NONLINEAR PROGRAMMING in APPROXIMATE DYNAMIC PROGRAMMING Bang-Bang Solutions, Stock-Management and Unsmooth Penalties

Total Page:16

File Type:pdf, Size:1020Kb

NONLINEAR PROGRAMMING in APPROXIMATE DYNAMIC PROGRAMMING Bang-Bang Solutions, Stock-Management and Unsmooth Penalties NONLINEAR PROGRAMMING IN APPROXIMATE DYNAMIC PROGRAMMING Bang-bang Solutions, Stock-management and Unsmooth Penalties Olivier Teytaud and Sylvain Gelly TAO (Inria, Univ. Paris-Sud, UMR CNRS-8623) Keywords: Evolutionary computation and control, Optimization algorithms. Abstract: Many stochastic dynamic programming tasks in continuous action-spaces are tackled through discretization. We here avoid discretization; then, approximate dynamic programming (ADP) involves (i) many learning tasks, performed here by Support Vector Machines, for Bellman-function-regression (ii) many non-linear- optimization tasks for action-selection, for which we compare many algorithms. We include discretizations of the domain as particular non-linear-programming-tools in our experiments, so that by the way we compare optimization approaches and discretization methods. We conclude that robustness is strongly required in the non-linear-optimizations in ADP, and experimental results show that (i) discretization is sometimes inefficient, but some specific discretization is very efficient for ”bang-bang” problems (ii) simple evolutionary tools out- perform quasi-random in a stable manner (iii) gradient-based techniques are much less stable (iv) for most high-dimensional ”less unsmooth” problems Covariance-Matrix-Adaptation is first ranked. 1 NON-LINEAR OPTIMIZATION gramming problem. There are not a lot of works deal- IN STOCHASTIC DYNAMIC ing with continuous actions, and they often do not study the non-linear optimization step involved in ac- PROGRAMMING (SDP) tion selection. In this paper, we focus on this part: we compare many non-linear optimization-tools, and we Some of the most traditional fields of stochastic dy- also compare these tools to discretization techniques namic programming, e.g. energy stock-management, to quantify the importance of the action-selection which have a strong economic impact, have not been step. studied thoroughly in the reinforcement learning or We here roughly introduce stochastic dynamic approximate-dynamic-programming (ADP) commu- programming. The interested reader is referred to nity. This is damageable to reinforcement learn- (Bertsekas and Tsitsiklis, 1996) for more details. ing as it has been pointed out that there are not yet Consider a dynamical system that stochastically many industrial realizations of reinforcement learn- evolves in time depending upon your decisions. As- ing. Energy stock-management leads to continuous sume that time is discrete and has finitely many time problems that are usually handled by traditional lin- steps. Assume that the total cost of your decisions is ear approaches in which (i) convex value-functions the sum of instantaneous costs. Precisely: are approximated by linear cuts (leading to piecewise cost = c1 + c2 + + cT linear approximations (PWLA)) (ii) decisions are so- ··· c = c(x ,d ), x = f (x ,d ,ω ) lutions of a linear-problem. However, this approach i i i i i 1 i 1 i ω − − does not work in large dimension, due to the curse of di 1 = strategy(xi 1, i) − − dimensionality which strongly affects PWLA. These where xi is the state at time step i, the ωi are a ran- problems should be handled by other learning tools. dom process, cost is to be minimized, and strategy However, in this case, the action-selection, minimiz- is the decision function that has to be optimized. We ing the expected cost-to-go, can’t be anymore done are interested in a control problem: the element to be using linear-programming, as the Bellman function is optimized is a function. no more a convex PWLA. Stochastic dynamic programming, a tool to solve The action selection is therefore a nonlinear pro- this control problem, is based on Bellman’s optimality 47 Teytaud O. and Gelly S. (2007). NONLINEAR PROGRAMMING IN APPROXIMATE DYNAMIC PROGRAMMING - Bang-bang Solutions, Stock-management and Unsmooth Penalties. In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 47-54 DOI: 10.5220/0001645800470054 Copyright c SciTePress ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics principle that can be informally stated as follows: 1.1 Robustness in Non-linear ”Take the decision at time step t such that the sum Optimization ”cost at time step t due to your decision” plus ”ex- pected cost from time step t 1 to ∞” is minimal.” + Robustness is one of the main issue in non-linear op- Bellman’s optimality principle states that this timization and has various meanings. strategy is optimal. Unfortunately, it can only be ap- 1. A first meaning is the following: robust opti- plied if the expected cost from time step t 1 to ∞ + mization is the search of x such that in the neighbor- can be guessed, depending on the current state of the hood of x the fitness is good, and not only at x. In par- system and the decision. Bellman’s optimality prin- ticular, (DeJong, 1992) has introduced the idea that ciple reduces the control problem to the computation evolutionary algorithms are not function-optimizers, of this function. If x can be computed from x and t t 1 but rather tools for finding wide areas of good fitness. d (i.e., if f is known) then the control problem− is t 1 2. A second meaning is that robust optimization reduced− to the computation of a function is the avoidance of local minima. It is known that iterative deterministic methods are often more subject V(t,xt ) = E[c(xt ,dt ) + c(xt+1,dt+1) + + c(xT ,dT )] ··· to local minima than evolutionary methods; however, Note that this function depends on the strategy (we various forms of restarts (relaunch the optimization omit for short dependencies on the random process). from a different initial point) can also be efficient for We consider this expectation for any optimal strategy avoiding local minima. (even if many strategies are optimal, V is uniquely 3. A third possible meaning is the robustness with determined as it is the same for any optimal strategy). respect to fitness noise. Various models of noise and Stochastic dynamic programming is the computa- conclusions can be found in (Jin and Branke, 2005; tion of V backwards in time, thanks to the following Sendhoff et al., 2004; Tsutsui, 1999; Fitzpatrick and equation: Grefenstette, 1988; Beyer et al., 2004). 4. A fourth possible meaning is the robustness V(t,xt ) = infc(xt ,dt ) + EV(t + 1,xt+1) with respect to unsmooth fitness functions, even in dt or equivalently cases in which there’s no local minima. Evolution- ary algorithms are usually rank-based (the next iter- V(t,xt ) = infc(xt ,dt ) + EV(t + 1, f (xt ,dt ))(1) ate point depends only on the fitnesses rank of previ- dt ously visited points), therefore do not depend on in- For each t, V(t,xt ) is computed for many values of xt , creasing transformations of the fitness-function. It is and then a learning algorithm (here by support vec- known that they have optimality properties w.r.t this tor machines) is applied for building x V(t,x) from kind of transformations (Gelly et al., 2006). For ex- 7→ ∞ these examples. Thanks to Bellman’s optimality prin- ample, p x (or some C functions close to this one) ciple, the computation of V is sufficient to define an lead to a very|| || bad behavior of standard Newton-based optimal strategy. This is a well known, robust so- methods like BFGS (Broyden., 1970; Fletcher, 1970; lution, applied in many areas including power sup- Goldfarb, 1970; Shanno, 1970) whereas a rank-based ply management. A general introduction, including evolutionary algorithm behaves the same for x 2 and || || learning, is (Bertsekas, 1995; Bertsekas and Tsitsik- p x . lis, 1996). Combined with learning, it can lead to pos- ||5.|| The fifth possible meaning is the robustness itive results in spite of large dimensions. Many devel- with respect to the non-deterministic choices made by opments, including RTDP and the field of reinforce- the algorithm. Even algorithms that are considered as ment learning, can be found in (Sutton and Barto, deterministic often have a random part1: the choice of 1998). the initial point. Population-based methods are more Equation 1 is used many many times during a run robust in this sense, even if they use more random- of dynamic programming. For T time steps, if N ness for the initial step (full random initial population points are required for efficiently approximating each compared to only one initial point): a bad initializa- Vt , then there are T N optimizations. Furthermore, tion which would lead to a disaster is much more un- × the derivative of the function to optimize is not always likely. available, due to the fact that complex simulators are The first sense of robustness given above, i.e. sometimes involved in the transition f . Convexity avoiding too narrow areas of good fitness, fully ap- sometimes holds, but sometimes not. Binary variables plies here. Consider for example a robot navigating are sometimes involved, e.g. in power plants manage- ment. This suggests that evolutionary algorithms are 1Or, if not random, a deterministic but arbitrary part, a possible tool. such as the initial point or the initial step-size. 48 NONLINEAR PROGRAMMING IN APPROXIMATE DYNAMIC PROGRAMMING - Bang-bang Solutions, Stock-management and Unsmooth Penalties in an environment in order to find a target. The robot gorithms and some discretization techniques. Evolu- has to avoid obstacles. The strict optimization of the tionary algorithms can work in continuous domains cost-to-go leads to choices just tangent to obstacles. (Back¨ et al., 1991; Back¨ et al., 1993; Beyer, 2001); As at each step the learning is far from perfect, then moreover, they are compatible with mixed-integer being tangent to obstacles leads to hit the obstacles in programming (e.g.
Recommended publications
  • Nonlinear Optimization Using the Generalized Reduced Gradient Method Revue Française D’Automatique, Informatique, Recherche Opé- Rationnelle
    REVUE FRANÇAISE D’AUTOMATIQUE, INFORMATIQUE, RECHERCHE OPÉRATIONNELLE.RECHERCHE OPÉRATIONNELLE LEON S. LASDON RICHARD L. FOX MARGERY W. RATNER Nonlinear optimization using the generalized reduced gradient method Revue française d’automatique, informatique, recherche opé- rationnelle. Recherche opérationnelle, tome 8, no V3 (1974), p. 73-103 <http://www.numdam.org/item?id=RO_1974__8_3_73_0> © AFCET, 1974, tous droits réservés. L’accès aux archives de la revue « Revue française d’automatique, in- formatique, recherche opérationnelle. Recherche opérationnelle » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ R.A.LR.O. (8* année, novembre 1974, V-3, p. 73 à 104) NONLINEAR OPTIMIZATION USING THE-GENERALIZED REDUCED GRADIENT METHOD (*) by Léon S. LÀSDON, Richard L. Fox and Margery W. RATNER Abstract. — This paper describes the principles and logic o f a System of computer programs for solving nonlinear optimization problems using a Generalized Reduced Gradient Algorithm, The work is based on earlier work of Âbadie (2). Since this paper was written, many changes have been made in the logic, and significant computational expérience has been obtained* We hope to report on this in a later paper. 1. INTRODUCTION Generalized Reduced Gradient methods are algorithms for solving non- linear programs of gênerai structure. This paper discusses the basic principles of GRG, and constructs a spécifie GRG algorithm. The logic of a computer program implementing this algorithm is presented by means of flow charts and discussion.
    [Show full text]
  • Combinatorial Structures in Nonlinear Programming
    Combinatorial Structures in Nonlinear Programming Stefan Scholtes¤ April 2002 Abstract Non-smoothness and non-convexity in optimization problems often arise because a combinatorial structure is imposed on smooth or convex data. The combinatorial aspect can be explicit, e.g. through the use of ”max”, ”min”, or ”if” statements in a model, or implicit as in the case of bilevel optimization where the combinatorial structure arises from the possible choices of active constraints in the lower level problem. In analyzing such problems, it is desirable to decouple the combinatorial from the nonlinear aspect and deal with them separately. This paper suggests a problem formulation which explicitly decouples the two aspects. We show that such combinatorial nonlinear programs, despite their inherent non-convexity, allow for a convex first order local optimality condition which is generic and tight. The stationarity condition can be phrased in terms of Lagrange multipliers which allows an extension of the popular sequential quadratic programming (SQP) approach to solve these problems. We show that the favorable local convergence properties of SQP are retained in this setting. The computational effectiveness of the method depends on our ability to solve the subproblems efficiently which, in turn, depends on the representation of the governing combinatorial structure. We illustrate the potential of the approach by applying it to optimization problems with max-min constraints which arise, for example, in robust optimization. 1 Introduction Nonlinear programming is nowadays regarded as a mature field. A combination of important algorithmic developments and increased computing power over the past decades have advanced the field to a stage where the majority of practical prob- lems can be solved efficiently by commercial software.
    [Show full text]
  • Nonlinear Integer Programming ∗
    Nonlinear Integer Programming ∗ Raymond Hemmecke, Matthias Koppe,¨ Jon Lee and Robert Weismantel Abstract. Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Nu- merous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considera- tions and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research. Raymond Hemmecke Otto-von-Guericke-Universitat¨ Magdeburg, FMA/IMO, Universitatsplatz¨ 2, 39106 Magdeburg, Germany, e-mail: [email protected] Matthias Koppe¨ University of California, Davis, Dept. of Mathematics, One Shields Avenue, Davis, CA, 95616, USA, e-mail: [email protected] Jon Lee IBM T.J.
    [Show full text]
  • An Improved Sequential Quadratic Programming Method Based on Positive Constraint Sets, Chemical Engineering Transactions, 81, 157-162 DOI:10.3303/CET2081027
    157 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 81, 2020 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Petar S. Varbanov, Qiuwang Wang, Min Zeng, Panos Seferlis, Ting Ma, Jiří J. Klemeš Copyright © 2020, AIDIC Servizi S.r.l. DOI: 10.3303/CET2081027 ISBN 978-88-95608-79-2; ISSN 2283-9216 An Improved Sequential Quadratic Programming Method Based on Positive Constraint Sets Li Xiaa,*, Jianyang Linga, Rongshan Bia, Wenying Zhaob, Xiaorong Caob, Shuguang Xianga a State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road No. 53, Qingdao 266042, China b Chemistry and Chemistry Engineering Faculty,Qilu Normal University, jinan, 250013, Shandong, China [email protected] SQP (sequential quadratic programming) is an effective method to solve nonlinear constraint problems, widely used in chemical process simulation optimization. At present, most optimization methods in general chemical process simulation software have the problems of slow calculation and poor convergence. To solve these problems , an improved SQP optimization method based on positive constraint sets was developed. The new optimization method was used in the general chemical process simulation software named optimization engineers , adopting the traditional Armijo type step rule, L-BFGS (Limited-Memory BFGS) algorithm and rules of positive definite matrix. Compared to the traditional SQP method, the SQP optimization method based on positive constraint sets simplifies the constraint number of corresponding subproblems. L-BFGS algorithm and rules of positive definite matrix simplify the solution of the second derivative matrix, and reduce the amount of storage in the calculation process.
    [Show full text]
  • Appendix a Solving Systems of Nonlinear Equations
    Appendix A Solving Systems of Nonlinear Equations Chapter 4 of this book describes and analyzes the power flow problem. In its ac version, this problem is a system of nonlinear equations. This appendix describes the most common method for solving a system of nonlinear equations, namely, the Newton-Raphson method. This is an iterative method that uses initial values for the unknowns and, then, at each iteration, updates these values until no change occurs in two consecutive iterations. For the sake of clarity, we first describe the working of this method for the case of just one nonlinear equation with one unknown. Then, the general case of n nonlinear equations and n unknowns is considered. We also explain how to directly solve systems of nonlinear equations using appropriate software. A.1 Newton-Raphson Algorithm The Newton-Raphson algorithm is described in this section. A.1.1 One Unknown Consider a nonlinear function f .x/ W R ! R. We aim at finding a value of x so that: f .x/ D 0: (A.1) .0/ To do so, we first consider a given value of x, e.g., x . In general, we have that f x.0/ ¤ 0. Thus, it is necessary to find x.0/ so that f x.0/ C x.0/ D 0. © Springer International Publishing AG 2018 271 A.J. Conejo, L. Baringo, Power System Operations, Power Electronics and Power Systems, https://doi.org/10.1007/978-3-319-69407-8 272 A Solving Systems of Nonlinear Equations Using Taylor series, we can express f x.0/ C x.0/ as: Â Ã.0/ 2 Â Ã.0/ df .x/ x.0/ d2f .x/ f x.0/ C x.0/ D f x.0/ C x.0/ C C ::: dx 2 dx2 (A.2) .0/ Considering only the first two terms in Eq.
    [Show full text]
  • A Sequential Quadratic Programming Algorithm with an Additional Equality Constrained Phase
    A Sequential Quadratic Programming Algorithm with an Additional Equality Constrained Phase Jos´eLuis Morales∗ Jorge Nocedal † Yuchen Wu† December 28, 2008 Abstract A sequential quadratic programming (SQP) method is presented that aims to over- come some of the drawbacks of contemporary SQP methods. It avoids the difficulties associated with indefinite quadratic programming subproblems by defining this sub- problem to be always convex. The novel feature of the approach is the addition of an equality constrained phase that promotes fast convergence and improves performance in the presence of ill conditioning. This equality constrained phase uses exact second order information and can be implemented using either a direct solve or an iterative method. The paper studies the global and local convergence properties of the new algorithm and presents a set of numerical experiments to illustrate its practical performance. 1 Introduction Sequential quadratic programming (SQP) methods are very effective techniques for solv- ing small, medium-size and certain classes of large-scale nonlinear programming problems. They are often preferable to interior-point methods when a sequence of related problems must be solved (as in branch and bound methods) and more generally, when a good estimate of the solution is available. Some SQP methods employ convex quadratic programming sub- problems for the step computation (typically using quasi-Newton Hessian approximations) while other variants define the Hessian of the SQP model using second derivative informa- tion, which can lead to nonconvex quadratic subproblems; see [27, 1] for surveys on SQP methods. ∗Departamento de Matem´aticas, Instituto Tecnol´ogico Aut´onomode M´exico, M´exico. This author was supported by Asociaci´onMexicana de Cultura AC and CONACyT-NSF grant J110.388/2006.
    [Show full text]
  • GRASP for NONLINEAR OPTIMIZATION in This Paper, We
    GRASP FOR NONLINEAR OPTIMIZATION C.N. MENESES, P.M. PARDALOS, AND M.G.C. RESENDE ABSTRACT. We propose a Greedy Randomized Adaptive Search Procedure (GRASP) for solving continuous global optimization problems subject to box constraints. The method was tested on benchmark functions and the computational results show that our approach was able to find in a few seconds optimal solutions for all tested functions despite not using any gradient information about the function being tested. Most metaheuristcs found in the literature have not been capable of finding optimal solutions to the same collection of functions. 1. INTRODUCTION In this paper, we consider the global optimization problem: Find a point x∗ such that n f (x∗) f (x) for all x X, where X is a convex set defined by box constraints in R . For ≤ 2 instance, minimize f (x ;x ) = 100(x x2)2 +(1 x )2 such that 2 x 2 for i = 1;2. 1 2 2 − 1 − 1 − ≤ i ≤ Many optimization methods have been proposed to tackle continuous global optimiza- tion problems with box constraints. Some of these methods use information about the function being examined, e.g. the Hessian matrix or gradient vector. For some functions, however, this type of information can be difficult to obtain. In this paper, we pursue a heuristic approach to global optimization. Even though several heuristics have been designed and implemented for the problem discussed in this paper (see e.g. [1, 15, 16, 17]), we feel that there is room for yet an- other one because these heuristics were not capable of finding optimal solutions to several functions in standard benchmarks for continuous global optimization problems with box constraints.
    [Show full text]
  • Parallel Technique for the Metaheuristic Algorithms Using Devoted Local Search and Manipulating the Solutions Space
    applied sciences Article Parallel Technique for the Metaheuristic Algorithms Using Devoted Local Search and Manipulating the Solutions Space Dawid Połap 1,* ID , Karolina K˛esik 1, Marcin Wo´zniak 1 ID and Robertas Damaševiˇcius 2 ID 1 Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland; [email protected] (K.K.); [email protected] (M.W.) 2 Department of Software Engineering, Kaunas University of Technology, Studentu 50, LT-51368, Kaunas, Lithuania; [email protected] * Correspondence: [email protected] Received: 16 December 2017; Accepted: 13 February 2018 ; Published: 16 February 2018 Abstract: The increasing exploration of alternative methods for solving optimization problems causes that parallelization and modification of the existing algorithms are necessary. Obtaining the right solution using the meta-heuristic algorithm may require long operating time or a large number of iterations or individuals in a population. The higher the number, the longer the operation time. In order to minimize not only the time, but also the value of the parameters we suggest three proposition to increase the efficiency of classical methods. The first one is to use the method of searching through the neighborhood in order to minimize the solution space exploration. Moreover, task distribution between threads and CPU cores can affect the speed of the algorithm and therefore make it work more efficiently. The second proposition involves manipulating the solutions space to minimize the number of calculations. In addition, the third proposition is the combination of the previous two. All propositions has been described, tested and analyzed due to the use of various test functions.
    [Show full text]
  • A New Successive Linearization Approach for Solving Nonlinear Programming Problems
    Available at http://pvamu.edu/aam Applications and Applied Appl. Appl. Math. Mathematics: ISSN: 1932-9466 An International Journal (AAM) Vol. 14, Issue 1 (June 2019), pp. 437 – 451 A New Successive Linearization Approach for Solving Nonlinear Programming Problems 1Inci Albayrak, 2Mustafa Sivri and 3Gizem Temelcan 1,2 Department of Mathematical Engineering Yildiz Technical University Davutpasa, Istanbul, Turkey [email protected]; [email protected] 3 Department of Computer Programming Istanbul Aydin University Kucukcekmece, Istanbul, Turkey [email protected] Abstract In this paper, we focused on general nonlinear programming (NLP) problems having m nonlinear (or linear) algebraic inequality (or equality or mixed) constraints with a nonlinear (or linear) algebraic objective function in n variables. We proposed a new two-phase-successive linearization approach for solving NLP problems. Aim of this proposed approach is to find a solution of the NLP problem, based on optimal solution of linear programming (LP) problems, satisfying the nonlinear constraints oversensitively. This approach leads to novel methods. Numerical examples are given to illustrate the approach. Keywords: Nonlinear programming problems; Taylor series; Linear programming problems; Hessian matrix; Maclaurin series; Linearization approach MSC 2010 No.: 90C05, 41A58, 93B18 1. Introduction Optimization occurs in many fields. Constructing a mathematical model for real life problems is important for optimizers to find optimal strategies effectively. Optimization problems can be classified according to the nature of the objective function and constraints. An optimization problem can be defined as min (or max) of a single (or multi) objective function, subject to (or not to) single (or multi) nonlinear (or linear) inequality (or equality or mixed) constraints.
    [Show full text]
  • Evolution Strategies for Exploring Protein Energy Landscapes
    Evolution Strategies for Exploring Protein Energy Landscapes Rudy Clausen Emmanuel Sapin Dept of Computer Science Dept of Computer Science George Mason University George Mason University Fairfax, VA 22030 Fairfax, VA 22030 [email protected] [email protected] ∗ Kenneth De Jong Amarda Shehu Dept of Computer Science Dept of Computer Science George Mason University George Mason University Fairfax, VA 22030 Fairfax, VA 22030 [email protected] [email protected] ABSTRACT Keywords The focus on important diseases of our time has prompted evolution strategies; protein modeling; energy landscape. many experimental labs to resolve and deposit functional structures of disease-causing or disease-participating pro- teins. At this point, many functional structures of wildtype 1. INTRODUCTION and disease-involved variants of a protein exist in structural The focus on important diseases of our time has prompted databases. The objective for computational approaches is to many experimental labs to resolve and deposit functional employ such information to discover features of the underly- structures of disease-involved proteins in structural databases ing energy landscape on which functional structures reside. such as the Protein Data Bank (PDB) [4]. Research in the Important questions about which subset of structures are wet laboratory has shown that proteins involved in some of most thermodynamically-stable remain unanswered. The the most complex human diseases, such as cancer, assume challenge is how to transform an essentially discrete prob- different functional
    [Show full text]
  • Chaotic Search Based Equilibrium Optimizer for Dealing with Nonlinear Programming and Petrochemical Application
    processes Article Chaotic Search Based Equilibrium Optimizer for Dealing with Nonlinear Programming and Petrochemical Application Abd Allah A. Mousa 1,*, Mohammed A. El-Shorbagy 2,3 , Ibrahim Mustafa 4 and Hammad Alotaibi 1 1 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] 2 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; [email protected] 3 Department of Basic Engineering Science, Faculty of Engineering, Menofia University, Shebin El-Kom 32511, Egypt 4 Department of Biomedical Engineering, Faculty of Engineering at Helwan, Helwan University, Cairo, Helwan 11795, Egypt; [email protected] * Correspondence: [email protected] Abstract: In this article, chaotic search based constrained equilibrium optimizer algorithm (CS- CEOA) is suggested by integrating a novel heuristic approach called equilibrium optimizer with a chaos theory-based local search algorithm for solving general non-linear programming. CS-CEOA is consists of two phases, the first one (phase I) aims to detect an approximate solution, avoiding being stuck in local minima. In phase II, the chaos-based search algorithm improves local search performance to obtain the best optimal solution. For every infeasible solution, repair function is implemented in a way such that, a new feasible solution is created on the line segment defined by a feasible reference point and the infeasible solution itself. Due to the fast globally converging of evolutionary algorithms and the chaotic search’s exhaustive search, CS-CEOA could locate the true optimal solution by applying an exhaustive local search for a limited area defined from Phase I.
    [Show full text]
  • Modeling with Nonlinear Programming
    CHAPTER 4 Modeling with Nonlinear Programming By nonlinear programming we intend the solution of the general class of problems that can be formulated as min f(x) subject to the inequality constraints g (x) 0 i ≤ for i = 1,...,p and the equality constraints hi(x) = 0 for i = 1,...,q. We consider here methods that search for the solution using gradient information, i.e., we assume that the function f is differentiable. EXAMPLE 4.1 Given a fixed area of cardboard A construct a box of maximum volume. The nonlinear program for this is min xyz subject to 2xy + 2xz + 2yz = A EXAMPLE 4.2 Consider the problem of determining locations for two new high schools in a set of P subdivisions Nj . Let w1j be the number of students going to school A and w2j be the number of students going to school B from subdivision Nj. Assume that the student capacity of school A is c1 and the capacity of school B is c2 and that the total number of students in each subdivision is rj . We would like to minimize the total distance traveled by all the students given that they may attend either school A or B. It is possible to construct a nonlinear program to determine the locations (a, b) and (c, d) of high schools A and B, respectively assuming the location of each subdivision Ni is modeled as a single point denoted (xi,yi). 1 1 P 2 2 min w (a x )2 + (b y )2 + w (c x )2 + (d y )2 1j − j − j 2j − j − j Xj=1 64 Section 4.1 Unconstrained Optimization in One Dimension 65 subject to the constraints w c ij ≤ i Xj w1j + w2j = rj for j = 1,...,P .
    [Show full text]