Multi-Model Optimization of Gaze and Touch-Based PIN Entry Master's

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Model Optimization of Gaze and Touch-Based PIN Entry Master's WeST People and Knowledge Networks Faculty 4: Computer Science Institute for Web Science and Technologies Multi-model optimization of gaze and touch-based PIN Entry Master’s Thesis in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Web Science submitted by Daniyal Akbari First supervisor: Prof. Dr. Steffen Staab Institute for Web Science and Technologies Second supervisor: Dr. Chandan Kumar Institute for Web Science and Technologies Koblenz, July 2018 Statement I hereby certify that this thesis has been composed by me and is based on my own work, that I did not use any further resources than specified – in particular no references unmentioned in the reference section – and that I did not submit this thesis to another examination before. The paper submission is identical to the submitted electronic version. Yes No I agree to have this thesis published in the library. I agree to have this thesis published on the Web. The thesis text is available under a Creative Commons License (CC BY-SA 4.0). The source code is available under a GNU General Public License (GPLv3). The collected data is available under a Creative Commons License (CC BY-SA 4.0). ........................................................................................... (Place, Date) (Signature) iii Zusammenfassung Abstract Knowledge-based authentication methods are vulnerable to Shoulder surfing phe- nomenon. The widespread usage of these methods and not addressing the limi- tations it has could result in the user’s information to be compromised. User au- thentication method ought to be effortless to use and efficient, nevertheless secure. The problem that we face concerning the security of PIN (Personal Identification Number) or password entry is shoulder surfing, in which a direct or indirect ma- licious observer could identify the user sensitive information. To tackle this issue we present TouchGaze which combines gaze signals and touch capabilities, as an input method for entering user’s credentials. Gaze signals will be primarily used to enhance targeting and touch for selecting. In this work, we have designed three dif- ferent PIN entry method which they all have similar interfaces. For the evaluation, these methods were compared based on efficiency, accuracy, and usability. The re- sults uncovered that despite the fact that gaze-based methods require extra time for the user to get familiar with yet it is considered more secure. In regards to efficiency, it has the similar error margin to the traditional PIN entry methods. v Acknowledgement I take this opportunity to express my profound gratitude and deep regards to my thesis advisors Prof. Dr. Steffen Staab and Dr. Chandan Kumar for their exemplary guidance, monitoring and constant encouragement throughout the course of this project.The door to Dr. Kumar’s office was always open to me whenever I ran into a problems or had a question about my research or writing. He consistently allowed this paper to be my own work but steered me in the right direction whenever he thought I needed it. Their input and patience have been invaluable in helping me to learn how to do research, and to navigate some of the of the more emotionally challenging aspects of this project. Their creativity and wisdom are inspirational. I would also like to acknowledge Mr. Raphael Menges, who I am gratefully in- debted to for his effort to help me during the implementation phase and for his very valuable comments on this thesis. I would also like to thank the participants who were involved in the evaluation process for this project. Without their passionate participation and input, the exper- iment could not have been possible. Finally, I must express my very profound gratitude to my mother and dedicate this work to the memory of my father Dr. Mohammad Akbari, for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you. vii Contents 1 Introduction1 2 Background and Related work4 2.1 Technical information............................4 2.2 Eye Tracking and Touch..........................4 2.3 Personal Identification Number (PIN) Entry...............6 3 Research Problem 11 4 Methodology 13 4.1 Challenges.................................. 13 4.1.1 Security............................... 13 4.1.2 Usability............................... 13 4.1.3 Speed................................. 14 4.1.4 Error Rate.............................. 14 4.1.5 Interface............................... 14 4.1.6 Interaction.............................. 15 4.2 Approach................................... 15 4.2.1 Touch PIN entry concept...................... 15 4.2.2 Touch + Gaze PIN entry concept................. 16 4.2.3 TouchGaze PIN entry concept................... 16 4.3 Implementation............................... 17 4.3.1 Touch PIN entry method...................... 17 4.3.2 Touch + Gaze PIN entry method................. 18 4.3.3 TouchGaze PIN entry method................... 19 5 Evaluation 21 5.1 Experimental Set up............................ 21 5.2 Participants................................. 21 5.3 Apparatus.................................. 22 5.4 Counter Balancing............................. 22 5.5 Procedure.................................. 22 5.5.1 Quantitative Evaluation...................... 24 5.5.2 Qualitative Evaluation....................... 27 5.6 Results.................................... 28 5.7 Discussion.................................. 36 6 Conclusion 38 7 Future Work 40 8 Bibliography 42 viii Appendices 46 ix 1 Introduction Human-Computer Interaction (HCI) is focused on the joint performance of tasks be- tween humans and computers and how they communicate. There are two compo- nents in this exchange of information, Input and Output. Input components identify and sense the user’s desired task and information to be communicated to the com- puter. There are two types of Input methods, Direct and Indirect. The Indirect input refers to the method where the actions of the user will translate into data or com- mands to be entered into a system. The Indirect input methods have been around since the beginning of Web development and they are still usable and prominent. Keyboard and Mouse are prime examples of indirect interaction methods. The di- rect input refers to the devices which have no intermediary and the movement of the user’s body is equal to the input to the system. The Direct input methods have been introduced to facilitate users to have a natural feeling of interaction, for example, touch interaction. A touch screen refers to an electronic visual display which is able to detect the presence and location of a touch on the screen. The touchscreen technology can be found in Smartphones, Laptops, Tablets and even ATMs. The touchscreen enables the direct interaction with what is being displayed and requires no intermediary device like a mouse. Touchscreen as a Direct input method enables users to simply point at their target and select it, unlike indirect methods which the user is required to press multiple keys or move the cursor to select an object. Direct and Indirect in- put methods have been evaluated and the experiment done by D. Schmidt showed that accuracy and time efficiency is much more optimal when using direct condi- tions [SBG09]. Touch screens are easier to learn and more efficient compared to indirect input methods. It is important to mention that touch screens are known to be practical for selecting large targets and they are not very accurate when used for small targets and they tend to be susceptible to error. During an interaction with a touchscreen interface the user firstly looks at the screen and targets the desired ob- ject to be selected and then proceed to actually selecting the object by touching the location of the object on the screen. Eye tracking had been introduced as a way of direct interaction which could pave the way for new technologies and devices to be introduced for end-users. It is be- coming a popular way of interaction. Gaze coordinates could be used to pinpoint the target selected by the user on the screen, then proceed to do a command more efficiently. We hypothesize that the limitations and disadvantages mentioned for touchscreen interfaces can be improved by adding gaze capabilities. It is worth mentioning that gaze is used anyway when people use the touch method and a fin- ger or hand movement follows the user’s gaze. Therefore the targeting can be done via gaze and the selection by touch, which will improve the efficiency and also the screen is not obscured by hand during targeting. The multimodal approach will ben- efit the users with a user-friendly interface and aims to make the PIN-entry secure and to improve the accuracy of target selection and reduce unwanted selections. The 1 focus of this Master thesis is to analyze how the direct method of interaction could be optimized for PIN-entry, i.e, a multimodal approach of enhancing the popular Touch-based interaction using cues and context from gaze signals, so that it would increase accuracy, user-friendliness, efficiency, and security. It should be compara- ble to the current method of direct interaction and resolve its limitations. One can argue that this is not the most optimal and efficient way of interaction since it can be time-consuming for the user. The touchscreen interfaces are undesirable in some applications since the finger is considered to be a large pointer and cannot accu- rately point to small areas on the screen. It is also worth mentioning that the finger or hand can block the visibility of the screen during the interactions since most of the time hands have to move in front of the screen to reach the intended target. User authentication refers to the process in which the identity of the user is proven in a system, to gain access permission. Authentication processes are part of the user’s daily interactions, whether it is their email, online banking or online partici- pation to vote.
Recommended publications
  • Boosting the Guessing Attack Performance on Android Lock Patterns with Smudge Attacks
    Boosting the Guessing Attack Performance on Android Lock Patterns with Smudge Attacks Seunghun Cha1, Sungsu Kwag1, Hyoungshick Kim1 and Jun Ho Huh2 1Department of Software, Sungkyunkwan University, Republic of Korea 2Honeywell ACS Labs, Golden Valley, MN USA {sh.cha, kssu1994, hyoung}@skku.edu [email protected] ABSTRACT 3 × 3 grid. This scheme has quickly emerged as the most popular Android allows 20 consecutive fail attempts on unlocking a de- locking method for Android devices [22]. Many users perceive vice. This makes it difficult for pure guessing attacks to crack patterns as quicker and less error-prone unlocking method than user patterns on a stolen device before it permanently locks it- PIN [23]. It is unclear, however, whether their security is guar- self. We investigate the effectiveness of combining Markov model- anteed in practice. Several studies [19, 21] demonstrated that the based guessing attacks with smudge attacks on unlocking Android space of real patterns might be much smaller than the theoretical devices within 20 attempts. Detected smudges are used to pre- space, making password guessing attacks feasible. compute all the possible segments and patterns, significantly reduc- To mitigate guessing attacks, Android only allows up to 20 con- ing the pattern space that needs to be brute-forced. Our Markov- secutive fail unlock attempts—after 20 consecutive fail attempts, model was trained using 70% of a real-world pattern dataset that Android displays the “Too many pattern attempts” error message, consists of 312 patterns. We recruited 12 participants to draw the and asks the user to log in with a Google account to unlock the de- remaining 30% on Samsung Galaxy S4, and used smudges they left vice.
    [Show full text]
  • Geometric Image Transformations for Smudge-Resistant User Authentication
    SmudgeSafe: Geometric Image Transformations for Smudge-resistant User Authentication Stefan Schneegass1, Frank Steimle1, Andreas Bulling2, Florian Alt3, Albrecht Schmidt1 1University of Stuttgart 2Max Planck Institute for Informatics 3University of Munich HCI Group Perceptual User Interfaces Group Media Informatics Group fi[email protected] [email protected] florian.alt@ifi.lmu.de ABSTRACT Touch-enabled user interfaces have become ubiquitous, such as on ATMs or portable devices. At the same time, authenti- cation using touch input is problematic, since finger smudge traces may allow attackers to reconstruct passwords. We present SmudgeSafe, an authentication system that uses ran- dom geometric image transformations, such as translation, ro- tation, scaling, shearing, and flipping, to increase the security of cued-recall graphical passwords. We describe the design space of these transformations and report on two user studies: A lab-based security study involving 20 participants in attack- ing user-defined passwords, using high quality pictures of real smudge traces captured on a mobile phone display; and an in- the-field usability study with 374 participants who generated more than 130,000 logins on a mobile phone implementation of SmudgeSafe. Results show that SmudgeSafe significantly increases security compared to authentication schemes based on PINs and lock patterns, and exhibits very high learnability, efficiency, and memorability. (a) (b) Author Keywords Figure 1. Entering a graphical password on a touch-enabled mobile de- vice leaves a smudge trace on the display that may allow an attacker to Graphical passwords; Touch input; Finger smudge traces reconstruct the password (a). SmudgeSafe applies random affine geo- metric transformations to the image underlying the password for subse- ACM Classification Keywords quent logins (here: rotation) to increase smudge resistance (b).
    [Show full text]
  • Pathword: a Multimodal Password Entry Method for Ad-Hoc
    Poster Session 1 ICMI’18, October 16-20, 2018, Boulder, CO, USA Pa thWord: A Multimodal Password Entry Method for Ad-hoc Authentication Based on Digit Shape and Smooth Pursuit Eye Movements Hassoumi Almoctar Pourang Irani École Nationale de l’Aviation Civile University of Manitoba Toulouse, France Winnipeg, Manitoba, Canada [email protected] [email protected] Vsevolod Peysakhovich Chrisophe Hurter ISAE-SUPAERO École Nationale de l’Aviation Civile Toulouse, France Toulouse, France [email protected] [email protected] ABSTRACT 6.71 cm (2.64 in) We present PathWord (PATH passWORD), a multimodal digit entry 1.9 cm method for ad-hoc authentication based on known digits shape and in) (5.44 cm 13.83 1.9 cm user relative eye movements. PathWord is a touch-free, gaze-based input modality, which attempts to decrease shoulder suring attacks when unlocking a system using PINs. The system uses a modiied web camera to detect the user’s eye. This enables suppressing direct touch, making it diicult for passer-bys to be aware of the input digits, thus reducing shoulder suring and smudge attacks. Figure 1. Patthword overview: (Left) A user’s eye, as seen through the infrared In addition to showing high accuracy rates (Study 1: 87.1% success- eye camera, following the red stimulus moving on the digit "3". The pupil cen- ful entries) and strong conidentiality through detailed evaluations ter implicitly draws the digit shape. (Middle Left) PathWord’s interface. On with 42 participants (Study 2), we demonstrate how PathWord con- each digit, a stimulus is drawn and travels its shape.
    [Show full text]
  • Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack Faraji Sepideh
    World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering Vol:13, No:12, 2019 Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack Faraji Sepideh attacks, such as brute force attack, dictionary attack, social Abstract—Nowadays, purchase rate of the smart device is engineering attack, guessing attack and many others [6]. increasing and user authentication is one of the important issues in A graphical password has been proposed as a possible information security. Alphanumeric strong passwords are difficult to alternative to a text-based password. According to memorize and also owners write them down on papers or save them psychological studies, pictures are generally easier to in a computer file. In addition, text password has its own flaws and is vulnerable to attacks. Graphical password can be used as an remember or recognized than text [7]. The graphical password alternative to alphanumeric password that users choose images as a technique is developed by Blonder in 1996 [8]. The purpose of password. This type of password is easier to use and memorize and this system is increasing the security space and avoiding the also more secure from pervious password types. In this paper we weakness of conventional password [9]. However, existing have designed a more secure graphical password system to prevent graphical password schemes are also vulnerable to various shoulder surfing, smudge and brute force attack. This scheme is a attacks, among which shoulder surfing, smudge attack, and combination of two types of graphical passwords recognition based and Cued recall based.
    [Show full text]
  • Augmented Unlocking Techniques for Smartphones Using Pre-Touch
    Augmented Unlocking Techniques for Smartphones Using Pre-Touch Information Matthew Lakier Dimcho Karakashev Yixin Wang Ian Goldberg [email protected] [email protected] [email protected] [email protected] University of Waterloo University of Waterloo University of Waterloo University of Waterloo ABSTRACT Smartphones secure a significant amount of personal and private information, and are playing an increasingly important role in peo- ple’s lives. However, current techniques to manually authenticate to smartphones have failed in both not-so-surprising (shoulder surfing) and quite surprising (smudge attacks) ways. In this work, we propose a new technique called 3D Pattern. Our 3D Pattern technique takes advantage of pre-touch sensing, which could soon allow smartphones to sense a user’s finger position at some distance from the screen. We describe and implement the technique, and evaluate it in a small pilot study (n=6) by comparing it to PIN and pattern locks. Our results show that although our prototype takes longer to authenticate, it is completely immune to smudge attacks Figure 1: Study participant authenticating using our 3D Pat- and promises to be more resistant to shoulder surfing. tern technique. CCS CONCEPTS smartphones as a way to protect private information. Even users • Security and privacy ! Usability in security and privacy; • utilizing fingerprint readers are often required to enter a PINfor Human-centered computing ! Interaction techniques. added security, for example, when rebooting or authorizing pay- ments. However, common authentication techniques often have KEYWORDS surprising failure modes. We examine in particular the effect of authentication, mobile devices, pre-touch the “smudge attack” [1] whereby swiping an unlock pattern on the screen leaves a readily visible oily smudge that unintentionally ACM Reference Format: Matthew Lakier, Dimcho Karakashev, Yixin Wang, and Ian Goldberg.
    [Show full text]
  • Modern Authentication Techniques in Smart Phones: Security and Usability Perspective
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 1, 2017 Modern Authentication Techniques in Smart Phones: Security and Usability Perspective Usman Shafique Asma Sher Rahim Ullah Department of Computer Science Department of Computer Science Department of Computer Science Bahria University COMSATS Institute of Information COMSATS Institute of Information Islamabad, Pakistan Technology Technology Islamabad, Pakistan Islamabad, Pakistan Hikmat Khan Department of Computer Science Adnan Zeb Rehmat Ullah COMSATS Institute of Information Department of Computer Science Department of Computer Science Technology COMSATS Institute of Information COMSATS Institute of Information Islamabad, Pakistan Technology Technology Islamabad, Pakistan Islamabad, Pakistan Sabah-ud-din Waqar Department of Computer Science Uferah Shafi Faisal Bashir Bahria University Department of Computer Science Department of Computer Science Islamabad, Pakistan COMSATS Institute of Information Bahria University Technology Islamabad, Pakistan Islamabad, Pakistan Munam Ali Shah Department of Computer Science Bahria University Islamabad, Pakistan Abstract—A smartphone has more advanced computing applications in online market. Therefore, smartphone and its ability and connectivity than basic featured phones. Presently, we applications are now most prevalent keywords in mobile are moving from the Internet society to a mobile society where technology [1]. However, to provide these customized services, more and more access to the information
    [Show full text]
  • Continuous User Authentication on Mobile Devices: Recent Progress and Remaining Challenges
    IEEE SIGNAL PROCESSING MAGAZINE, VOL. X, NO. X, MONTH 2016 1 Continuous User Authentication on Mobile Devices: Recent Progress and Remaining Challenges Vishal M. Patel, Senior Member, IEEE,, Rama Chellappa, Fellow, IEEE, Deepak Chandra, and Brandon Barbello Abstract Recent developments in sensing and communication technologies have led to an explosion in the use of mobile devices such as smartphones and tablets. With the increase in the use of mobile devices, one has to constantly worry about the security and privacy as the loss of a mobile device could compromise personal information of the user. To deal with this problem, continuous authentication (also known as active authentication) systems have been proposed in which users are continuously monitored after the initial access to the mobile device. In this paper, we provide an overview of different continuous authentication methods on mobile devices. We discuss the merits and drawbacks of available approaches and identify promising avenues of research in this rapidly evolving field. Index Terms Mobile authentication, continuous authentication, biometrics, active authentication, transparent au- thentication. Vishal M. Patel is with the department of Electrical and Computer Engineering (ECE) at Rutgers University, Piscataway, NJ 08854 USA [email protected]. Rama Chellappa is with the Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA [email protected]. Deepak Chandra, and Brandon Barbello are with Google Inc, Mountain View, CA 94043 USA fdchandra,[email protected]. July 3, 2016 DRAFT IEEE SIGNAL PROCESSING MAGAZINE, VOL. X, NO. X, MONTH 2016 2 I. INTRODUCTION Traditional methods for authenticating users on mobile devices are based on explicit authentication mechanisms such as passwords, pin numbers or secret patterns.
    [Show full text]
  • Tap-Based User Authentication for Smartwatches∗
    Tap-based User Authentication for Smartwatches∗ Toan Nguyen Nasir Memon New York University New York University [email protected] [email protected] ABSTRACT tap-password on the smartwatch touchscreen to login. A user is ver- This paper presents TapMeIn, an eyes-free, two-factor authentica- ified based on the correctness of the tap-password as well as features tion method for smartwatches. It allows users to tap a memorable which depend on the physiological and behavioral characteristics of melody (tap-password) of their choice anywhere on the touchscreen a user. to unlock their watch. A user is verified based on the tap-password TapMeIn offers several desirable features. First, in terms of security, as well as her physiological and behavioral characteristics when its two-factor nature makes guessing, smudge and shoulder surfing tapping. Results from preliminary experiments with 41 participants attacks less relevant. Even in the case where an attacker knows and show that TapMeIn could achieve an accuracy of 98.7% with a False can repeat the melody of a user, he still needs to pass behavioral and Positive Rate of only 0.98%. In addition, TapMeIn retains its perfor- physiological verification which is significantly more difficult. This mance in different conditions such as sitting and walking. In terms protection also applies to video attacks as shown in our evaluation. of speed, TapMeIn has an average authentication time of 2 seconds. Second, in terms of usability, its eyes-free feature, allows the user A user study with the System Usability Scale (SUS) tool suggests to tap anywhere on the screen, and hence not only solves the fat- that TapMeIn has a high usability score.
    [Show full text]
  • Behavioral Biometrics for Continuous Authentication in the Internet Of
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3004077, IEEE Internet of Things Journal IEEE INTERNET OF THINGS 1 Behavioral Biometrics for Continuous Authentication in the Internet of Things Era: An Artificial Intelligence Perspective Yunji Liang, Sagar Samtani, Bin Guo, and Zhiwen Yu Abstract—In the Internet of things (IoT) era, user authen- tication is an essential to ensure the security of connected devices and the customization of passive services. However, conventional knowledge-based and physiological biometric-based authentication systems (e.g., password, face recognition, and fingerprints) are susceptible to shoulder surfing attacks, smudge attacks and heat attacks. The powerful sensing capabilities of IoT devices including smartphones, wearables, robots and autonomous vehicles enable the continuous authentication (CA) based on behavioral biometrics. Artificial Intelligence (AI) ap- proaches hold significant promise in sifting through large volumes of heterogeneous biometrics data to offer unprecedented user authentication and user identification capabilities. In this survey paper, we outline the nature of continuous authentication in IoT applications, highlight the key behavioral signals, and summarize the extant solutions from an AI perspective. Based on our systematic and comprehensive analysis, we discuss the challenges and promising future directions to guide the next generation of AI-based continuous authentication research. Index Terms—Behavioral Biometric, Continuous Authentica- tion, Data Mining, Internet of Things, Artificial Intelligence, Con- strained Devices, Body Area Networks, Cyber-Physical Systems; I. INTRODUCTION ITH the flourishing of IoT, our daily life is being W transformed by ambient intelligence [1] along with massive connected IoT devices ranging from smartphones and wearables to robots, autonomous vehicles and drones [2], [3].
    [Show full text]
  • An Efficient Login Authentication System Against Multiple Attacks In
    S S symmetry Article An Efficient Login Authentication System against Multiple Attacks in Mobile Devices Yang Li 1,* , Xinyu Yun 1 , Liming Fang 1,* and Chunpeng Ge 1,2,3 1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, NO. 29 Yudao Street, Nanjing 210016, China; [email protected] (X.Y.); [email protected] (C.G.) 2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China 3 Science and Technology on Parallel and Distributed Processing Laboratory (PDL), Changsha 410003, China * Correspondence: [email protected] (Y.L.); [email protected] (L.F.); Tel.: +86-159-2999-0112 (Y.L.); Tel.: +86-186-2685-8383 (L.F.) Abstract: Access management of IoT devices is extremely important, and a secure login authentica- tion scheme can effectively protect users’ privacy. However, traditional authentication schemes are threatened by shoulder-surfing attacks, and biometric-based schemes, such as fingerprint recognition and face recognition, that are commonly used today can also be cracked. Researchers have proposed some schemes for current attacks, but they are limited by usability. For example, the login authentica- tion process requires additional device support. This method solves the problem of attacks, but it is unusable, which limits its application. At present, most authentication schemes for the Internet of Things and mobile platforms either focus on security, thus ignoring availability, or have excellent convenience but insufficient security. This is a symmetry problem worth exploring. Therefore, users need a new type of login authentication scheme that can balance security and usability to protect users’ private data or maintain device security.
    [Show full text]
  • Dissecting Pattern Unlock: the Effect of Pattern Strength Meter on Pattern Selection
    journal of information security and applications 19 (2014) 308e320 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/jisa Dissecting pattern unlock: The effect of pattern strength meter on pattern selection * Chen Sun, Yang Wang, Jun Zheng Department of Computer Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA article info abstract Article history: Pattern unlock is one of the entry protection mechanisms in Android system for unlocking Available online 9 November 2014 the screen. By connecting 4e9 dots in a 3 Â 3 grid, the user can set up an unlock pattern which is equivalent to a password or a PIN. As an alternative to the traditional password/ Keywords: PIN, the visual pattern has gained its popularity because of the potential advantages in Pattern unlock memorability and convenience of input. However, the limited pattern space and existing Pattern strength meter attacks such as shoulder surfing, or smudge attack make this mechanism weak in security. Mobile security In this paper, we analyzed the characteristics of all valid patterns and proposed a way to User study quantitatively evaluate their strengths. We then designed two types of pattern strength Android meters as visual indicators of pattern strength. We conducted a user study that involved 81 participants. The results of the user study showed that the presence of visual indicator of pattern strength did encourage users to create visually complex patterns, thus increasing the security of pattern unlock. © 2014 Elsevier Ltd. All rights reserved. provides several screen lock options including slide, pass- 1. Introduction word, PIN (Personal Identification Number), pattern, and the latterly introduced face unlock (Android 4.0; Set Screenlock).
    [Show full text]
  • Behavioral Biometrics for Continuous Authentication in the Internet-Of
    9128 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020 Behavioral Biometrics for Continuous Authentication in the Internet-of-Things Era: An Artificial Intelligence Perspective Yunji Liang , Sagar Samtani, Bin Guo ,andZhiwenYu , Senior Member, IEEE Abstract—In the Internet-of-Things (IoT) era, user authenti- cation is essential to ensure the security of connected devices and the customization of passive services. However, conventional knowledge-based and physiological biometric-based authentica- tion systems (e.g., password, face recognition, and fingerprints) are susceptible to shoulder surfing attacks, smudge attacks, and heat attacks. The powerful sensing capabilities of IoT devices, including smartphones, wearables, robots, and autonomous vehi- cles enable continuous authentication (CA) based on behavioral biometrics. The artificial intelligence (AI) approaches hold signif- icant promise in sifting through large volumes of heterogeneous biometrics data to offer unprecedented user authentication and user identification capabilities. In this survey article, we outline the nature of CA in IoT applications, highlight the key behav- ioral signals, and summarize the extant solutions from an AI perspective. Based on our systematic and comprehensive analy- sis, we discuss the challenges and promising future directions to guide the next generation of AI-based CA research. Index Terms—Artificial intelligence (AI), behavioral biometric, body area networks, constrained devices, continuous authentica- tion (CA), cyber–physical systems data mining, Internet of Things (IoT). I. INTRODUCTION ITH the flourishing of the Internet of Things (IoT), W our daily life is being transformed by ambient intelli- gence [1] along with massively connected IoT devices ranging Fig. 1. Overview of credentials for user authentication and identification and from smartphones and wearables to robots, autonomous vehi- their applications.
    [Show full text]