Isolation and Characterization of Mutants Affecting Carbon Catabolism in Sín O Rh I Zob Ium Melilo Ti

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Characterization of Mutants Affecting Carbon Catabolism in Sín O Rh I Zob Ium Melilo Ti Isolation and characterization of mutants affecting carbon catabolism in Sín o rh i zob ium melilo ti by Nathan lohn Poysti A Thesis submitted to the Faculty of Graduate studies of the university of Manitoba in partial fulfilment of the requirements of the degree of Master of Science Department of Microbiology University of Manitoba Winnipeg, Manitoba Canada @ Nathan Poysti ,2002 THE UNTVERSITY OF MANITOBA FACULTY OF GRADUATE STTIDIES tr*rrtr* COPYRIGHT PERMISSION lsolation and characterization of mutants Affecting carbon catabolism in Sinorhizobium meliloti BY Nathan John Poysti A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirement of the degree MASTER OF SCIENCE Nathan John Poysti O 2007 Permission has been granted to the University of Manitoba Libraries to lend a copy of this thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum, and to LAC's agent (UMlÆroQuest) to microfilm, sell copies and to pubtish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made availabte by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. Abstract Sinorhizobium meliloti is a bacterium capable of participating in a symbiotic relation- ship with plants in which it forms N2 fixing nodules. The ability to use specific carbon sources has been shotnm to provide S. melíIoti and other rhizobia with competitive ad- vantages in the ability to effectively nodulate host plants. The sugars rhamnose and ara- binose were hypothesized to play a role in the abitity to compete for nodule occupancy in S. melilori. To test these hypotheses, the S. meliloti wild type, RmI02l, was subjected to transposon mutagenesis experiments and the resulting mutants were screened for the inability to use rhamnose or arabinose as sole carbon sources. Mutations affecting rhamnose and arabinose catabolism were isolated and subsequent characterization re- sulted in the identification of a rhamnose catabolism operon, an arabinose catabolism operon and a triose phosphate isomerase encoding gene. A-lthough mutants unable to utilize arabinose were not less competitive than wild type, the ability to utilize rhamnose was found to play a role in competition for nodule occupancy. Furthermore, the roles of two triose phosphate isomerase genes were characterized with respect to symbiosis and the free-living state. II Acknowledgements First, I would like to sincerely thank my supervisor, Dr. Ivan Oresnik, for his motivation, enthusiasm and support during this project. I am very glad to have found such a ded- icated supervisor! I would also like to thank my advisory committee: Dr. Harry Duck- worth and Dr. Teri de Kievit, for their thorough consideration and excellent suggestions regarding my work and thesis. i would like to thank my friends in the lab: Iason Richardson, Mark Miller_Williams, Brad Pickering, Erin Loewen, and HarryYudistira. Not only did we have excellent scien- tific discussions, but we had a lot of fun too! I am very grateful to both my immediate and extended family for being so enthusi- astic and encouraging during my studies. Last, but not least, Kimberly Poysti has been incredible. I sincerely appreciate her dedication, love, and patience. I would like to acknowledge the Natural Sciences and Engineering Research Council of Canada fo¡ their generous funding. III Contents Abstract II Acknowledgements IiI List of tables. VII List of figures . VIII I-ist of abbreviations x Introduction I S. nteliloti symbiosis and nodulation Ja S. meliloti carbon metabolism 7 Bacteroid metabolism 2l Competition for nodule occupancy . 25 ca Research goals J¿ Rhamnose catabolism and transport in S. melílotí 34 Summary 34 Introduction . 35 Materials and methods . 36 Bacterial strains, plasmids, and media 36 Genetic techniques 3B Rhamnose transport assays 3B Plantassays .... 3B Results 39 S. meliloti rhamnose catabolism Iocus 39 Rhamnose mutants are not sensitive on rhamnose/glycerol media 40 Heterologous complementation of S. meliloti rhamnose mutants 43 R. leguminosa.rum RhaK is capable of complementing S. meliloti rhaK mutations. 46 Testing the S. meliloti rhalocus for uptake of rhamnose. 47 s. meliloti rhamnose mutants are less competitive for nodule occupancy 50 Discussion 52 ry Characterization of S. m.eliloti triose phosphate isomerase genes 57 Summary 57 Introduction 5B Materials and methods . 59 Bacterial strains, plasmids, and media 59 DNA manipulations and plasmid constructions . 60 Genetic techniques and mutant construction. 63 Mutant identification . 64 liiose phosphate isomerase assays 65 Symbiotic competence assays 65 Results 66 Analysis of tpiAand tpiB 66 tpiAand tpiB are needed for gluconeogenesis 69 Both tpíAand tpiB encode triose phosphate isomerases 69 In uiuo complementation of tpiA 72 Constitutively expressed tpiA cannot complement tpiB . /J S)¡mbiotic competence phenotypes . 75 Discussion 79 Arabinose catabolism and transport in S. meliloti B4 Summary B4 Introduction B5 Methods UIoa Bacterial strains and growth conditions 87 Genetic techniques B9 Mutant identification. B9 Arabinose dehydrogenase assay. 90 B - galactosidase assays 9l Arabinose and glucose transport assays. 9l Symbiotic profi ciency assays. 92 Symbiotic competition assays. 92 Iìesults 93 Isolation of arabinose catabolism mutants. 93 Analysis of arabinose transcriptional unit. 94 Arabinose dehydrogenase activity is present in an araD mutant. 99 Induction of araoperon by arabinose, seed exudate and galactose. r00 Expression of the ara opeÍon is moderately repressed by succinate and glucose. I02 The araoperon is required for arabinose transport. 104 Glucose uptake is not compromised in arabinose catabolism mutants. 106 V Plant symbiosis and competition for nodule occupancy. r07 Discussion 108 Conclusion tl3 References tt7 VI List of tables 2.1 Bacterial strains and plasmids . J/ 2.2 Homology of S. meliloti and R.leguminosa.rumrhamnose loci 42 1) L.J Growth of s. melilofi rhamnose mutants on rhamnose and glycerol 44 2.4 The A. leguminosarum rharegion does not complement s. meliloti 45 2.5 R. leguminosarum rhaK complements s. melitoti rhaK mutations . 48 3.1 Bacterial strains and plasmids . 6i 3.2 Primers used in this work 62 3.3 Relevant growth phenotypes of triose phosphate isomerase mutants on defined media 70 3.4 Triose phosphate isomerase activities measured for different strains . ZI 3.5 complementation of triose phosphate isomerase mutants by plasmid ex- pressed tpiAandtpiB . Z4 3.6 Dry weights from growth trials of various S. metiloti strains Z6 4.1 Bacterial strains and plasmids . BB 4.2 Induction of the arabinose operon by several carbon sources l0I 4.3 The arabinose operon is not subject to catabolite repression by glucose or succinate 103 4.4 Labeled arabinose accumulation bywild tlpe and arabinose mutants . 105 VII Líst of figures o 1.1 Schematic of S. melilori hexose metabolism O L.2 S. meliloti galactose catabolism via the De Ley-Doudoroff pathway . i5 1.3 Schematic of the pentose phosphate pathway I7 I.4 Schematic of the S. meliloti tricarboxylic acid cycle . I9 2.I S. meliloti rhamnose utilization locus . 4I 2.2 s. meliloti wild type and mutant accumulation of labeled rhamnose . 49 2.3 Rhamnose accumulation by s. melilotí grown in rhamnose and glycerol . 51 2.4 A rhamnose mutant is less competitive than wild type for nodule occu- pancy 3.t Physical map of S. meliloti triose phosphate isomerase encoding loci . 3.2 Nodulation kinetics of S. nteliloti wild type and triose phosphate isomer- ase mutants 4.r Physical map of S. meliloti arabinose utilization locus . 95 4.2 Schematic of the S. melilotí arabinose catabolism pathway 9B 4.3 Á,n arabinose catabolism mutant is not competitively deficient 109 VIII List of abbreviations ABC ATP-binding cassette ATP Adenosine triphosphate CS Citrate slmthase DHAP Dihydroxyacetonephosphate DME Diphosphopyridine-nucleotidedependentmalicenzyme DNA Deoxyribonucleic acid ED Entner-Doudoroff EMP Embden-Meyerhof-Parnas EPS Exopolysaccharide FBA Fructose-bisphosphate aldolase G3P Glyceraldehyde-3-phosphate GAP Glyceraldehyde-3-phosphate dehydrogenase GC-MS Gaschromatography-massspectrometry GDH Glucose dehydrogenase Gm Gentamicin ICD Isocitrate dehydrogenase x Kan Kanamycin KDPG 2-keto-3-deoxy-6-phosphogluconate KGD ø-ketoglutarate dehydrogenase LB Luria-Bertani MDH Malate dehydrogenase mRNA Messenger RNA MCP Methyl-acceptingchemotaxisprotein NAD.Ì Nicotinamideadeninedinucleotide NADPr Nicotinamide adenine dinucleotide phosphate Nm Neomycin NMR Nuclear magnetic resonance ODcoo Optical density at 600 nm ORF Open reading frame PCK Phosphoenolpyruvate carboxykinase PCR Polymerase chain reaction PFK Phosphofructokinase PGDH 6-phosphogluconatedehydrogenase PHB Polyhydroxybutyrate POD Pyruvateorthophosphatedikinase PP Pentose phosphate PYC Pyruvate carboxylase X Rf Rifampicin RNA Ribonucleic acid SDH Succinatedehydrogenase Sm Streptomycin Tc l.etracycline TCA Tricarboxylic acid TME Triphosphopyridine-nucleotidedependentmalic enzyme TPI Triose phosphate isomerase IRNA Transfer RNA TY Tryptoneyeast VMM Vincent's minimal medium XI Chapter I Introduction Sinorhizobium melilorl is a Gram-negative bacterium which is studied as a model sys- tenr for plant-microbe symbiosis. S. meliloti lives a saproph¡ic lifestyle and has the ability to form a symbiotic
Recommended publications
  • Integrated Molecular Analysis of Sugar Metabolism of Sulfolobus Solfataricus
    Integrated molecular analysis of Sugar Metabolism of Sulfolobus solfataricus Stan J.J. Brouns Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Promotoren prof. dr. Willem M. de Vos hoogleraar in de Microbiologie Wageningen Universiteit prof. dr. John van der Oost persoonlijk hoogleraar Microbiologie en Biochemie Wageningen Universiteit Leden van de prof. dr. Ton J.W.G. Visser promotie bijzonder hoogleraar Microspectroscopie in de Biochemie commissie Wageningen Universiteit prof. dr. Arnold J.M. Driessen hoogleraar Moleculaire Microbiologie Rijksuniversiteit Groningen dr. Loren L. Looger Howard Hughes Medical Institute Ashburn (VA), Verenigde Staten dr. Thijs Kaper Genencor International Palo Alto (CA), Verenigde Staten Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 2 oktober 2007 des namiddags te half twee in de Aula Cover Boiling water: the habitat of a hyperthermophile (photo: S.J.J. Brouns) Printing Gildeprint (Enschede) Sponsoring Hellma Benelux, bioMérieux Brouns, S.J.J. - Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus in Dutch Geïntegreerde moleculaire analyse van het suikermetabolisme van Sulfolobus solfataricus PhD Thesis Wageningen University, Wageningen, Netherlands (2007) 176 p. - with summary in Dutch ISBN 978-90-8504-713-1 Voor mijn ouders en Marloes DANkwooRD Met trots ligt ligt hier nu een boekje. Natuurlijk kon het niet totstandkomen zonder de hulp van anderen. In dit stukje wil ik die mensen bedanken.
    [Show full text]
  • Metatranscriptomic Analysis of Community Structure And
    School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support.
    [Show full text]
  • Novel Non-Phosphorylative Pathway of Pentose Metabolism from Bacteria
    www.nature.com/scientificreports OPEN Novel non-phosphorylative pathway of pentose metabolism from bacteria Received: 22 March 2018 Seiya Watanabe1,2,3, Fumiyasu Fukumori4, Hisashi Nishiwaki1,2, Yasuhiro Sakurai5, Accepted: 30 September 2018 Kunihiko Tajima5 & Yasuo Watanabe1,2 Published: xx xx xxxx Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodorof pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identifed on the genome of Herbaspirillum huttiense IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, difered from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea. Te breakdown of D-glucose is central for energy and biosynthetic metabolism throughout all domains of life. Te most common glycolytic routes in bacteria are the Embden-Meyerhof-Parnas, the Entner-Doudorof (ED), and the oxidative pentose phosphate pathways. Te distinguishing diference between the two former glyco- lytic pathways lies in the nature of the 6-carbon metabolic intermediates that serve as substrates for aldol cleav- age.
    [Show full text]
  • Publications 2013 Onwards Where Structural Biology Finland (Finstruct) and Instruct Centre Finland Services and Expertise Have Been Utilized
    FINStruct and Instruct Centre Finland Publications February 3, 2021 Publications 2013 onwards where Structural Biology Finland (FINStruct) and Instruct Centre Finland services and expertise have been utilized 2021 1. Eesmaa A, Yu L-Y, Göös H, Nõges K, Kovaleva V, Hellman M, Zimmermann R, Jung M, Permi P, Varjosalo M, Lindholm P, Saarma M. 2021. The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J. Biol. Chem, in press. 2. Flatt, J.W., Domanska, A., Seppälä, A.L., Butcher, S.J. 2021. Identification of a conserved virion- stabilizing network inside the interprotomer pocket of enteroviruses. Comms Biol. accepted 3. Georgakis N, Poudel N, Vlachakis D, Papageorgiou AC, Labrou NE. 2021. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. Plant Physiol Biochem 158:342-352. 4. Mustonen V, Muruganandam G, Loris R, Kursula P, Ruskamo S. 2021. Crystal and solution structure of NDRG1, a membrane-binding protein linked to myelination and tumour suppression. FEBS J. 2020. Epub ahead of print. 5. Myllykoski M, Sutinen A, Koski MK, Kallio JP, Raasakka A, Myllyharju J, Wierenga RK, Koivunen P. 2021. Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains. J Biol Chem. Epub ahead of print. 6. Papageorgiou AC, Poudel N, Matsson J. 2021. Protein analysis with X-ray crystallography. Methods Mol. Biol. 2178:377-404. 7. Platis M, Vlachakis D, Foudah AI, Muharram MM, Alqarni MH, Papageorgiou AC, Labrou NE. 2021. The interaction of Schistosoma japonicum glutathione transferase with Cibacron blue 3GA and its fragments.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • From Enzyme Cascades Towards Physiology and Application
    Sugar metabolism: from enzyme cascades towards physiology and application Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - vorgelegt von Lu Shen Molekulare Enzymtechnologie und Biochemie Biofilm Centre Fachbereich Chemie der Universität Duisburg-Essen 2019 Die vorliegende Arbeit wurde im Zeitraum von Dezember 2013 bis April 2019 bei Prof. Dr. Bettina Siebers im Arbeitskreis für Molekulare Enzymtechnologie und Biochemie (Biofim Centre) der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 05.11.2019 Gutachter: Prof. Dr. Bettina Siebers Prof. Dr. Peter Bayer Vorsitzender: Prof. Dr. Thomas Schrader Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/70847 URN: urn:nbn:de:hbz:464-20201027-101056-7 Dieses Werk kann unter einer Creative Commons Namensnennung 4.0 Lizenz (CC BY 4.0) genutzt werden. Content 1 Introduction ...................................................................................................................... 1 1.1 Archaea ......................................................................................................................... 1 1.2 Sulfolobus spp. .............................................................................................................. 3 1.3 Hexose metabolism in Sulfolobus spp. .......................................................................... 4 1.3.1 The bifunctional
    [Show full text]
  • The Crystal Structure of D-Xylonate Dehydratase Reveals Functional Features of Enzymes from the Ilv/ED Dehydratase Family
    www.nature.com/scientificreports OPEN The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED Received: 18 October 2017 Accepted: 22 December 2017 dehydratase family Published: xx xx xxxx Mohammad Mubinur Rahman1, Martina Andberg2, Anu Koivula2, Juha Rouvinen1 & Nina Hakulinen 1 The Ilv/ED dehydratase protein family includes dihydroxy acid-, gluconate-, 6-phosphogluconate- and pentonate dehydratases. The members of this family are involved in various biosynthetic and carbohydrate metabolic pathways. Here, we describe the frst crystal structure of D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) at 2.7 Å resolution and compare it with other available enzyme structures from the IlvD/EDD protein family. The quaternary structure of CcXyDHT is a tetramer, and each monomer is composed of two domains in which the N-terminal domain forms a binding site for a [2Fe-2S] cluster and a Mg2+ ion. The active site is located at the monomer-monomer interface and contains residues from both the N-terminal recognition helix and the C-terminus of the dimeric counterpart. The active site also contains a conserved Ser490, which probably acts as a base in catalysis. Importantly, the cysteines that participate in the binding and formation of the [2Fe-2S] cluster are not all conserved within the Ilv/ED dehydratase family, which suggests that some members of the IlvD/EDD family may bind diferent types of [Fe-S] clusters. Tere is increasing interest in developing economical and sustainable bioprocesses to convert biomass into valua- ble organic compounds. Metabolic engineering and synthetic biology have enabled the development of optimized microbial strains for the production of target compounds by taking advantage of known pathways and enzymes.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Genetically Encoded Biosensors for Branched-Chain Amino Acid Metabolism to Monitor
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.08.982801; this version posted March 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Genetically encoded biosensors for branched-chain amino acid metabolism to monitor 2 mitochondrial and cytosolic production of isobutanol and isopentanol in yeast 3 Yanfei Zhang 1, Sarah K. Hammer 1, Cesar Carrasco-Lopez 1, Sergio A. Garcia Echauri 1, and José 4 L. Avalos * 1, 2, 3 5 6 1 Department of Chemical and Biological Engineering; 2 Andlinger Center for Energy and the 7 Environment; 3 Department of Molecular Biology, Princeton University, Princeton, NJ 8 9 10 11 12 *Corresponding author: José L. Avalos 13 Department of Chemical and Biological Engineering, 14 Princeton University, 15 101 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA 16 Phone office: +1 (609) 258-9881 17 Phone lab: +1 (609) 258-0542 18 Fax: +1 (609) 258-1247 19 Email: [email protected] 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.08.982801; this version posted March 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 22 Abstract 23 Branched-chain amino acid (BCAA) metabolism can be harnessed to produce many valuable 24 chemicals.
    [Show full text]
  • Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas
    The University of Southern Mississippi The Aquila Digital Community Faculty Publications 4-14-2021 Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes In Rhizosphere Pseudomonas Olga V. Mavrodi University of Southern Mississippi Janiece R. McWilliams University of Southern Mississippi Jacob O. Peter University of Southern Mississippi Anna Berim Washington State University Karl A. Hassan University of Newcastle FSeeollow next this page and for additional additional works authors at: https:/ /aquila.usm.edu/fac_pubs Part of the Microbiology Commons Recommended Citation Mavrodi, O. V., McWilliams, J. R., Peter, J. O., Berim, A., Hassan, K. A., Elbourne, L. D., LeTourneau, M. K., Gang, D. R., Paulsen, I. T., Weller, D. M., Thomashow, L. S., Flynt, A. S., Mavrodi, D. V. (2021). Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes In Rhizosphere Pseudomonas. Frontiers In Microbiology, 12. Available at: https://aquila.usm.edu/fac_pubs/18474 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Authors Olga V. Mavrodi, Janiece R. McWilliams, Jacob O. Peter, Anna Berim, Karl A. Hassan, Liam D.H. Elbourne, Melissa K. LeTourneau, David R. Gang, Ian T. Paulsen, David M. Weller, Linda S. Thomashow, Alex S. Flynt, and Dmitri V. Mavrodi This article is available at The Aquila Digital Community: https://aquila.usm.edu/fac_pubs/18474 fmicb-12-651282 April 8, 2021 Time: 20:20 # 1 ORIGINAL RESEARCH published: 14 April 2021 doi: 10.3389/fmicb.2021.651282 Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas Edited by: Olga V.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]