Earthworm Collection from Agricultural Fields: Comparisons of Selected
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transient Receptor Potential Channel Promiscuity Frustrates Constellation
the sole sensor responsible for noxious cold responses in M+A+ LETTER neurons (1). However, TRPA1 is also activated by cooling and underlies at least part of the noxious cold responsiveness of Transient receptor potential channel AITC-sensitive neurons (3). Third, the authors used nicardipine 2+ promiscuity frustrates to selectively inhibit CaV1-type voltage-gated Ca channels (1). However, several dihydropyridines, including nicardipine, also constellation pharmacology act as TRPA1 agonists (4). These considerations led us to propose an alternative Sensory neurons from the trigeminal and dorsal root ganglia molecular interpretation of the difference between M+A− (DRG) have nerve endings in the skin and mucosa, where they and M+A+ neurons, which is in much better agreement with detect environmental stimuli and convey this information to published work. In accord with the authors, we conclude that the central nervous system. Several members of the transient M+A− neurons express TRPM8 but lack expression of receptor potential (TRP) superfamily of ion channels act as TRPA1. In contrast to the authors, we propose that M+A+ prime molecular sensors for thermal and chemical stimuli in neurons express TRPA1 as the prime cold and menthol these sensory neurons. However, it is incompletely understood sensor (2, 3). This interpretation is consistent with published how TRP channel expression and modulation affect the stimulus observations that menthol responses in M+A− but not in sensitivities of distinct neuronal subtypes. M+A+ neurons are inhibited by TRPM8 antagonists (5) In a recent article, Teichert et al. (1) described a “constellation and that TRPA1-mediated responses to cold in neurons are pharmacology approach” to identify and characterize subtypes characterized by a higher (colder) threshold (3). -
The Effect of Invasive Earthworm Lumbricus Terrestris on The
The Effect of Invasive Earthworm Lumbricus terrestris on the Distribution of Nitrogen in Soil Profile Sarah Adelson, Christine Doman, Gillian Golembiewski, Luke Middleton University of Michigan Biological Station, Spring 2009 Abstract The purpose of this study was to determine if Lumbricus terrestris, an invasive earthworm in Northern Michigan, is redistributing nitrogen from the organic soil layer to the deeper, mineral soil layer. L. terrestris burrow 2 meters vertically into the ground and emerge to feed on freshly fallen leaf litter. The study included collecting of L. terrestris in 16 0.5 m square plots by method of electro-shock. Soil cores from a depth of 0-5 and 30-40 cm as well as leaf litter were taken from each plot to determine nitrogen content and nitrogen isotope ratios. Data analysis resulted in no significance between plots with earthworms and without earthworms in both nitrogen, N, isotope ratios and N content. Plots with L. terrestris showed no difference between the organic and mineral soil layer. This result suggests that L. terrestris are homogenizing soil layers. However, smaller than ideal sample sizes limit interpretive capacity of the results. Further research needs to be completed to confirm these perceived trends. The analysis of nitrogen isotope ratios suggest that there is another source of 15N other than leaf litter and L. terrestris that is contributing to soil composition and therefore the contribution of each was not conclusively determined. Introduction Invasion of an exotic species into an ecosystem is one of the leading threats to biologically diverse ecosystems throughout the world. Exotic species are initially introduced as a solution for food, farming, aesthetic purposes, or even accidentally. -
Earthworm Annelid Dissection External Anatomy
Name: Section: Earthworm Annelid Dissection External Anatomy Examine your preserved earthworm and determine the anterior and posterior ends in addition to its dorsal and ventral sides. The ventral side will be slightly flattened and will have two openings types of opening. Locate the worm's mouth and anus. Near the mouth will be a fleshy protruberance called the prostomium. The prostomium is located on the dorsal surface of the worm. Note the swelling of the earthworm near its anterior side - this is the clitellum. Label the clitellum on the drawing. The clitellum is active in the formation of an egg capsule, or cocoon. The openings toward the anterior of the worm are the male genital pores or sperm ducts. There are two pairs. The first pair is anterior to the second pair. The second pair is called the genital setae. They are tiny and are located just above the clitellum. They may be too small to see but may be visualized using a dissecting microscope. Sperm are produced in the testes and pass out through these pores. Just above the first pair of sperm ducts are the female genital pores. Again, these may be too small to see without a dissecting microscope. Eggs are produced in the ovaries and pass out of the body through these pores. Locate the dark line that runs down the dorsal side of the worm, this is the dorsal blood vessel. The ventral blood vessel can be seen on the underside of the worm, though it is usually not as dark. Internal Anatomy 1. Place the specimen in the dissecting pan DORSAL side up. -
Chapter Four – TRPA1 Channels: Chemical and Temperature Sensitivity
CHAPTER FOUR TRPA1 Channels: Chemical and Temperature Sensitivity Willem J. Laursen1,2, Sviatoslav N. Bagriantsev1,* and Elena O. Gracheva1,2,* 1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA 2Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA *Corresponding author: E-mail: [email protected], [email protected] Contents 1. Introduction 90 2. Activation and Regulation of TRPA1 by Chemical Compounds 91 2.1 Chemical activation of TRPA1 by covalent modification 91 2.2 Noncovalent activation of TRPA1 97 2.3 Receptor-operated activation of TRPA1 99 3. Temperature Sensitivity of TRPA1 101 3.1 TRPA1 in mammals 101 3.2 TRPA1 in insects and worms 103 3.3 TRPA1 in fish, birds, reptiles, and amphibians 103 3.4 TRPA1: Molecular mechanism of temperature sensitivity 104 Acknowledgments 107 References 107 Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflam- mation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function. -
Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach
Article Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach Justyna Maliszewska 1,*, Milena Jankowska 2, Hanna Kletkiewicz 1, Maria Stankiewicz 2 and Justyna Rogalska 1 1 Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (H.K.); [email protected] (J.R.) 2 Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (M.J.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-56611-44-63 Academic Editor: Pin Ju Chueh Received: 5 November 2018; Accepted: 17 December 2018; Published: 18 December 2018 Abstract: Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach’s thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature. -
Utilizing Soil Characteristics, Tissue Residues, Invertebrate Exposures
Utilizing soil characteristics, tissue residues, invertebrate exposures and invertebrate community analyses to evaluate a lead-contaminated site: A shooting range case study Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of The Ohio State University By Sarah R. Bowman, M.S. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2015 Dissertation Committee: Roman Lanno, Advisor Nicholas Basta Susan Fisher Copyright by Sarah R. Bowman 2015 Abstract With over 4,000 military shooting ranges, and approximately 9,000 non-military shooting ranges within the United States, the Department of Defense and private shooting range owners are challenged with management of these sites. Ammunition used at shooting ranges is comprised mostly of lead (Pb). Shooting ranges result in high soil metal concentrations in small areas and present unique challenges for ecological risk assessment and management. Mean natural background soil Pb is about 32 mg/kg in the eastern United States, but organisms that live in soil or in close association with soil may be at risk from elevated levels of Pb at shooting ranges. Previous shooting range studies on the ecotoxicological impacts of Pb, with few exceptions, used total soil Pb levels as a measure of exposure. However, total soil Pb levels are often not well correlated with Pb toxicity or bioaccumulation. This is a result of differences in Pb bioavailability, or the amount of Pb taken up by an organism that causes a biological response, depending on soil physical/chemical characteristics and species-specific uptake, metabolism, and elimination mechanisms. -
Selected Kefir Water from Malaysia Attenuates Hydrogen Peroxide
antioxidants Article Selected Kefir Water from Malaysia Attenuates Hydrogen Peroxide-Induced Oxidative Stress by Upregulating Endogenous Antioxidant Levels in SH-SY5Y Neuroblastoma Cells Muganti Rajah Kumar 1, Swee Keong Yeap 2, Han Chung Lee 2, Nurul Elyani Mohamad 1,3 , Muhammad Nazirul Mubin Aziz 1, Melati Khalid 4, Mas Jaffri Masarudin 1,5 , Adam Thean Chor Leow 1 , Janna Ong Abdullah 1 and Noorjahan Banu Alitheen 1,5,* 1 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor Darul Ehsan, Malaysia; [email protected] (M.R.K.); [email protected] (N.E.M.); [email protected] (M.N.M.A.); [email protected] (M.J.M.); [email protected] (A.T.C.L.); [email protected] (J.O.A.) 2 China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia; [email protected] (S.K.Y.); [email protected] (H.C.L.) 3 Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia Citation: Kumar, M.R.; Yeap, S.K.; 4 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Lee, H.C.; Mohamad, N.E.; Nazirul Serdang 43400 UPM, Selangor Darul Ehsan, Malaysia; [email protected] Mubin Aziz, M.; Khalid, M.; 5 UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Masarudin, M.J.; Leow, A.T.C.; Serdang 43400 UPM, Selangor Darul Ehsan, Malaysia Abdullah, J.O.; Alitheen, N.B. * Correspondence: [email protected]; Tel.: +603-976-97471 Selected Kefir Water from Malaysia Attenuates Hydrogen Abstract: Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, Peroxide-Induced Oxidative Stress by and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma Upregulating Endogenous cells. -
Earthworms (Annelida: Oligochaeta) of the Columbia River Basin Assessment Area
United States Department of Agriculture Earthworms (Annelida: Forest Service Pacific Northwest Oligochaeta) of the Research Station United States Columbia River Basin Department of the Interior Bureau of Land Assessment Area Management General Technical Sam James Report PNW-GTR-491 June 2000 Author Sam Jamesis an Associate Professor, Department of Life Sciences, Maharishi University of Management, Fairfield, IA 52557-1056. Earthworms (Annelida: Oligochaeta) of the Columbia River Basin Assessment Area Sam James Interior Columbia Basin Ecosystem Management Project: Scientific Assessment Thomas M. Quigley, Editor U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon General Technical Report PNW-GTR-491 June 2000 Preface The Interior Columbia Basin Ecosystem Management Project was initiated by the USDA Forest Service and the USDI Bureau of Land Management to respond to several critical issues including, but not limited to, forest and rangeland health, anadromous fish concerns, terrestrial species viability concerns, and the recent decline in traditional commodity flows. The charter given to the project was to develop a scientifically sound, ecosystem-based strategy for managing the lands of the interior Columbia River basin administered by the USDA Forest Service and the USDI Bureau of Land Management. The Science Integration Team was organized to develop a framework for ecosystem management, an assessment of the socioeconomic biophysical systems in the basin, and an evalua- tion of alternative management strategies. This paper is one in a series of papers developed as back- ground material for the framework, assessment, or evaluation of alternatives. It provides more detail than was possible to disclose directly in the primary documents. -
On the Nematodes of the Common Earthworm. by Gilbert E
ON THE NBMATODES OF THE COMMON EARTHWORM. 605 On the Nematodes of the Common Earthworm. By Gilbert E. Johnson, M.Sc.(Biim.), University of Birmingham ; Board of Agriculture and Fisheries Research Scholar. (Studies from the Research Department in Agricultural Zoology, University of Birmingham.) With Plate 37 and 2 Text-figures. CONTENTS. PAGE Introduction ...... 605 Occurrence ...... 609 Cultural Methods . .612 Identification . .618 Confusion of Two Species under one name . 619 Anatomy ...... 623 Questions of Sex ...... 627 (1) Analysis and Character of Reproduction . 627 (2) The Sex Ratio . .635 Life-History . .637 (1) Investigation of Problems relating to the Life-Cycle . 637 (2) Probable Course of the Life-Cycle . .647 Summary of Principal Results ... 649 INTRODUCTION. (1) Survey of the Literature. IT has long been a matter of common knowledge that larval Dematodes inhabit the common earthworm, Lum- bricus terrestris, Linn. They are found both in the coelom and in the nephridia. Those occurring in the ccelom 606 GILBERT E. JOHNSON. are enclosed in cysts or capsules, by which movement is restricted or entirely prevented. Those inhabiting the nephridia, on the other hand, are free and active. The en- cysted, ccelomic form has long been known as Rhabditis pellio, having been named by Schneider (1) as early as 1866. The nephridial form is generally believed to be the same species, but it was not mentioned by Schneider, and I have not been able to find that its identity has been deter- mined by any subsequent investigator, as the following brief survey of the literature will show. In 1845 Dujardin, according to Bastian (2), recorded the existence of nematodes in the general body-cavity of the earthworm. -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG . -
“Help, There Are Leeches in Our Lake!”
“Help, there are leeches in our lake!” by Andrea LaMoreaux, Vice President, NH LAKES “Help,” pleaded the caller, “Our lake is polluted—it is full of blood-sucking leeches!” As an aquatic biologist, this is one of the various reasons lake-goers call me during the summer, urging me to find someone or something to fix a problem that is ruining their enjoyment of one of New Hampshire’s approximately 1,000 lakes and ponds. “Don’t worry,” I explained, “Rest assured, by no means does the presence of leeches in your lake mean that your lake is polluted.” The caller on the other end of the phone was unconvinced, so I continued, “Leeches are natural organisms that can be found in most of New Hampshire’s lakes. While there are more than 650 species of leeches in North America, there Leeches are most commonly found in shallow areas are only a few species in New Hampshire known to take of lakes among plants, under rocks, sticks, logs, and blood from a person, and that is only if the right attached to decaying leaves. opportunity arises.” At this point, I emailed the caller some information about where leeches are found, what to do if he got bit by a leech, and how to avoid leaches altogether. I never got a return call back, so I guessed his fears were quelled. In case you aren’t convinced that leeches aren’t a problem, or if you are just curious… What are leeches and where are they found? Leeches are scientifically categorized as annelids (segmented worms) and they are closely related to earthworms. -
Expression and Distribution of the Transient Receptor Potential Cationic Channel Ankyrin 1 (TRPA1) in the Human Vagina
International Journal of Impotence Research (2014) 27, 16–19 & 2014 Macmillan Publishers Limited All rights reserved 0955-9930/14 www.nature.com/ijir ORIGINAL ARTICLE Expression and distribution of the transient receptor potential cationic channel ankyrin 1 (TRPA1) in the human vagina SU¨ ckert1, JE Sonnenberg2, K Albrecht1, MA Kuczyk1 and P Hedlund3,4 The transient receptor potential cationic channel type A1 (TRPA1), belonging to a superfamily of cationic membrane channels, has been suggested to act as mechano- and pain sensor and, thus, to play a role in neurotransmission in the human body, including the urogenital tract. While the expression of TRPA1 has been investigated in a variety of tissues, up until today, no study has addressed the expression and distribution in the female genital tract. The present study aimed to investigate the expression and distribution of TRPA1 protein in human vaginal tissue. Reverse transcriptase PCR (RT-PCR) was applied in order to identify messenger ribonuleic acid specifically encoding for TRPA/A1. The distribution of TRPA1 in relation to the neuronal nitric oxide synthase (nNOS) and the signaling peptide calcitonin gene-related peptide (CGRP) was examined by means of immunohistochemical methods (double- antibody technique, laser fluorescence microscopy). RT-PCR analysis revealed the expression of mRNA encoding sequences specific for TRPA in the vaginal wall and epithelium. Immunostaining related to TRPA1 was observed in the basal epithelium and in slender varicose nerve fibers transversing the subepithelial and stromal space of the vaginal sections. In addition, these fibers presented immunoreactivity specific for nNOS or CGRP. The smooth musculature of the vaginal wall and small vessels interspersing the tissue did not present signals related to TRPA1.