Posteromedial Corner Knee Injuries: Diagnosis, Management, and Outcomes a Critical Analysis Review

Total Page:16

File Type:pdf, Size:1020Kb

Posteromedial Corner Knee Injuries: Diagnosis, Management, and Outcomes a Critical Analysis Review | Posteromedial Corner Knee Injuries: Diagnosis, Management, and Outcomes A Critical Analysis Review Mark E. Cinque, MS Abstract » The posteromedial corner of the knee comprises the superficial Jorge Chahla, MD, PhD medial collateral ligament (MCL), deep MCL, posterior oblique Bradley M. Kruckeberg, BA ligament, oblique popliteal ligament, and posterior horn of the medial meniscus. The main medial knee structure is the superficial MCL. Nicholas N. DePhillipo, MS, ATC, OTC » Injuries to the medial knee are the most common knee ligament injuries. A comprehensive history and physical examination are key to Gilbert Moatshe, MD the diagnosis of a posteromedial corner injury. Patients often present Robert F. LaPrade, MD, PhD with swelling and pain over the medial joint line after an injury involving a valgus and external rotation force. The valgus stress and anteromedial drawer tests can aid the clinician in deciphering whether Investigation performed at the an isolated medial structure was injured or if a complete posterome- Steadman Philippon Research dial corner injury is likely. Institute, Vail, Colorado » Valgus stress radiographs can be utilized to quantify the amount of medial joint gapping. A side-to-side difference in gapping of 3.2 mm is consistent with an isolated superficial MCL tear, and a side-to-side difference of $9.8 mm is consistent with a complete posteromedial corner injury. Magnetic resonance imaging is also a useful tool in the detection of medial-sided injuries and has been reported to have an 87% accuracy. » Although a large number of medial knee injuries can be treated nonoperatively, complete posteromedial corner injuries may require surgical treatment to restore joint stability and biomechanics. There is heterogeneity between techniques with regard to the type of graft, the tibial and femoral tunnel position, and the tensioning protocol. Anatomic techniques have been reported to better restore knee kinematics and function. edial-sided knee injuries prompt identification and evaluation to are among the most improve long-term prognosis of the common knee ligament knee1,2. Grade-III medial-sided injuries, injuries encountered by as defined by LaPrade et al.3, have been orthopaedicM surgeons. These injuries often reported to have a concomitant cruciate occur when a valgus stress is applied to the ligament injury in as many as 78% of knee along with tibial external rotation. cases (47 of 60 patients)2. These ligament injuries can occur in isola- Recently, there has been increasing tion or with concomitant meniscal or interest in the posteromedial corner of the cruciate ligament injuries, which require knee that has led to better understanding of Disclosure: There was no external funding for this work. On the Disclosure of Potential Conflicts of which are provided with the online version of the article COPYRIGHT © 2017 BY THE Interest forms, , one or more of the authors JOURNAL OF BONE AND JOINT checked “yes” to indicate that the author had a relevant financial relationship in the biomedical arena SURGERY, INCORPORATED outside the submitted work (http://links.lww.com/JBJSREV/A250). JBJS REVIEWS 2017;5(11):e4 · http://dx.doi.org/10.2106/JBJS.RVW.17.00004 1 | Posteromedial Corner Knee Injuries: Diagnosis, Management, and Outcomes the anatomy and its role in knee kine- on the diagnosis and management of The posterior oblique ligament has matics. The posteromedial corner of the posteromedial corner knee injuries and 3 fascial attachments at the distal aspect knee includes 5 major components: the assesses current posteromedial corner of the semimembranosus tendon8. The superficial medial collateral ligament reconstruction techniques and out- main arm of the posterior oblique liga- (MCL), the deep MCL, the posterior comes. Current reconstruction tech- ment is the central arm, which arises oblique ligament, the oblique popliteal niques for the superficial MCL and from the main semimembranosus ten- ligament, and the posterior horn of the posterior oblique ligament have been don and reinforces the deep MCL and medial meniscus. Historically, the no- described in the literature and therefore then continues to attach to and blend menclature of the medial knee structures will be the focus in the anatomic and with the posteromedial joint capsule and has been inconsistent, leading to con- biomechanical sections. medial meniscal junction8. The femoral fusion and controversy4-6. In an attempt attachment of the central arm of the to standardize the nomenclature and to Quantitative Anatomy of the posterior oblique ligament is located accurately guide anatomic reconstruc- Posteromedial Corner 7.7 mm distal and 2.9 mm anterior to tions, LaPrade et al.3,7,8 reported on the The anatomy of the posteromedial cor- the gastrocnemius tubercle. quantitative anatomy of the medial ner of the knee is complex, which can The semimembranosus tendon has structures of the knee and identified render injuries to any combination of multiple tibial attachments that provide each of the structures in relation to reli- structures challenging to treat surgically. dynamic stabilization to the postero- able anatomic landmarks9,10. The posteromedial corner of the knee medial corner15,16. The anterior arm of Assessment of medial knee injuries comprises the superficial MCL, the deep the semimembranosus attaches to the can be challenging; therefore, in addi- MCL, the posterior oblique ligament, tibia deep to the proximal attachment of tion to a detailed physical examination, the oblique popliteal ligament, and the the superficial MCL, and the direct arm imaging studies are recommended to posterior horn of the medial meniscus attaches posteromedial to the medial assist in the diagnosis. The grade of (Fig. 1). To properly treat an injury to tibial crest8 (Fig. 1). the medial knee injury is based on the any combination of the structures in the number of structures that are torn, and posteromedial corner, it is necessary to Diagnosis of Posteromedial treatment options depend on the loca- understand not only anatomic relation- Corner Injuries tion of the tear and presence of concur- ships, but also the biomechanical roles Biomechanics of the rent ligament injury. The majority of of each structure both individually and Posteromedial Corner medial injuries will usually heal without as a unit. There is an intricate interplay between operative intervention2,11. However, a The main medial structure is the the posteromedial structures, and an subset of patients with grade-III medial superficial MCL, which averages 10 to important load-sharing distribution be- knee injuries will develop persistent pain 12 cm in length. The femoral superficial tween the superficial MCL and the and continued functional rotatory or MCL attachment is 3.2 mm proximal posterior oblique ligament has been valgus instability after nonoperative and 4.8 mm posterior to the medial epi- reported that depends on the knee flex- treatment. Identifying patients at risk for condyle. The superficial MCL has 2 ion angle17. The proximal superficial poor outcomes following conservative tibial attachments: the proximal tibial MCL is the primary knee valgus management is important but chal- attachment, which is a soft-tissue at- stabilizer across all knee flexion lenging because of inconsistent reports. tachment 1 cm distal to the joint line on angles8,10,18,19. The proximal superfi- There is still controversy in the literature the anterior arm of the semimembra- cial MCL acts as a secondary stabilizer on the treatment of combined postero- nosus tendon, and the distal attachment to external and internal rotation medial corner injuries with concomitant on the tibia, which is located 6 cm distal depending on the knee flexion angle9,20. cruciate ligament injuries. Some authors to the joint line. The deep MCL is a The distal superficial MCL acts as a have advocated for nonoperative treat- thickening of the medial joint capsule, primary stabilizer for both external and ment of all medial-sided injuries2; which is firmly adherent to, but separa- internal rotation. The posterior oblique however, because of the increased risk of ble from, the superficial MCL. The deep ligament and the posteromedial capsule developing persistent anteromedial ro- MCL femoral attachment site is ap- provide primary valgus restraint in ex- tatory instability, leading to increased proximately 1 cm distal to that of the tension, and the superficial MCL plays force on the reconstructed cruciate lig- superficial MCL and courses distally to a more dominant role in flexion because aments, most authors advocate for con- attach to the medial part of the menis- of relaxation of the posterior oblique current operative treatment of medial cus, which includes the meniscofemoral ligament in flexion9. Moreover, biome- structures in a knee with injury to mul- and meniscotibial divisions. On the chanical studies have demonstrated the tiple ligaments1,12,13. tibia, the deep MCL attaches approxi- role of the posterior oblique ligament as This article provides a critical mately 3 to 4 mm distal to the joint a primary stabilizer for internal rotation analysis of the current, relevant literature line14. and a secondary stabilizer for valgus 2 NOVEMBER 2017 · VOLUME 5, ISSUE 11 · e4 Posteromedial Corner Knee Injuries: Diagnosis, Management, and Outcomes | Fig. 1 Figs. 1-A and 1-B The posteromedial corner. AMT 5 adductor magnus tendon, VMO 5 vastus medialis obliquus muscle, SM 5 semimembranosus muscle, MPFL 5 medial patellofemoral ligament, MGT 5 medial gastrocnemius tendon, POL 5 posterior oblique ligament, sMCL 5 superficial medial collateral ligament, ME 5 medial epicondyle, AT 5 adductor tubercle, and GT 5 gastrocnemius tendon. Fig. 1-A Illustration. (Reproduced from: LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am. 2007 Sep;89[9]:2000-10.) Fig. 1-B Cadaveric specimen showing soft-tissue attachments of the posteromedial side of the knee. and external rotation7,21. Valgus insta- The degree of valgus gapping is related to posterolateral tibial rotation with an in- bility, which is observed in the setting the severity of the injury.
Recommended publications
  • Medial Collateral Ligament Injury of the Knee: a Review on Current Concept and Management
    )255( COPYRIGHT 2021 © BY THE ARCHIVES OF BONE AND JOINT SURGERY CURRENT CONCEPTS REVIEW Medial Collateral Ligament Injury of the Knee: A Review on Current Concept and Management Farzad Vosoughi, MD1; Reza Rezaei Dogahe, MD1; Abbas Nuri, MD1; Mohammad Ayati Firoozabadi, MD1; S.M. Javad Mortazavi, MD1,2 Research performed at the Joint Reconstruction Research Center (JRRC) of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran Received: 10 May 2020 Accepted: 04 March 2021 Abstract The medial collateral ligament (MCL) is a major stabilizer of the knee joint, providing support against rotatory and valgus forces; moreover, it is the most common ligament injured during knee trauma. The MCL injury results in valgus instability of the knee and makes the patient susceptible to degenerative knee osteoarthritis. Although it has been nearly a dogma to manage MCL injury nonoperatively, recent literature has suggested operative MCL management as a suitable option for specific patient populations. The present review aimed to assess the current literature on the management of MCL injuries of the knee. In this regard, we go over the anatomy, physical examination, and MCL imaging. Level of evidence: IV Keywords: MCL, MCL reconstruction, MCL repair, POL, PMC Introduction he medial collateral ligament (MCL) is the most may be indicated in certain instances (5). In this review, common knee ligament to be injured during we discuss this concept with the aim of delineating the Tknee trauma (1). The annual incidence of MCL management principles of the MCL injury. injury has been reported as 0.24-7.3 per 1,000 people with a male to female ratio of 2:1 (1, 2).
    [Show full text]
  • Arthroscopic Soft Tissue Releases of the Knee
    12 Arthroscopic Soft Tissue Releases of the Knee Michael R. Chen and Jason L. Dragoo Stanford University Department of Orthopaedic Surgery, USA 1. Introduction Intra-articular fibrosis, which includes a family of disorders such as anterior interval scarring, posterior capsular contracture, a tight lateral retinaculum, as well as arthrofibrosis, may lead to alterations in joint biomechanics and can result in pain. 1, 2, 3 Specific releases for each region of fibrosis, along with characteristic physical examination findings, have been described. Familiarity with the diagnosis and arthroscopic treatment of these disorders may lead to improved treatment outcomes in this patient population. 2. Anterior interval release 2.1 History and physical examination The anterior interval has been defined as the space between the infrapatellar fat pad and patellar tendon anteriorly, and the anterior border of the tibia and transverse meniscal ligament posteriorly.1 Trauma or previous surgery may cause hemorrhage or inflammation of the fat pad (Hoffa’s Syndrome), which may be followed by fibrosis. If fibrosis occurs between the fat pad and transverse ligament or anterior tibia, it will lead to dysfunction of the anterior knee structures, such as decreased excursion of the patellar tendon and result in stretching of the surrounding synovial tissue, which may lead to pain or even loss of knee extension. 1 Fibrosis within the anterior interval can exist on a spectrum of severity. Paulos et al. described infrapatellar contracture syndrome, a severe form of anterior interval scarring, with fibrosis of the fat pad and severe limitations in range of motion. 5 Patients with anterior interval scarring complain of anterior knee pain, and frequently describe a sense of fullness within the knee, especially with extension.
    [Show full text]
  • Analysis of an Anatomic Medial Collateral Ligament and Posterior
    This file was dowloaded from the institutional repository Brage NIH - brage.bibsys.no/nih Engebretsen, L., Lind, M. (2016). Anteromedial rotatory laxity. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 2797-2804. Dette er siste tekst-versjon av artikkelen, og den kan inneholde små forskjeller fra forlagets pdf-versjon. Forlagets pdf-versjon finner du på www.springerlink.com: http://dx.doi.org/10.1007/s00167-015-3675-8 This is the final text version of the article, and it may contain minor differences from the journal's pdf version. The original publication is available at www.springerlink.com: http://dx.doi.org/10.1007/s00167-015-3675-8 Abstract This review paper describes anteromedial rotatory laxity of the knee joint. Combined instability of the superficial MCL and the structures of the posteromedial corner is the pathological background anteromedial rotatory laxity. Anteromedial rotatory instability is clinically characterized by anteromedial tibial plateau subluxation anterior to the corresponding femoral condyle. The anatomical and biomechanical background for anteromedial laxity is presented and related to the clinical evaluation and treatment decision strategies are mentioned. A review of the clinical studies that address surgical treatment of anteromedial rotatory instability including surgical techniques and clinical outcomes is presented. Introduction It is well accepted that the superficial medial collateral ligament is a primary static stabilizer preventing anteromedial rotatory instability (AMRI), valgus translation, external rotation and internal rotation about the knee. [11,35] It has also been reported that the posterior oblique ligament (POL) is an important primary restraint to internal rotation and a secondary restraint to valgus translation and external rotation.
    [Show full text]
  • Cricket Sports Injuries HASSAN M Y, HELEN
    Cricket Sports Injuries HASSAN M Y, HELEN Introduction: Sports medicine is a broad and complex branch of the health care profession. It is a demanding field in medicine providing the health care professional with challenges both on and off the field. The principles of treatment include the maintenance of euphysiological benefits of exercise while attending to the injury with specificity. It is important to treat to the biological as well as the psychological component of the injured athlete. Successful management include early and correct diagnosis, rehabilitation and compliance of the athlete and sports administrators. Despite the advent of technology, a small percentage of athletes are unable to return to sports medicine and it is for this reason that primary prevention is imperative to reduce the incidence of injuries where possible. INJURY PREVENTION Injury prevention can be caused by intrinsic or extrinsic causes. Intrinsic causes include anatomical dysfunction while extrinsic causes are environment factors. Addressing both factors is imperative in reducing injury rates in sports medicine. Categorization of prevention into primary, secondary and tertiary structures is possible. Primary prevention: Primary prevention deals with direct or indirect prevention on an individual basis. An example would be correction of muscle imbalances of the shoulder structure of a bowler in an attempt to prevent shoulder dysfunction. Secondary prevention: Secondary prevention deals with preventing injury on a group basis. An example would be educating cricketers to the benefits of warm up, stretching and cooling down in an attempt to reduce musculotendinous injuries. Tertiary prevention: Tertiary prevention is efforts undertaken by the sports governing bodies in the field of cricket with initiation and implementation of strategies to reduce injuries at a club, provincial and national level.
    [Show full text]
  • Arthroscopic Releases for Arthrofibrosis of the Knee
    Review Article Arthroscopic Releases for Arthrofibrosis of the Knee Abstract Michael R. Chen, MD Intra-articular inflammation or fibrosis may lead to decreased soft- Jason L. Dragoo, MD tissue and capsular compliance, which may result in pain or loss of motion within the knee. Etiology of intra-articular fibrosis may include isolated anterior interval scarring and posterior capsular contracture, as well as fibrosis that involves the suprapatellar pouch or arthrofibrosis that involves the entire synovial space. Initial nonsurgical management, including compression, elevation, and physical therapy, can decrease knee pain and inflammation and maintain range of motion. Surgical management is indicated in the patient who fails conservative treatment. Surgical options include arthroscopic releases of the anterior interval, posterior capsule, and peripatellar and suprapatellar regions. Recent advances in arthroscopic technique have led to improved outcomes in patients with intra-articular fibrosis of the knee. nee stiffness is a common compli- management of these disorders may Kcation associated with trauma or lead to improved outcomes in this surgery and has been extensively patient population. studied.1-3 Risk factors include injury severity, timing of surgery, delayed Pathophysiology of postoperative rehabilitation, pro- longed immobilization, infection, Arthrofibrosis complex regional pain syndrome, The exact etiology of intra-articular From the Department of and technical errors during intra- tissue fibrosis is unknown, but sev- Orthopaedic Surgery, Stanford articular and extra-articular recon- eral theories exist. Platelet-derived Hospital and Clinics, Redwood City, structive procedures. Extra-articular CA. growth factor and transforming stiffness may be caused by muscular growth factor-beta 1 are inflamma- Dr. Dragoo or an immediate family fibrosis and contracture, heterotopic member serves as a paid consultant tory cytokines produced by the in- to Genzyme and Össur and has ossification, or myositis ossificans.
    [Show full text]
  • ACL Grade II, MCL Grade III and Hemarthrosis of Knee Treated Conservatively - 1 Year Physiotherapy Follow Up
    International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 ACL Grade II, MCL Grade III and Hemarthrosis of Knee Treated Conservatively - 1 Year Physiotherapy Follow Up Dr. S. S. Subramanian M.P.T (Orthopaedics), M.S (Education), M. Phil (Education), Ph.D (Physiotherapy) The Principal, Sree Balaji College Of physiotherapy, Chennai – 100, India Affiliated To (Bharath) University, BIHER, Chennai – 73, India Abstract: Road traffic accidents are common especially in developing countries proper rehabilitation post soft tissue injuries facilitates early recovery and prevents long term complications. Aims & Objectives of this original research was to evaluate the efficacy of specific tailored exercises post hemarthrosis ACL, MCL of left knee. Materials & Methodology: 43 years old male after an RT accident sustained injury to left knee. He was treated conservatively by specific exercises based on the evaluation during the period from 16.08.2018 to 30.09.2019 in Chennai with twice a week frequency Results: subjects womac score was evaluated and analyzed statistically, (P<.01) prior to starting the study and an year with regular physiotherapy Conclusion: Problem based exercises were found to be more effective in restoration of subjects functional needs, and conservative treatment of knee injuries were more effective with one year follow up. Keywords: QOL - Quality of Life, ACL – anterior Cruciate Ligament, MCL – Medial Collateral Ligament , NWB – Non Weight Bearing, Hemarthrosis,
    [Show full text]
  • Surgical of Treatment of the Medial Collateral Ligament of the Knee Joint. ISJ Theoretical & Applied Science, 12 (92), 282-287
    ISRA (India) = 4.971 SIS (USA) = 0.912 ICV (Poland) = 6.630 ISI (Dubai, UAE) = 0.829 РИНЦ (Russia) = 0.126 PIF (India) = 1.940 Impact Factor: GIF (Australia) = 0.564 ESJI (KZ) = 8.997 IBI (India) = 4.260 JIF = 1.500 SJIF (Morocco) = 5.667 OAJI (USA) = 0.350 QR – Issue QR – Article SOI: 1.1/TAS DOI: 10.15863/TAS International Scientific Journal Theoretical & Applied Science p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online) Year: 2020 Issue: 12 Volume: 92 Published: 23.12.2020 http://T-Science.org M.E. Irismetov Republican Scientific and Practical Medical Center of Traumatology and Orthopedics (RSSPMCTO) Researcher F.R. Rustamov Republican Scientific and Practical Medical Center of Traumatology and Orthopedics (RSSPMCTO) Researcher N.B. Safarov Republican Scientific and Practical Medical Center of Traumatology and Orthopedics (RSSPMCTO) Researcher SURGICAL OF TREATMENT OF THE MEDIAL COLLATERAL LIGAMENT OF THE KNEE JOINT Abstract: The reconstruction of the medial collateral ligament of the knee joint has lost its relevance to our time. There are still difficulties in reconstructing the rupture of the medial collateral ligament. In order to improve the results of treatment of this pathology, we set a goal to improve the method of surgical treatment and thereby reduce the rehabilitation time. During the period of 2015 - 2020 about 78 patients with rupture of the medial collateral ligament were operated using our method. Key words: medial collateral ligament, knee joint, gracilis muscle (m. gracilis), knee joint instability, frontal instability. Language: English Citation: Irismetov, M. E., Rustamov, F. R., & Safarov, N. B. (2020). Surgical of treatment of the medial collateral ligament of the knee joint.
    [Show full text]
  • Intraarticular Arthrofibrosis of the Knee Alters Patellofemoral Contact Biomechanics Jacob D
    Mikula et al. Journal of Experimental Orthopaedics (2017) 4:40 Journal of DOI 10.1186/s40634-017-0110-8 Experimental Orthopaedics RESEARCH Open Access Intraarticular arthrofibrosis of the knee alters patellofemoral contact biomechanics Jacob D. Mikula1, Erik L. Slette1, Kimi D. Dahl1, Scott R. Montgomery1,2, Grant J. Dornan1, Luke O’Brien1,3, Travis Lee Turnbull1 and Thomas R. Hackett1,2* Abstract Background: Arthrofibrosis in the suprapatellar pouch and anterior interval can develop after knee injury or surgery, resulting in anterior knee pain. These adhesions have not been biomechanically characterized. Methods: The biomechanical effects of adhesions in the suprapatellar pouch and anterior interval during simulated quadriceps muscle contraction from 0 to 90° of knee flexion were assessed. Adhesions of the suprapatellar pouch and anterior interval were hypothesized to alter the patellofemoral contact biomechanics and increase the patellofemoral contact force compared to no adhesions. Results: Across all flexion angles, suprapatellar adhesions increased the patellofemoral contact force compared to no adhesions by a mean of 80 N. Similarly, anterior interval adhesions increased the contact force by a mean of 36 N. Combined suprapatellar and anterior interval adhesions increased the mean patellofemoral contact force by 120 N. Suprapatellar adhesions resulted in a proximally translated patella from 0 to 60°, and anterior interval adhesions resulted in a distally translated patella at all flexion angles other than 15° (p < 0.05). Conclusions: The most important finding in this study was that patellofemoral contact forces were significantly increased by simulated adhesions in the suprapatellar pouch and anterior interval. Anterior knee pain and osteoarthritis may result from an increase in patellofemoral contact force due to patellar and quadriceps tendon adhesions.
    [Show full text]
  • Isolated Medial Collateral Ligament Tears: an Update on Management
    3.1700EOR0010.1302/2058-5241.3.170035 review-article2018 EOR | volume 3 | July 2018 DOI: 10.1302/2058-5241.3.170035 Sports & arthroscopy www.efortopenreviews.org Isolated medial collateral ligament tears: an update on management Carlos A. Encinas-Ullán E. Carlos Rodríguez-Merchán Tears of the medial collateral ligament (MCL) are the most isolated medial collateral ligament (MCL) tears. Conserv- common knee ligament injury. ative treatment of these lesions usually provides good Incomplete tears (grade I, II) and isolated tears (grade III) results, even for individuals with high physical demands. of the MCL without valgus instability can be treated with- However, surgical treatment is necessary in cases of out surgery, with early functional rehabilitation. severe medial or multi-ligament injury to prevent chronic instability and posttraumatic arthritis. Failure of non-surgical treatment can result in debilitating, persistent medial instability, secondary dysfunction of the anterior cruciate ligament, weakness, and osteoarthritis. Epidemiology Reconstruction or repair of the MCL is a relatively uncom- MCL is the most common knee injury in high school, col- mon procedure, as non-surgical treatment is often suc- legiate, and professional football.1 The annual incidence cessful at returning patients to their prior level of function. of MCL injuries among high school football players is Acute repair is indicated in isolated grade III tears with severe 24.2 per 100,000 athletes.2 Nearly 78% of patients who valgus alignment, MCL entrapment over pes anserinus, or sustained a grade III MCL injury had an injury to another intra-articular or bony avulsion. The indication for primary associated structure.3 Of those additional injuries, 95% repair is based on the resulting quality of the native ligament involved the anterior cruciate ligament (ACL).4 and the time since the injury.
    [Show full text]
  • Medial Knee Injury
    AJSM PreView, published on July 16, 2009 as doi:10.1177/0363546509333852 Winner of the Herodicus Award Medial Knee Injury Part 1, Static Function of the Individual Components of the Main Medial Knee Structures Chad J. Griffith,* MD, Robert F. LaPrade,*† MD, PhD, Steinar Johansen,‡ MD, Bryan Armitage,* MSc, Coen Wijdicks,* MSc, and Lars Engebretsen,‡ MD, PhD From the *Division of Sports Medicine, Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota, and the ‡Orthopaedic Center, Ullevaal University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway Background: There is a lack of knowledge on the primary and secondary static stabilizing functions of the posterior oblique ligament (POL), the proximal and distal divisions of the superficial medial collateral ligament (sMCL), and the meniscofemoral and meniscotibial portions of the deep medial collateral ligament (MCL). Hypothesis: Identification of the primary and secondary stabilizing functions of the individual components of the main medial knee structures will provide increased knowledge of the medial knee ligamentous stability. Study Design: Descriptive laboratory study. Methods: Twenty-four cadaveric knees were equally divided into 3 groups with unique sequential sectioning sequences of the POL, sMCL (proximal and distal divisions), and deep MCL (meniscofemoral and meniscotibial portions). A 6 degree of freedom electromagnetic tracking system monitored motion after application of valgus loads (10 Nm) and internal and external rotation torques (5 Nm) at 0°, 20°, 30°, 60°, and 90° of knee flexion. Results: The primary valgus stabilizer was the proximal division of the sMCL. The primary external rotation stabilizer was the distal division of the sMCL at 30° of knee flexion.
    [Show full text]
  • Management of the Multi-Ligamentous Injured Knee: an Evidence-Based Review
    Review Article Page 1 of 7 Management of the multi-ligamentous injured knee: an evidence-based review Linsen T. Samuel1, Jacob Rabin1, Alex Jinnah2, Samuel Rosas2, Linda Chao2, Rashad Sullivan2, Chukwuweike U. Gwam2 1Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA; 2Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA Contributions: (I) Conception and design: LT Samuel, J Rabin, CU Gwam; (II) Administrative support: LT Samuel, J Rabin, CU Gwam; (III) Provision of study materials or patients: LT Samuel, J Rabin, CU Gwam; (IV) Collection and assembly of data: LT Samuel, J Rabin, CU Gwam; (V) Data analysis and interpretation: LT Samuel, J Rabin, CU Gwam; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Chukwuweike U. Gwam, MD. Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA. Email: [email protected]. Abstract: Multi-ligamentous knee injury (MLKI) can be a devastating injury, resulting in long-term knee instability and loss of function. For patients with MLKI, areas of controversy persist on how to best optimize outcomes. These areas of contention are often centered operative timing and technique with the aims of restoring patient function, knee range of motion, and stability. Currently, a paucity of studies exists that can be used to direct orthopedists on how to manage MLKI patients. This review critically analyzes literature in attempts to equip readers with best options for managing patients with MLKI. Keywords: Multi-ligamentous knee injury (MLKI); knee dislocation; management Received: 15 December 2018; Accepted: 22 February 2019; Published: 21 March 2019.
    [Show full text]
  • Surgical Approach to the Posteromedial Corner: Indications, Technique, Outcomes
    Curr Rev Musculoskelet Med (2013) 6:124–131 DOI 10.1007/s12178-013-9161-3 KNEE (SL SHERMAN, SECTION EDITOR) Surgical approach to the posteromedial corner: indications, technique, outcomes Kathryn L. Bauer & James P. Stannard Published online: 1 March 2013 # Springer Science+Business Media New York 2013 Abstract Injuries to the medial side of the knee can occur injuries involving the medial collateral ligament and the in isolation or in conjunction with multiple other ligaments structures of the PMC has important clinical implications. about the knee. In addition, medial knee injuries can involve Failure to recognize this difference has been implicated as a isolated injury to the medial collateral ligament or include potential reason for failure of reconstructed cruciate liga- the posteromedial structures of the knee. Treatment strate- ments in combined injuries [1–3]. This article provides gies differ greatly depending on injury pattern. In order to information based on review of recent literature that select an appropriate treatment strategy, one must accurately describes the anatomy, biomechanical function, and current diagnose the injury pattern based on clinical examination treatment principles regarding the PMC. In addition, we will and the use of appropriate imaging studies. The fundamental provide our current preferred method for reconstruction of basis for diagnosis of a medial sided knee injury stems from the PMC based on outcomes in patients treated with multi- understanding the static and dynamic stabilizing structures ligamentous knee injuries. that compose the medial side of the knee. It is our aim to define the anatomic roles of medial sided structures, their importance in protecting the biomechanical stability of the Anatomic considerations knee, as well as provide indications and our preferred pro- cedures for surgical management of these complex injuries.
    [Show full text]