily optimized C routines.
    [Show full text]
  • Arxiv:2005.05756V2
    “This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Oliveira, M.J.T. [et al.]. The CECAM electronic structure library and the modular software development paradigm. "The Journal of Chemical Physics", 12020, vol. 153, núm. 2, and may be found at https://aip.scitation.org/doi/10.1063/5.0012901. The CECAM Electronic Structure Library and the modular software development paradigm Micael J. T. Oliveira,1, a) Nick Papior,2, b) Yann Pouillon,3, 4, c) Volker Blum,5, 6 Emilio Artacho,7, 8, 9 Damien Caliste,10 Fabiano Corsetti,11, 12 Stefano de Gironcoli,13 Alin M. Elena,14 Alberto Garc´ıa,15 V´ıctor M. Garc´ıa-Su´arez,16 Luigi Genovese,10 William P. Huhn,5 Georg Huhs,17 Sebastian Kokott,18 Emine K¨u¸c¨ukbenli,13, 19 Ask H. Larsen,20, 4 Alfio Lazzaro,21 Irina V. Lebedeva,22 Yingzhou Li,23 David L´opez-Dur´an,22 Pablo L´opez-Tarifa,24 Martin L¨uders,1, 14 Miguel A. L. Marques,25 Jan Minar,26 Stephan Mohr,17 Arash A. Mostofi,11 Alan O'Cais,27 Mike C. Payne,9 Thomas Ruh,28 Daniel G. A. Smith,29 Jos´eM. Soler,30 David A. Strubbe,31 Nicolas Tancogne-Dejean,1 Dominic Tildesley,32 Marc Torrent,33, 34 and Victor Wen-zhe Yu5 1)Max Planck Institute for the Structure and Dynamics of Matter, D-22761 Hamburg, Germany 2)DTU Computing Center, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 3)Departamento CITIMAC, Universidad de Cantabria, Santander, Spain 4)Simune Atomistics, 20018 San Sebasti´an,Spain 5)Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA 6)Department of Chemistry, Duke University, Durham, NC 27708, USA 7)CIC Nanogune BRTA and DIPC, 20018 San Sebasti´an,Spain 8)Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain 9)Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom 10)Department of Physics, IRIG, Univ.
    [Show full text]
  • Electronic Structure, Atomic Forces and Structural Relaxations by Wien2k
    Electronic structure, atomic forces and structural relaxations by WIEN2k Peter Blaha Institute of Materials Chemistry TU Vienna, Austria R.Laskowski, F.Tran, K.Schwarz (TU Vienna) M.Perez-Mato (Bilbao) K.Parlinski (Krakow) D.Singh (Oakridge) M.Fischer, T.Malcherek (Hamburg) Outline: General considerations when solving H=E DFT APW-based methods (history and state-of-the-art) WIEN2k program structure + features forces, structure relaxation Applications Phonons in matlockite PbFI Phase transitions in Aurivillius phases Structure of Pyrochlore Y2Nb2O7 phase transitions in Cd2Nb2O7 Concepts when solving Schrödingers-equation Treatment of Form of “Muffin-tin” MT spin Non-spinpolarized potential atomic sphere approximation (ASA) Spin polarized pseudopotential (PP) (with certain magnetic order) Full potential : FP Relativistic treatment of the electrons exchange and correlation potential non relativistic Hartree-Fock (+correlations) semi-relativistic Density functional theory (DFT) fully-relativistic Local density approximation (LDA) Generalized gradient approximation (GGA) Beyond LDA: e.g. LDA+U, Hybrid-DFT 1 2 k k k V (r) i i i Schrödinger - equation 2 Basis functions Representation plane waves : PW, PAW augmented plane waves : APW non periodic of solid atomic oribtals. e.g. Slater (STO), Gaussians (GTO), (cluster, individual MOs) LMTO, numerical basis periodic (unit cell, Blochfunctions, “bandstructure”) DFT Density Functional Theory Hohenberg-Kohn theorem: (exact) The total energy of an interacting inhomogeneous electron gas in the presence of an external potential Vext(r ) is a functional of the density E V (r) (r)dr F [ ] ext Kohn-Sham: (still exact!) 1 (r)(r) E T [] V (r)dr drdr E [] o ext 2 | r r | xc Ekinetic Ene Ecoulomb Eee Exc exchange-correlation non interacting hom.
    [Show full text]
  • HPC Applications on Shaheen (Bioscience/Chemistry/Materials Science/Physics)
    HPC Applications on Shaheen (Bioscience/Chemistry/Materials Science/Physics) Zhiyong Zhu KAUST Supercomputing Core Lab 2018/10/15 Outline • Codes Available • Steps to Run – Use VASP as an example Codes Available • Bioscience/Molecular Dynamics – CP2k, CPMD, Gromacs, Lammps, Namd, etc • Chemistry/Materials Science/Physics – VASP, Wien2k, Quantum ESPRESSO, NWChem, Gaussian, ADF, etc • More information – WWW.hpc.kaust.edu.sa/app6 Example • VASP as an example – The Vienna Ab-initial Simulation Package (VASP) is a computer program for atomic scale materials modeling, e.g. electronic structure calculations and quantum-mechanical molecular dynamics from first-principles (https://WWW.vasp.at). Steps to Run • Login Shaheen • Check Code Availability • Prepare Input Files for VASP • Prepare Jobscript for Slurm Job Scheduler • Job Submission using Slurm Commands • Check Output Files Login Shaheen • Logins – ssh -X [email protected] – ssh -X [email protected] (cdl[1,2,3,4]) Code Availability • module avail – module avail – module avail <code>/<version> Code Availability • WWW.hpc.kaust.edu.sa – WWW.hpc.kaust.edu.sa/app6 Prepare Input Files • 3 Different Working Directories – /home – Space is limited; Not mounted on compute nodes Prepare Input Files • 3 Different Working Directories – /project – Space is limited; Data are backed up Prepare Input Files • 3 Different Working Directories – /scratch – Files older than 60 days are deleted automatically Prepare Input Files • Examples under Installation Folder – /sw/xc40cle6/code/version/compilation/example
    [Show full text]
  • Trends in Atomistic Simulation Software Usage [1.3]
    A LiveCoMS Perpetual Review Trends in atomistic simulation software usage [1.3] Leopold Talirz1,2,3*, Luca M. Ghiringhelli4, Berend Smit1,3 1Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland; 2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 3National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 4The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany This LiveCoMS document is Abstract Driven by the unprecedented computational power available to scientific research, the maintained online on GitHub at https: use of computers in solid-state physics, chemistry and materials science has been on a continuous //github.com/ltalirz/ rise. This review focuses on the software used for the simulation of matter at the atomic scale. We livecoms-atomistic-software; provide a comprehensive overview of major codes in the field, and analyze how citations to these to provide feedback, suggestions, or help codes in the academic literature have evolved since 2010. An interactive version of the underlying improve it, please visit the data set is available at https://atomistic.software. GitHub repository and participate via the issue tracker. This version dated August *For correspondence: 30, 2021 [email protected] (LT) 1 Introduction Gaussian [2], were already released in the 1970s, followed Scientists today have unprecedented access to computa- by force-field codes, such as GROMOS [3], and periodic tional power.
    [Show full text]
  • (DFT) and Its Application to Defects in Semiconductors
    Introduction to DFT and its Application to Defects in Semiconductors Noa Marom Physics and Engineering Physics Tulane University New Orleans The Future: Computer-Aided Materials Design • Can access the space of materials not experimentally known • Can scan through structures and compositions faster than is possible experimentally • Unbiased search can yield unintuitive solutions • Can accelerate the discovery and deployment of new materials Accurate electronic structure methods Efficient search algorithms Dirac’s Challenge “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an P. A. M. Dirac explanation of the main features of Physics Nobel complex atomic systems ... ” Prize, 1933 -P. A. M. Dirac, 1929 The Many (Many, Many) Body Problem Schrödinger’s Equation: The physical laws are completely known But… There are as many electrons in a penny as stars in the known universe! Electronic Structure Methods for Materials Properties Structure Ionization potential (IP) Absorption Mechanical Electron Affinity (EA) spectrum properties Fundamental gap Optical gap Vibrational Defect/dopant charge Exciton binding spectrum transition levels energy Ground State Charged Excitation Neutral Excitation DFT
    [Show full text]
  • Quantum Chemical Calculations of NMR Parameters
    Quantum Chemical Calculations of NMR Parameters Tatyana Polenova University of Delaware Newark, DE Winter School on Biomolecular NMR January 20-25, 2008 Stowe, Vermont OUTLINE INTRODUCTION Relating NMR parameters to geometric and electronic structure Classical calculations of EFG tensors Molecular properties from quantum chemical calculations Quantum chemistry methods DENSITY FUNCTIONAL THEORY FOR CALCULATIONS OF NMR PARAMETERS Introduction to DFT Software Practical examples Tutorial RELATING NMR OBSERVABLES TO MOLECULAR STRUCTURE NMR Spectrum NMR Parameters Local geometry Chemical structure (reactivity) I. Calculation of experimental NMR parameters Find unique solution to CQ, Q, , , , , II. Theoretical prediction of fine structure constants from molecular geometry Classical electrostatic model (EFG)- only in simple ionic compounds Quantum mechanical calculations (Density Functional Theory) (EFG, CSA) ELECTRIC FIELD GRADIENT (EFG) TENSOR: POINT CHARGE MODEL EFG TENSOR IS DETERMINED BY THE COMBINED ELECTRONIC AND NUCLEAR WAVEFUNCTION, NO ANALYTICAL EXPRESSION IN THE GENERAL CASE THE SIMPLEST APPROXIMATION: CLASSICAL POINT CHARGE MODEL n Zie 4 V2,k = 3 Y2,k ()i,i i=1 di 5 ATOMS CONTRIBUTING TO THE EFG TENSOR ARE TREATED AS POINT CHARGES, THE RESULTING EFG TENSOR IS THE SUM WITH RESPECT TO ALL ATOMS VERY CRUDE MODEL, WORKS QUANTITATIVELY ONLY IN SIMPLEST IONIC SYSTEMS, BUT YIELDS QUALITATIVE TRENDS AND GENERAL UNDERSTANDING OF THE SYMMETRY AND MAGNITUDE OF THE EXPECTED TENSOR ELECTRIC FIELD GRADIENT (EFG) TENSOR: POINT CHARGE MODEL n Zie 4 V2,k = 3 Y2,k ()i,i i=1 di 5 Ze V = ; V = 0; V = 0 2,0 d 3 2,±1 2,±2 2Ze V = ; V = 0; V = 0 2,0 d 3 2,±1 2,±2 3 Ze V = ; V = 0; V = 0 2,0 2 d 3 2,±1 2,±2 V2,0 = 0; V2,±1 = 0; V2,±2 = 0 MOLECULAR PROPERTIES FROM QUANTUM CHEMICAL CALCULATIONS H = E See for example M.
    [Show full text]
  • A Tool for X-Ray Absorption Spectra (XAS) Calculations 27
    BOOK OF ABSTRACTS: EWinS 2016 – EUSpec Winter School on core level spectroscopies Publishers: Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia Univeristy of Nova Gorica, Vipavska 13, Nova Gorica, Slovenia Edited by: Anton Kokalj, Layla Martin-Samos, Barbara Ressel Layout by Anton Kokalj Ljubljana & Ajdovščina, Slovenia, 2016 EWinS 2016: EUSpec Winter School on core level spectroscopies February 1 – 11, 2016 Sponsors http://www.cost.eu/ http://psi-k.net/ i EWinS 2016: EUSpec Winter School on core level spectroscopies February 1 – 11, 2016 Organizers Local organizers Layla Martin-Samos (University of Nova Gorica) Anton Kokalj (Jožef Stefan Institute) Barbara Ressel (University of Nova Gorica) International committee Hubert Ebert (University of Munich) Didier Sébilleau (University of Rennes 1) Amélie Juhin (University P. et M. Curie-CNRS) Frank de Groot (Utrecht University) Maddalena Pedio (CNR-IOM) Jarmila Savkova (University of West Bohemia) Sara Lafuerza (ESRF) Nicholas Hine (University of Warwick) Yaroslav Kvashnin (Uppsala University) ii EWinS 2016: EUSpec Winter School on core level spectroscopies February 1 – 11, 2016 Scope of the winter school The two-week winter school EWinS 2016 – EUSpec Winter School on core level spectroscopies is an activity of the COST Action MP1306 EUSpec – Modern Tools for Spectroscopy on Advanced Materials that is closely related to the ETSF (European Theoretical Spectroscopy Facility) and will take place in February 2016 at the University of Nova Gorica (Slovenia). The aim of the school is to introduce theoreticians as well as experimentalists to foundations of modern approaches for studying core level spectroscopies from first-principles modeling to the most advanced experimental spectroscopy techniques. The school will bring together experts and early career investigators working on advanced materials science, with a common interest in high level and up-to-date sophisticated spectroscopy experiments and modeling tools.
    [Show full text]