Stepwise Functional Evolution in a Fungal Sugar Transporter Family Carla Gonçalvesa, Marco A

Total Page:16

File Type:pdf, Size:1020Kb

Stepwise Functional Evolution in a Fungal Sugar Transporter Family Carla Gonçalvesa, Marco A MBE Advance Access published October 15, 2015 Article Discoveries Section Stepwise functional evolution in a fungal sugar transporter family Carla Gonçalvesa, Marco A. Coelhoa Madalena Salema-Ooma,b and Paula Gonçalvesa,* aUCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Downloaded from Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal bInstituto Superior Ciências da Saúde Egas Moniz, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), 2829-511, Caparica, Portugal http://mbe.oxfordjournals.org/ *Corresponding Author: Paula Gonçalves UCIBIO-REQUIMTE Departamento de Ciências da Vida at Egas Moniz - Cooperativa de Ensino Superior, CRL on January 17, 2017 Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2829-516, Caparica, Portugal Tel: (+351) 21 294 85 30 Email: [email protected] © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: [email protected] 1 Abstract Sugar transport is of the utmost importance for most cells and is important to a wide range of applied fields. However, despite the straightforward in silico assignment of many novel transporters, including sugar porters, to existing families, their exact biological role and evolutionary trajectory often remain unclear, mainly because biochemical characterization of membrane proteins is inherently challenging, but also owing to their uncommonly turbulent evolutionary histories. In addition, many important shifts in membrane carrier function are Downloaded from apparently ancient, which further limits our ability to reconstruct evolutionary trajectories in a reliable manner. Here we circumvented some of these obstacles by examining the relatively recent emergence of http://mbe.oxfordjournals.org/ a unique family of fungal sugar facilitators, related to drug antiporters. The former transporters, named Ffz, were previously shown to be required for fructophilic metabolism in yeasts. We first exploited the wealth of fungal genomic data available to define a comprehensive but well- delimited family of Ffz-like transporters, showing that they are only present in Dikarya. Subsequently, a combination of phylogenetic analyses and in vivo functional characterization was used to retrace important changes in function, while highlighting the evolutionary events that are at Egas Moniz - Cooperativa de Ensino Superior, CRL on January 17, 2017 most likely to have determined extant distribution of the gene, such as horizontal gene transfers (HGTs). One such HGT event is proposed to have set the stage for the onset of fructophilic metabolism in yeasts, a trait that according to our results may be the metabolic hallmark of approximately one hundred yeast species that thrive in sugar rich environments. 2 Introduction Sugar transport is a biological process of paramount importance, since for a wide variety of organisms in all kingdoms of life, sugars (mono and di-saccharides) are favorite carbon and energy sources. Partitioning and distribution of sugars is accordingly found to be disturbed in various important animal and plant diseases. For example, one important biochemical hallmark of cancer cells is their increased rates of glucose uptake (Ganapathy-Kanniappan and Geschwind Downloaded from 2013) and some bacterial plant pathogens are able to increase sugar levels in their vicinity by inducing the expression of particular sugar transporter genes in the host plant (Streubel et al. 2013). Moreover, industrial substrates for microbial growth are often sugar-rich and research on http://mbe.oxfordjournals.org/ microbial biotechnology based processes, such as beer and bioethanol production, revealed over the past few decades several examples of the high impact of the sugar transport step on overall fermentation performances (Reznicek et al. 2015; Vidgren et al. 2010; Young et al. 2012). This was also patent when domesticated microbes were genetically dissected and compared to their “wild counterparts” (Libkind et al. 2011; Perez-Ortin et al. 2002). Hence, an improved understanding of sugar transport is pertinent to a wide variety of areas of applied interest, from at Egas Moniz - Cooperativa de Ensino Superior, CRL on January 17, 2017 human health to agricultural crop yield and biotechnology. In spite of this, the elucidation of functional and structural aspects of integral membrane proteins, remains inherently challenging, resulting in a considerable deficit in available biochemical data for in silico predicted transporter proteins, when compared to their soluble metabolic enzyme counterparts (Reddy et al. 2012). While approximately 800 families of cellular solute transporters have been identified, based on functional and phylogenetic evidence (Saier et al. 2014), most eukaryotic sugar carriers belong to the largest superfamily of transporters, the so-called Major Facilitator Superfamily (MFS) (Pao et al. 1998). This superfamily is ubiquitously distributed in the biosphere, and is characterized on the one hand by considerable structural conservation and, on the other hand, by an astounding diversity of substrates and of modes of operation (uniport, symport and antiport) (Reddy, et al. 2012). The few sugar transporters that do not belong to MFS are a well-studied human glucose transporter (SGLT) placed in the solute:sodium symporter family (Wright et al. 2011) and a novel type of carrier generically dubbed SWEET (or SemiSWEET) that was recently discovered in plants, animals and bacteria and fits into the Transporter-Opsin-G-protein coupled receptor (TOG) superfamily (Feng and Frommer 2015). In fungi, all sugar transporters characterized so far are included in the Sugar Porter (SP) family within MFS, with the notable exception of those belonging to the Ffz-like family which are the main subject of this work (Leandro et al. 2011) and were rather included in a different MFS family formed by Drug:H+ antiporters (DHA1 family). 3 Ffz transporters have so far been found only in a limited number of fungal species (Cabral et al. 2015; Leandro, et al. 2011; Lee et al. 2014; Pina et al. 2004). In vivo biochemical characterization showed that they are usually high capacity and low affinity uniporters, specific for fructose (Leandro, et al. 2011; Lee, et al. 2014; Pina, et al. 2004), while genetic analyses showed that Ffz1 seems to be a pre-requisite for fructophily in at least one yeast species (Leandro et al. 2014). Fructophily, defined as the preference for fructose over glucose as carbon and energy source, is a metabolic trait well characterized so far in a few yeast species found in high sugar environments (Pina, et al. 2004; Tofalo et al. 2009) and in some bacteria (Endo et al. 2009; Endo Downloaded from and Salminen 2013). The singularity of the evolutionary origin of the Ffz family of transporters and its consistent association with fructophily in yeast taxa belonging to widely different lineages but inhabiting similar habitats (Sousa-Dias et al. 1996; Yu et al. 2006), suggest an evolutionary http://mbe.oxfordjournals.org/ path punctuated by profound but relatively recent functional change and opens the possibility to establish a link between functional evolution and certain ecological traits. In fact, the organization of transporter families within the MFS Superfamily shows a general agreement between phylogenetic relatedness and the type of substrate accepted by the transporter. For example, the Most Recent Common Ancestor (MRCA) of the Sugar Porter family probably goes far back in evolutionary history, as this family comprises members spanning the diversity of life, from human at Egas Moniz - Cooperativa de Ensino Superior, CRL on January 17, 2017 to bacteria, all accepting only sugars or related compounds as substrates. Hence, the emergence of a sugar transporter “sub-family” within a Drug:H+ antiporter family is likely to be comparatively a very recent event, possibly related to selective pressures associated to the adaptation of specific fungal lineages to new environments or lifestyles. In addition, within the Ffz family itself, some functional differences have been noted prior to this study, since the Ffz2 type of transporter accepts both glucose and fructose as substrates (Leandro, et al. 2011) contrary to the first identified member of the family, Ffz1, reported to accept only fructose (Pina, et al. 2004). All these considerations led us to regard the Ffz family as an excellent model in which to examine adaptive evolution of transporters and possibly to establish a relation between sugar transport and organismal ecology. As a consequence, we set out to explore the wealth of genomic data available for fungi to illuminate the evolutionary origin and history of the Ffz sugar transporter family. Elucidation of the molecular evolution of sugar transporters is often complicated by redundancy and particularly rapid evolution (Brown et al. 2010; Lin and Li 2011). An emblematic example of this is the small genome of the model yeast Saccharomyces cerevisiae that encodes at least 17 hexose uniporters, named HXT. Biochemical characterization revealed similar substrate specificities for many of the Hxt transporters but clear differences in the affinity for glucose (Diderich et al. 2001; Reifenberger et al. 1997). However, provided that expression levels are appropriate, most HXT genes seem to be able to support growth of S. cerevisiae on glucose, fructose and mannose (Diderich, et al. 2001; Reifenberger, et
Recommended publications
  • Deep Microbial Community Profiling Along the Fermentation Process of Pulque, a Major Biocultural Resource of Mexico
    bioRxiv preprint doi: https://doi.org/10.1101/718999; this version posted July 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. 1 1 2 Carolina Rocha-Arriaga ,​ Annie Espinal-Centeno ,​ Shamayim Martinez-Sanchez ,​ Juan ​ ​ 1 2 ​ 1,3 ​ Caballero-Pérez ,​ Luis D. Alcaraz *​ & Alfredo Cruz-Ramirez *.​ ​ ​ ​ 1 Molecular​ & Developmental Complexity Group, Unit of Advanced Genomics, LANGEBIO-CINVESTAV, Irapuato, México. 2 Laboratorio​ de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 Coyoacán, Mexico City, Mexico. 3 Escuela​ de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico. *Corresponding authors: [email protected], [email protected] ​ ​ ​ ● ​Our approach allowed the identification of a broader microbial diversity in Pulque ● We increased 4.4 times bacteria genera and 40 times fungal species detected in mead. ● Newly reported bacteria genera and fungal species associated to Pulque fermentation Abstract Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. ​ During colonial times they were renamed with the antillan word maguey. This was changed ​ ​ again by Carl von Linné who called them Agave (a greco-latin voice for admirable). For several ​ Mexican prehispanic cultures, Agave species were not only considered as crops, but also part ​ of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli.
    [Show full text]
  • WINE YEAST: the CHALLENGE of LOW TEMPERATURE Zoel Salvadó Belart Dipòsit Legal: T.1304-2013
    WINE YEAST: THE CHALLENGE OF LOW TEMPERATURE Zoel Salvadó Belart Dipòsit Legal: T.1304-2013 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • Heat Resistance of Vegetative Cells and Asci of Two Zygosac- Charomyces Yeasts in Broths at Different Water Activity Values
    835 Journal of Food Protection, Vol. 50, No. 10, Pages 835-841 (October 1987) Copyright1 International Association of Milk, Food and Environmental Sanitarians Heat Resistance of Vegetative Cells and Asci of Two Zygosac- charomyces Yeasts in Broths at Different Water Activity Values MARCO F. G. JERMINI1 and WILHELM SCHMIDT-LORENZ* Food Microbiology Laboratory, Department of Food Science, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland Downloaded from http://meridian.allenpress.com/jfp/article-pdf/50/10/835/1651027/0362-028x-50_10_835.pdf by guest on 01 October 2021 (Received for publication February 2, 1987) ABSTRACT solutions of sucrose or in sucrose-glucose mixtures at re­ duced a (19). Since the influence of lyophilization on The heat resistance of vegetative cells and asci of two os- w motolerant yeasts (Zygosaccharomyces rouxii and Z. bailii) was heat resistance has not yet been investigated, great cau­ tion is needed in evaluating those results. investigated in two different broths of aw 0.963 and 0.858, re­ spectively. The highest heat resistance was observed with asci Corry (12) demonstrated that the heat resistance of of Z. bailii LMZ 108, showing a decimal reduction time CD- Saccharomyces rouxii at 65°C, pH 6.5 and aw 0.95 was value) at 60°C and aw 0.858 of 14.9 min. Asci of Z. rouxii at the highest levels in solutions of sucrose, less in sor­ v LMZ 100 were less heat resistant (D60=c- alue at aw 0.858 = 3.5 bitol and least in solutions of glucose, fructose and min). The heat resistance (D-values) of asci at aw 0.963 proved glycerol.
    [Show full text]
  • Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking
    fermentation Article Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking Chun Tang Feng, Xue Du and Josephine Wee * Department of Food Science, The Pennsylvania State University, Rodney A. Erickson Food Science Building, State College, PA 16803, USA; [email protected] (C.T.F.); [email protected] (X.D.) * Correspondence: [email protected]; Tel.: +1-814-863-2956 Abstract: Native microorganisms present on grapes can influence final wine quality. Chambourcin is the most abundant hybrid grape grown in Pennsylvania and is more resistant to cold temperatures and fungal diseases compared to Vitis vinifera. Here, non-Saccharomyces yeasts were isolated from spontaneously fermenting Chambourcin must from three regional vineyards. Using cultured-based methods and ITS sequencing, Hanseniaspora and Pichia spp. were the most dominant genus out of 29 fungal species identified. Five strains of Hanseniaspora uvarum, H. opuntiae, Pichia kluyveri, P. kudriavzevii, and Aureobasidium pullulans were characterized for the ability to tolerate sulfite and ethanol. Hanseniaspora opuntiae PSWCC64 and P. kudriavzevii PSWCC102 can tolerate 8–10% ethanol and were able to utilize 60–80% sugars during fermentation. Laboratory scale fermentations of candidate strain into sterile Chambourcin juice allowed for analyzing compounds associated with wine flavor. Nine nonvolatile compounds were conserved in inoculated fermentations. In contrast, Hanseniaspora strains PSWCC64 and PSWCC70 were positively correlated with 2-heptanol and ionone associated to fruity and floral odor and P. kudriazevii PSWCC102 was positively correlated with a Citation: Feng, C.T.; Du, X.; Wee, J. Microbial and Chemical Analysis of group of esters and acetals associated to fruity and herbaceous aroma.
    [Show full text]
  • ISSN 0513-5222 Official Publication of the International Commission on Yeasts of the International Union of Microbiological Soci
    ISSN 0513-5222 Official Publication of the International Commission on Yeasts of the International Union of Microbiological Societies (IUMS) DECEMBER 2012 Volume LXI, Number II Marc-André Lachance, Editor University of Western Ontario, London, Ontario, Canada N6A 5B7 <[email protected] > http://www.uwo.ca/biology/YeastNewsletter/Index.html Associate Editors Peter Biely Patrizia Romano Kyria Boundy-Mills Institute of Chemistry Dipartimento di Biologia, Herman J. Phaff Culture Slovak Academy of Sciences Difesa e Biotecnologie Collection Dúbravská cesta 9, 842 3 Agro-Forestali Department of Food Science 8 Bratislava, Slovakia Università della Basilicata, and Technology Via Nazario Sauro, 85, 85100 University of California Davis Potenza, Italy Davis California 95616-5224 WI Golubev, Puschino, Russia . 30 CP Kurtzman, Peoria, Illinois, USA . 42 M Kopecká, Brno, Czech Republic . 30 A Caridi, Reggio Calabria, Italie . 45 GI Naumov and E.S. Naumova, E Breirerová, Bratislava, Slovakia . 47 Moscow, Russia ..................... 31 P Buzzini, Perugia, Italy. 49 J du Preez, Bloemfontein, South Africa . 32 M Sipiczki, Debrecen, Hungary . 49 D Kregiel, Lodz, Poland ................. 34 JP Tamang, Tadong, Gangtok, India . 52 B Gibson, VTT, Finland ................. 35 MA Lachance, London, Ontario, Canada . 52 G Miloshev, Sofia, Bulgaria . 36 Forthcoming Meeting .................... 54 D Begerow and A Yurkov, Bochum, Germany 38 Fifty Years Ago ........................ 54 A Yurkov, Braunshweig, Gremany . 41 Editorial Complete Archive of Yeast Newsletter Back Issues Available Thanks to Kyria Boundy-Mills, readers can now have access to all back issues of the Yeast Newsletter as PDF scans. The archive is available at the following link: http://www.uwo.ca/biology/YeastNewsletter/BackIssues.html Addition of these large files made it necessary to move the YNL web site to a new server.
    [Show full text]
  • Transcriptional Profiling of Zygosaccharomyces Bailii Early
    www.nature.com/scientificreports OPEN Transcriptional profling of Zygosaccharomyces bailii early response to acetic acid or copper Received: 10 May 2018 Accepted: 31 August 2018 stress mediated by ZbHaa1 Published: xx xx xxxx Miguel Antunes, Margarida Palma & Isabel Sá-Correia The non-conventional yeast species Zygosaccharomyces bailii is remarkably tolerant to acetic acid, a highly important microbial inhibitory compound in Food Industry and Biotechnology. ZbHaa1 is the functional homologue of S. cerevisiae Haa1 and a bifunctional transcription factor able to modulate Z. bailii adaptive response to acetic acid and copper stress. In this study, RNA-Seq was used to investigate genomic transcription changes in Z. bailii during early response to sublethal concentrations of acetic acid (140mM, pH 4.0) or copper (0.08 mM) and uncover the regulatory network activated by these stresses under ZbHaa1 control. Diferentially expressed genes in response to acetic acid exposure (297) are mainly related with the tricarboxylic acid cycle, protein folding and stabilization and modulation of plasma membrane composition and cell wall architecture, 17 of which, directly or indirectly, ZbHaa1-dependent. Copper stress induced the diferential expression of 190 genes mainly involved in the response to oxidative stress, 15 ZbHaa1- dependent. This study provides valuable mechanistic insights regarding Z. bailii adaptation to acetic acid or copper stress, as well as useful information on transcription regulatory networks in pre-whole genome duplication (WGD) (Z. bailii) and post-WGD (S. cerevisiae) yeast species, contributing to the understanding of transcriptional networks’ evolution in yeasts. Zygosaccharomyces bailii is described as the most problematic food spoilage yeast due to its remarkable high tolerance to weak acids, namely acetic acid1.
    [Show full text]
  • Yeast Biodiversity Evolution Over Decades in Dealu Mare-Valea Calugareasca Vineyard
    Romanian Biotechnological Letters Vol. 16, No.1, 2011, Supplement Copyright © 2011 University of Buchare Printed in Romania. All rights reserved ORIGINAL PAPER Yeast biodiversity evolution over decades in Dealu Mare-Valea Calugareasca vineyard Received for publication, November 6, 2010 Accepted, February 11, 2011 MATEI RADOI FLORENTINA 1, BRINDUSE ELENA2, NICOALE GETUTA1, TUDORACHE AURELIA2, TEODORESCU RAZVAN 3 1 University of Agronomical Sciences and Veterinary Medicine of Bucharest, Faculty of Biotechnology 59, Marasti Ave., Bucharest, 010464 Romania, e-mail: [email protected] 2ICDVV Valea Calugareasca, Prahova, Romania 3University of Agronomical Sciences and Veterinary Medicine of Bucharest, FIFIM Abstract Belonging to a wider national project of yeast biodiversity conservation from consecrated Romanian vineyards, this study has been performed in a red wine recognized area, Valea Calugareasca from Dealu Mare County. The main goal has been to isolate yeasts from the vineyard, from the grape and during different phases of alcoholic fermentation and to perform their identification. The yeast isolation has been done from vine plantation of Cabernet Sauvignon, Merlot, Feteasca Neagra and Pinot Noir grape wines. We have used classical methodology for isolation and purification on YEPD, finally obtaining 262 isolates. The identification has followed two approaches: one by classical morphological and cultural analysis, using Barnett J.L. (2000) guide and the second one, employed rapid physiological tests of API 20 C Biomerieux galleries. A comparison between the two identification methods has been performed. A secondary goal of our study, but very important in the context to microbiota evolution, has been to compare our results (2007-2009) to former results obtained by Dr.
    [Show full text]
  • Search for Genes Responsible for the Remarkably High Acetic Acid Tolerance of a Zygosaccharomyces Bailii-Derived Interspecies Hy
    Palma et al. BMC Genomics (2015) 16:1070 DOI 10.1186/s12864-015-2278-6 RESEARCH ARTICLE Open Access Search for genes responsible for the remarkably high acetic acid tolerance of a Zygosaccharomyces bailii-derived interspecies hybrid strain Margarida Palma†, Filipa de Canaveira Roque†, Joana Fernandes Guerreiro, Nuno Pereira Mira, Lise Queiroz and Isabel Sá-Correia* Abstract Background: Zygosaccharomyces bailii is considered the most problematic acidic food spoilage yeast species due to its exceptional capacity to tolerate high concentrations of weak acids used as fungistatic preservatives at low pH. However, the mechanisms underlying its intrinsic remarkable tolerance to weak acids remain poorly understood. The identification of genes and mechanisms involved in Z. bailii acetic acid tolerance was on the focus of this study. For this, a genomic library from the highly acetic acid tolerant hybrid strain ISA1307, derived from Z. bailii and a closely related species and isolated from a sparkling wine production plant, was screened for acetic acid tolerance genes. This screen was based on the transformation of an acetic acid susceptible Saccharomyces cerevisiae mutant deleted for the gene encoding the acetic acid resistance determinant transcription factor Haa1. Results: The expression of 31 different DNA inserts from ISA1307 strain genome was found to significantly increase the host cell tolerance to acetic acid. The in silico analysis of these inserts was facilitated by the recently available genome sequence of this strain. In total, 65 complete or truncated ORFs were identified as putative determinants of acetic acid tolerance and an S. cerevisiae gene homologous to most of them was found. These include genes involved in cellular transport and transport routes, protein fate, protein synthesis, amino acid metabolism and transcription.
    [Show full text]
  • Evaluation of Zygosaccharomyces Bailii to Metabolize Residual Sugar Present in Partially-Fermented Red Wines
    Fermentation 2015, 1, 3-12; doi:10.3390/fermentation1010003 OPEN ACCESS fermentation ISSN 2311-5637 www.mdpi.com/journal/fermentation Article Evaluation of Zygosaccharomyces bailii to Metabolize Residual Sugar Present in Partially-Fermented Red Wines Jesse M. Zuehlke *, Bradford C. Childs and Charles G. Edwards School of Food Science, Washington State University, Pullman, WA 99164-6376, USA; E-Mails: [email protected] (B.C.C.); [email protected] (C.G.E.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-240-899-4449. Academic Editor: Ronnie G. Willaert Received: 3 February 2015 / Accepted: 17 March 2015 / Published: 26 March 2015 Abstract: An alternative approach to remove residual sugar from red wines using strains of Zygosaccharomyces bailli was studied. Fructose (40 or 60 g/L) and alcohol (13%, 15%, or 17% v/v) were added to a Cabernet Sauvignon wine before inoculation of Z. bailii B2, B6, or W3, or Saccharomyces cerevisiae EC1118. Most yeasts maintained populations ≥106 cfu/mL up to 100 days—the exceptions being W3 and EC1118, which declined to ≤30 cfu/mL in 17% alcohol wines beyond day 75. Wines containing 40 g/L fructose and 13% alcohol achieved dryness (<2 g/L), except those inoculated with B6. At 15% alcohol, B6, W3, and EC1118 consumed large levels of fructose (>80% of the 40 g/L; >50% of the 60 g/L) but limited amounts from wines containing 17% alcohol. Volatile acidities were higher in wines inoculated with strains of Z. bailli compared to S. cerevisiae (0.88 and 0.75 g/L, respectively).
    [Show full text]
  • Identification and Molecular Characterization of the Highly Acetic Acid Tolerant Zygosaccharomyces Bailii Strain IST302
    Identification and molecular characterization of the highly acetic acid tolerant Zygosaccharomyces bailii strain IST302 João Diogo André Peça Thesis to obtain the Master of Science Degree in Microbiology Supervisor: Prof. Dr. Isabel Maria de Sá-Correia Leite de Almeida Co-supervisor: Dr. Margarida Isabel Rosa Bento Palma Examination Committee Chairperson: Prof. Dr. Arsénio do Carmo Sales Mendes Fialho Supervisor: Prof. Dr. Isabel Maria de Sá-Correia Leite de Almeida Member of the committee: Dr. Paulo Jorge Moura Pinto da Costa Dias July 2016 Agradecimentos Apesar de perceber a globalização em que o mundo científico se insere onde o inglês domina como língua de comunicação entre todos, decido escrever apenas este capítulo em português pois entendo que os agradecimentos, sendo uma mensagem mais emocional e especificamente dirigida a pessoas próximas, só pode ser completamente entendida e percebida se for usada a minha língua materna. Gostaria de começar por agradecer a duas pessoas muito importantes durante o processo de trabalho desta tese, quer na parte laboratorial quer na parte de escrita. À Professora Isabel Sá-Correia, primeiro, por me ter dado a oportunidade de trabalhar consigo e fazer parte do Grupo de Investigação para as Ciências Biológicas do IST (BSRG) tendo sempre palavras assertivas mas construtivas que me fizeram acreditar no meu trabalho. Em segundo, à Dr. Margarida Palma, minha coorientadora, que se mostrou incansável em me apoiar sempre que precisei e mesmo quando não pedia, sendo muito importante no processo experimental e de escrita deste documento. Ciente de que a minha desmotivação por vezes prejudicou este trabalho, sem estas duas pessoas e a paciência que mostraram para comigo, este trabalho não seria possível.
    [Show full text]
  • Genome Sequence of the Highly Weak-Acid-Tolerant Zygosaccharomyces Bailii IST302, Amenable to Genetic Manipulations and Physiological Studies
    Genome sequence of the highly weak-acid-tolerant Zygosaccharomyces bailii IST302, amenable to genetic manipulations and physiological studies Margarida Palma1, Martin Münsterkötter2, João Peça1, Ulrich Güldener2,3, Isabel Sá-Correia1* 1Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049- 001 Lisbon, Portugal 2Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany 3Chair of Genome-oriented Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany *corresponding author: Prof. Isabel Sá-Correia, Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal ; e: mail: [email protected]; Tel. +351-218417682; Fax +351-218489199 Keywords (6) Zygosaccharomyces bailii, genome sequence, food spoilage yeasts, weak acid tolerance, cellular aggregation Running title Z bailii IST302 genome sequence and annotation Abstract Zygosaccharomyces bailii is one of the most problematic spoilage yeast species found in the food and beverage industry particularly in acidic products, due to its exceptional resistance to weak acid stress. This article describes the annotation of the genome sequence of Z. bailii IST302, a strain recently proven to be amenable to genetic manipulations and physiological studies. The work was based on the annotated genomes of strain ISA1307, an interspecies hybrid between Z. bailii and a closely related species, and the Z. bailii reference strain CLIB 213T. The resulting genome sequence of Z. bailii IST302 is distributed through 105 scaffolds, comprising a total of 5142 genes and a size of 10.8 Mb.
    [Show full text]
  • View Preprint
    A peer-reviewed version of this preprint was published in PeerJ on 16 June 2020. View the peer-reviewed version (peerj.com/articles/9376), which is the preferred citable publication unless you specifically need to cite this preprint. Gao H, Yin X, Jiang X, Shi H, Yang Y, Wang C, Dai X, Chen Y, Wu X. 2020. Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China. PeerJ 8:e9376 https://doi.org/10.7717/peerj.9376 Diversity and pathogenicity of microbial communities causing grape sour rot in eastern coastal areas of China Huanhuan Gao Corresp., Equal first author, 1, 2 , Xiangtian Yin Equal first author, 1 , Xilong Jiang 1 , Hongmei Shi 1 , Yang Yang 1 , Xiaoyan Dai 1, 2 , Yingchun Chen 1 , Xinying Wu Corresp. 1 1 Shandong Academy of Grape, Jinan, China 2 Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China Corresponding Authors: Huanhuan Gao, Xinying Wu Email address: [email protected], [email protected] Background As a polymicrobial disease, grape sour rot can lead to the decrease in the yield of grape berries and wine quality. The diversity of microbial communities in sour rot-infected grapes depends on the planting location of grapes and the identified methods. The east coast of China is one of the most important grape and wine regions in China and even in the world. Methods To identify the pathogenic microorganism s causing sour rot in table grapes of eastern coastal areas of China, the diversity and abundance of the bacteria and fungi were assessed based on two methods, including traditional culture-methods, and 16S rRNA and ITS gene high-throughput sequencing .
    [Show full text]