TACHYON CONDENSATION in STRING FIELD THEORY: the Tachyon Potential in the Conformal field Theory Approach

Total Page:16

File Type:pdf, Size:1020Kb

TACHYON CONDENSATION in STRING FIELD THEORY: the Tachyon Potential in the Conformal field Theory Approach Katholieke Universiteit Leuven Faculteit der Wetenschappen Instituut voor Theoretische Fysica TACHYON CONDENSATION IN STRING FIELD THEORY: the tachyon potential in the conformal field theory approach Joris Raeymaekers Promotor: Prof. Dr. W. Troost Proefschrift ingediend voor het behalen van de graad van Doctor in de Wetenschappen 2001 ii “It does seem that these physicists go to some effort and expense to state what seems obvious.” William S. Burroughs iii iv Dankwoord Allereerst wil ik mijn promotor, Walter Troost, oprecht bedanken voor zijn begeleiding de afgelopen zes jaar. Eigenlijk begon deze reeds vroeger, toen ik in de eerste licentie onder zijn begeleiding en deze van Urban Studer (die ik langs deze weg ook nog eens wens te bedanken) mocht kennismaken met de fundamenten van de Lorentz-Dirac vergelijking; of hoe een enkele wiskun- dige formule een waaier van fysische verschijnselen kan samenvatten. Het is ongetwijfeld deze kennismaking die mijn fascinatie voor de theoretische natuurkunde blijvend heeft opgewekt. De afgelopen jaren hebben discussies met Walter me talloze keren naar de kern van de zaak gebracht en opnieuw op het juiste spoor gezet. Ook ben ik hem zeer dankbaar voor de grondigheid waarmee hij dit manuscript aan kritische lezing heeft onderworpen: zonder zijn inbreng zouden ongetwijfeld talloze onduidelijkheden, onnauwkeurighe- den en fouten tegen de logica aan mijn aandacht ontsnapt zijn. Ook Toine Van Proeyen wil ik van harte bedanken, voor zijn inzet in het levendig houden van de onderzoeksgroep en voor zijn no-nonsense organi- satorisch talent, ook en vooral op het gebied van de Europese samenwerking, hetgeen ons doctoraatsstudenten ieder jaar opnieuw in staat stelt deel te ne- men aan internationale conferenties en scholen. Ook ben ik Alex Sevrin dankbaar voor een aangename samenwerking, voor zijn nooit aflatende interesse en enthoesiasme, voor het suggereren van in- teressante onderzoeksprojecten evenals, niet te vergeten, mijlpalen van de popgeschiedenis. De resultaten die in deze thesis worden gerapporteerd zouden echter niet tot stand zijn gekomen zonder samenwerking met Pieter-Jan De Smet. Hem wens ik dan ook oprecht te bedanken voor de verhelderende discussies en voor de vele malen dat zijn op wiskundige leest geschoeide zin voor logica orde schiep in mijn verwarring, alsook voor de vele ontspannende conversa- ties over het uitstippelen van goedkope, doch ethisch onverantwoorde Mars- missies en dies meer. Mijn eerste jaren op ‘het zesde’ zouden er niet hetzelfde hebben uitgezien zonder de aanwezigheid van Frederik Denef; hem bedank ik dan ook voor het delen van zijn enorm fysisch inzicht, voor zijn pedagogische uitleg, voor de vele toffe en geestige momenten in Leuven en, de afgelopen jaren, de sappige verhalen over het leven in de Big Apple. Mijn dank gaat ook uit naar Andr´eVerbeure voor de deskundige leiding van het instituut; Robertus Potting, Mark Fannes en Raymond Gastmans voor discussies en aanmerkingen ter verbetering van deze tekst; Jos Rogiers en Raf Dekeyser voor de vlotte en aangename samenwerking bij de oefenzittingen; v Christine Detroije en Anita Raets voor de vriendelijke en effici¨ente admini- stratieve ondersteuning; Martijn Derix en Toni Verbeiren voor hun compu- teradvies en hun geduld met mijn onwetendheid inzake computers. Graag wil ik ook Jeanne De Jaegher bedanken voor een toffe en geslaagde samenwerking; Kostas Skenderis voor de aanvullende wetenschappelijke be- geleiding; Frederik Roose voor de interessante discussies en aansporingen tot verruiming van mijn wetenschappelijke horizon; Yves Demasure voor de gea- nimeerde discussies over de dynamica van monopolen; Jos Gheerardyn voor de vragen die me op mijn eigen onbegrip wezen. Mijn dank gaat ook uit naar alle andere collega’s op het zesde: Mieke De Cock, voor het uitwisselen van ervaringen en frustraties tijdens het voltooien van het doctoraat; Michel Ver- schuere, Sorin Cucu, Pascal Spincemaille, Bart Haegeman, Joris Lauwers, Tom Michoel en Christian Maes, voor de vele conversaties, al of niet over de fysica, die gepaard gingen met de culinaire geneugten van de Alma; en alle andere collega’s voor de fijne interacties en geanimeerde discussies in het ‘koffiekot’. Graag zou ik ook alle leden van de sterrenkundige vereniging Wega bedan- ken, voor het stimuleren van mijn prille interesse voor de wetenschap, en om mij op jonge leeftijd reeds in contact te hebben gebracht met zulke exotische begrippen als zwarte gaten, snaren en extra dimensies. Het leven bestaat uiteraard niet alleen uit fysica; ‘de boog kan niet altijd gespannen staan’ zoals de volksmond zegt, en in dit verband wil ik ook mijn vrienden bedanken, in het bijzonder Dominique Coene en de andere trouwe Libertad-adepten, Henk Schets en Bieke Nijs, Leen Sammels, Katrien Kolen- berg, Leen Phalet: bedankt voor de caf´eavonden, kwissen, etentjes, feestjes, goede tot barslechte films en niet te vergeten een hoeveelheid e-mails die menige verantwoordelijke voor de harde schijfruimte tot wanhoop heeft ge- dreven. En, last but not least, wil ik mijn ouders bedanken, die me op ontelbare manieren hebben gesteund, zich de chronische kribbigheid die gepaard gaat met het voltooien van een doctoraat grootmoedig hebben laten welgevallen en zonder wier rustgevende aanwezigheid ondergetekende ongetwijfeld tot een neurotisch, ondervoed wrak was verworden: bedankt, Joris en Helga. vi Contents 1 Introduction 1 1.1 Stringtheory ................................ 1 1.2 Whystringfieldtheory? ......................... 5 1.3 Unstableobjectsinstringtheory . 9 1.4 Outlineofthethesis............................ 11 2 String perturbation theory 15 2.1 Polyakovaction............................... 15 2.2 Stringperturbationtheory . 17 2.2.1 Sumoverhistories .. ... ... ... ... ... ... ... 17 2.2.2 Gauge-fixing ............................ 20 2.3 Conformalfieldtheory . 23 2.3.1 OperatorProductExpansions . 23 2.3.2 Ward identities and conformal transformations . 25 2.3.3 Modeexpansionsandvertexoperators . 28 2.3.4 CFTontheupperhalfplane . 32 2.3.5 Innerproducts ........................... 32 2.3.6 GhostCFT.............................. 34 2.4 Physicalstates ............................... 37 2.4.1 BRSTformalism .......................... 38 vii Contents 2.4.2 Physicalvertexoperators . 39 2.5 Superstrings................................. 41 2.5.1 Gauge-fixedaction. 42 2.5.2 FermionicCFT ........................... 42 2.5.3 Superconformalsymmetry . 44 2.5.4 Superghosts............................. 45 2.5.5 Physicalstates ........................... 50 2.5.6 Otherconsistentstringtheories . 53 2.6 Summary................................... 54 3 Open string field theory 55 3.1 Bosonicopenstrings ........................... 56 3.1.1 The classical string field in various representations .... 56 3.1.2 Formalalgebraicstructure. 61 3.1.3 The ⋆ productandmidpointinteractions . 63 3.1.4 String field theory in the vertex operator representation . 67 3.1.5 Realitycondition. 76 3.1.6 Anexample: theactionforthelowestmodes . 77 3.1.7 Quantisationandmodularinvariance . 79 3.2 Opensuperstrings............................. 80 3.2.1 Witten’saction ........................... 82 3.2.2 Modifiedcubicactions . 84 3.2.3 Berkovits’action. 86 3.3 Open problems in present-daystring field theory . .. 88 4 Tachyoncondensationinstringtheory 91 4.1 Tachyonsandfieldtheoryinstabilities . .. 91 4.2 D-branesinstringtheory. 95 4.3 Dualitiesandstringsatstrongcoupling . .. 98 Contents 4.4 Non-BPS states in string theory and Sen’s conjecture . .... 101 4.4.1 Brane-antibranesystems . 101 4.4.2 Non-BPSD-branes . 102 4.4.3 Sen’sconjecture . 104 4.4.4 Tachyon condensation andstring fieldtheory . 104 5 Tachyoncondensationinbosonicstringfieldtheory 107 5.1 ThetachyonpotentialonaD25brane . 107 5.2 Universality ................................. 110 5.3 Theleveltruncationmethod . 111 5.4 Gauge-fixingandtwistinvariance . 111 5.5 Level4stringfield............................. 113 5.6 Level (4, 8) tachyonpotential . 113 5.7 Physicsaroundthestablevacuum . 118 5.8 Omissionsandfurtherdevelopments . 121 6 Toymodelfortachyoncondensation 123 6.1 Themodel.................................. 124 6.2 Equationforthecondensate. 125 6.3 Exact solution for µ 0 ......................... 126 = 6.4 The level truncation method and convergence issues . .. 130 7 Tachyon condensation in superstring theory 133 7.1 The tachyon potential in Witten’s superstring field theory .... 134 7.1.1 Non-BPSD-branesinWitten’stheory . 134 7.1.2 Thefieldsuptolevel2 . 138 7.1.3 Thetachyonpotential . 140 7.2 The tachyon potential in modified cubic theories . .. 142 7.2.1 Non-BPS D-branesin modifiedcubic theories . 142 Contents 7.2.2 Thetachyonpotential . 143 7.3 Tachyon condensationinBerkovits’theory . 150 7.3.1 Non-BPSD-branesinBerkovits’theory . 150 7.3.2 Thefieldsuptolevel2 . 152 7.3.3 Thetachyonpotential . 153 7.4 Conclusions................................. 154 A Conformaltransformationsofthefields 157 A.1 Witten’saction ............................... 157 A.2 Modifiedcubicstringfieldtheory . 158 A.3 Berkovits’theory.............................. 160 B Samenvatting 163 B.1 Situeringvanhetonderzoek. 163 B.1.1 Snaartheorie ............................ 163 B.1.2 Waaromsnaarveldentheorie? . 168 B.1.3 Onstabieleobjecteninsnaartheorie . 172 B.2 Overzichtvandethesis. 174 B.3 Samenvattingvanderesultaten. 179 Chapter 1 Introduction 1.1 String theory Unification One of the most important concepts in the development of theoretical physics is the search for unification. The unified description of diverse physical phe- nomena
Recommended publications
  • S-Duality, the 4D Superconformal Index and 2D Topological QFT
    Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N S-duality, the 4d Superconformal Index and 2d Topological QFT Leonardo Rastelli with A. Gadde, E. Pomoni, S. Razamat and W. Yan arXiv:0910.2225,arXiv:1003.4244, and in progress Yang Institute for Theoretical Physics, Stony Brook Rutgers, November 9 2010 Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory. Moore-Seiberg groupoid of Σ = (generalized) 4d S-duality • Vast generalization of “ =4 S-duality as modular group of T 2”. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory.
    [Show full text]
  • Introduction to Conformal Field Theory and String
    SLAC-PUB-5149 December 1989 m INTRODUCTION TO CONFORMAL FIELD THEORY AND STRING THEORY* Lance J. Dixon Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 ABSTRACT I give an elementary introduction to conformal field theory and its applications to string theory. I. INTRODUCTION: These lectures are meant to provide a brief introduction to conformal field -theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available (or almost available), and most of these go in to much more detail than I will be able to here. Those reviews con- centrating on the CFT side of the subject include refs. 1,2,3,4; those emphasizing string theory include refs. 5,6,7,8,9,10,11,12,13 I will start with a little pre-history of string theory to help motivate the sub- ject. In the 1960’s it was noticed that certain properties of the hadronic spectrum - squared masses for resonances that rose linearly with the angular momentum - resembled the excitations of a massless, relativistic string.14 Such a string is char- *Work supported in by the Department of Energy, contract DE-AC03-76SF00515. Lectures presented at the Theoretical Advanced Study Institute In Elementary Particle Physics, Boulder, Colorado, June 4-30,1989 acterized by just one energy (or length) scale,* namely the square root of the string tension T, which is the energy per unit length of a static, stretched string. For strings to describe the strong interactions fi should be of order 1 GeV. Although strings provided a qualitative understanding of much hadronic physics (and are still useful today for describing hadronic spectra 15 and fragmentation16), some features were hard to reconcile.
    [Show full text]
  • Tachyon Condensation with B-Field
    Oct 2006 KUNS-2042 Tachyon Condensation with B-field Takao Suyama 1 Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan arXiv:hep-th/0610127v2 13 Nov 2006 Abstract We discuss classical solutions of a graviton-dilaton-Bµν-tachyon system. Both constant tachyon so- lutions, including AdS3 solutions, and space-dependent tachyon solutions are investigated, and their possible implications to closed string tachyon condensation are argued. The stability issue of the AdS3 solutions is also discussed. 1e-mail address: [email protected] 1 1 Introduction Closed string tachyon condensation has been discussed recently [1][2]. However, the understanding of this phenomenon is still under progress, compared with the open string counterpart [3]. A reason for the difficulty would be the absence of a useful tool to investigate closed string tachyon condensation. It is desired that there would be a non-perturbative framework for this purpose. Closed string field theory was applied to the tachyon condensation in string theory on orbifolds, and preliminary results were obtained [4], but the analysis would be more complicated than that in the open string case. To make a modest step forward, a classical gravitational theory coupled to a tachyon was discussed as a leading order approximation to the closed string field theory [5][6][7][8]. In [5][7][8], a theory of graviton, dilaton and tachyon was discussed, and its classical time evolution was investigated. In this paper, we investigate a similar theory, with NS-NS B-field also taken into account. By the presence of the B-field, an AdS3 background is allowed as a classical solution, in addition to the well- known linear dilaton solution.
    [Show full text]
  • Lectures on N = 2 String Theory
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266390735 Lectures on N = 2 String Theory Article · June 1989 CITATIONS READS 29 236 1 author: Doron Gepner Weizmann Institute of Science 69 PUBLICATIONS 3,252 CITATIONS SEE PROFILE All content following this page was uploaded by Doron Gepner on 04 October 2014. The user has requested enhancement of the downloaded file. April, 1989 PUPT-1121 Lectures on N = 2 String Theoryz Doron Gepner Joseph Henry Laboratories Princeton University Princeton, New Jersey 08544 ABSTRACT Starting from an arbitrary N = 2 superconformal field theory it is described how a fully consistent, space{time supersymmetric heterotic{like string theory in an even number of dimensions is constructed. Four dimensional theories which arise in this construction have a gauge group which contains E8 × E6 with chiral fermions in the 27 and 27¯ representations of E6, and thus are phenomenologically viable. The explicit massless spectrum is studied for particular solvable examples. It is shown that such spectra are the typical ones expected from the field theory compactification on manifolds of vanishing first Chern class. It is concluded that all `N=2 string theories' describe string propagation on such manifolds. An explicit calculation of the Yukawa couplings 273 is described for all the string theories in which the N = 2 superconformal theory affords a scalar description. The result of this calculation is shown to be geometric. z Lectures given at the Spring School on Superstrings, Trieste, Italy, 3-11 April, 1989. To appear in the proceedings. .1. Introduction The study of four dimensional string theory is central to the idea that strings might provide a framework for unification.
    [Show full text]
  • Intertwining Operator Superalgebras and Vertex Tensor Categories for Superconformal Algebras, Ii
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 354, Number 1, Pages 363{385 S 0002-9947(01)02869-0 Article electronically published on August 21, 2001 INTERTWINING OPERATOR SUPERALGEBRAS AND VERTEX TENSOR CATEGORIES FOR SUPERCONFORMAL ALGEBRAS, II YI-ZHI HUANG AND ANTUN MILAS Abstract. We construct the intertwining operator superalgebras and vertex tensor categories for the N = 2 superconformal unitary minimal models and other related models. 0. Introduction It has been known that the N = 2 Neveu-Schwarz superalgebra is one of the most important algebraic objects realized in superstring theory. The N =2su- perconformal field theories constructed from its discrete unitary representations of central charge c<3 are among the so-called \minimal models." In the physics liter- ature, there have been many conjectural connections among Calabi-Yau manifolds, Landau-Ginzburg models and these N = 2 unitary minimal models. In fact, the physical construction of mirror manifolds [GP] used the conjectured relations [Ge1] [Ge2] between certain particular Calabi-Yau manifolds and certain N =2super- conformal field theories (Gepner models) constructed from unitary minimal models (see [Gr] for a survey). To establish these conjectures as mathematical theorems, it is necessary to construct the N = 2 unitary minimal models mathematically and to study their structures in detail. In the present paper, we apply the theory of intertwining operator algebras developed by the first author in [H3], [H5] and [H6] and the tensor product theory for modules for a vertex operator algebra developed by Lepowsky and the first author in [HL1]{[HL6], [HL8] and [H1] to construct the intertwining operator algebras and vertex tensor categories for N = 2 superconformal unitary minimal models.
    [Show full text]
  • Superconformal Theories in Three Dimensions
    Thesis for the degree of Master of Science Superconformal Theories in Three Dimensions Xiaoyong Chu Department of Fundamental Physics Chalmers University of Technology SE-412 96 G¨oteborg, Sweden 2009 ⃝c Xiaoyong Chu, 2009 Department of Fundamental Physics Chalmers University of Technology SE-412 96 G¨oteborg, Sweden Telephone +46 (0)31 772 1000 Typeset using LATEX Cover: Text. Printed by Chalmers Reproservice G¨oteborg, Sweden 2009 Superconformal Theories in 3 Dimensions Xiaoyong Chu Department of Fundamental Physics Chalmers University of Technology Abstract This thesis consists of six chapters, more than half of which are introductory texts. The main content of the master thesis project is presented in section 3.3, chapter 5 and chapter 6. The problem investiged in this thesis is related to three-dimensional superconformal gauge field theories. After introducing the superconformal Lie algebras, we turn to D=3 topological supergravity with Chern-Simons terms and then develop an extended pure supergravity which possesses many interesting properties. After that, three-dimensional superconformal theories of the kind originally suggested by J.Schwarz are discussed. The explicit expressions of BLG/ABJM actions are given, as well as the novel three-algebras. Finally, we couple N = 6 topological supergravity to the ABJM matter action, follow- ing standard techniques. Even though we haven't yet finished the verification of SUSY invariance, some arguments are given to explain why this action should be the complete Lagrangian. The thesis also contains some discussions on Chern-Simons terms and the U(1) gauge field. Key words: Superconformal symmetry, supergravities in 3 dimensions, string theory, M-theory, Branes, Chern-Simons terms.
    [Show full text]
  • LIE SUPERALGEBRAS of STRING THEORIES Introduction I.1. The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server LIE SUPERALGEBRAS OF STRING THEORIES PAVEL GROZMAN1, DIMITRY LEITES1 AND IRINA SHCHEPOCHKINA2 Abstract. We describe simple complex Lie superalgbras of vector fields on “supercircles” — stringy su- peralgebras. There are four series of such algebras (one depends on a complex parameter as well as on an integer one) and four exceptional stringy superalgebras. Two of the exceptional algebras are new in the literature. The 13 of the simple stringy Lie superalgebras are distinguished: only they have nontrivial central extensions and since two of the distinguish algebras have 3 nontrivial central extensions each, there are exactly 16 superizations of the Liouville action, Schr¨odinger equation, KdV hierarchy, etc. We also present the three nontrivial cocycles on the N = 4 extended Neveu–Schwarz and Ramond superalgebras in terms of primary fields. We also describe the classical stringy superalgebras, close to the simple ones. One of these stringy superalgebras is a Kac–Moody superalgebra g(A) with a nonsymmetrizable Cartan matrix A. Unlike the Kac–Moody superalgebras of polynomial growth with symmetrizable Cartan matrix, it can not be interpreted as a central extension of a twisted loop algebra. In the litterature the stringy superalgebras are often referred to as superconformal ones. We discuss how superconformal stringy superalgebras really are. Introduction I.1. The discovery of stringy Lie superalgebras. The discovery of stringy superalgebras was not a one- time job and their further study was not smooth either. Even the original name of these Lie superalgebras is unfortunate.
    [Show full text]
  • Superconformal Theories in Six Dimensions
    Thesis for the degree of Doctor of Philosophy Superconformal Theories in Six Dimensions P¨ar Arvidsson arXiv:hep-th/0608014v1 2 Aug 2006 Department of Fundamental Physics CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2006 Superconformal Theories in Six Dimensions P¨ar Arvidsson Department of Fundamental Physics Chalmers University of Technology SE-412 96 G¨oteborg, Sweden Abstract This thesis consists of an introductory text, which is divided into two parts, and six appended research papers. The first part contains a general discussion on conformal and super- conformal symmetry in six dimensions, and treats how the corresponding transformations act on space-time and superspace fields. We specialize to the case with chiral (2, 0) supersymmetry. A formalism is presented for incorporating these symmetries in a manifest way. The second part of the thesis concerns the so called (2, 0) theory in six dimensions. The different origins of this theory in terms of higher- dimensional theories (Type IIB string theory and M-theory) are treated, as well as compactifications of the six-dimensional theory to supersym- metric Yang-Mills theories in five and four space-time dimensions. The free (2, 0) tensor multiplet field theory is introduced and discussed, and we present a formalism in which its superconformal covariance is made manifest. We also introduce a tensile self-dual string and discuss how to couple this string to the tensor multiplet fields in a way that respects superconformal invariance. Keywords Superconformal symmetry, Field theories in higher dimensions, String theory. This thesis consists of an introductory text and the following six ap- pended research papers, henceforth referred to as Paper I-VI: I.
    [Show full text]
  • Localization and Dualities in Three-Dimensional Superconformal Field Theories
    Localization and Dualities in Three-dimensional Superconformal Field Theories Thesis by Brian Willett In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2012 (Defended May 15, 2012) ii c 2012 Brian Willett All Rights Reserved iii Abstract In this thesis we apply the technique of localization to three-dimensional N = 2 superconformal field theories. We consider both theories which are exactly superconformal, and those which are believed to flow to nontrivial superconformal fixed points, for which we consider implicitly these fixed points. We find that in such theories, the partition function and certain supersymmetric observables, such as Wilson loops, can be computed exactly by a matrix model. This matrix model consists of an integral over g, the Lie algebra of the gauge group of the theory, of a certain product of 1-loop factors and classical contributions. One can also consider a space of supersymmetric deformations of the partition function corresponding to the set of abelian global symmetries. In the second part of the thesis we apply these results to test dualities. We start with the case of 7 ABJM theory, which is dual to M-theory on an asymptotically AdS4 × S background. We extract strong coupling results in the field theory, which can be compared to semiclassical, weak coupling results in the gravity theory, and a nontrivial agreement is found. We also consider several classes of dualities between two three-dimensional field theories, namely, 3D mirror symmetry, Aharony duality, and Giveon-Kutasov duality. Here the dualities are typically between the IR limits of two Yang-Mills theories, which are strongly coupled in three dimensions since Yang-Mills theory is asymptotically free here.
    [Show full text]
  • Supersymmetry and Dualities ∗
    CERN-TH/95-258 FTUAM/95-34 hep-th/9510028 SUPERSYMMETRY AND DUALITIES ∗ Enrique Alvarez †, Luis Alvarez-Gaume and Ioannis Bakas ‡ Theory Division, CERN CH-1211 Geneva 23, Switzerland ABSTRACT Duality transformations with respect to rotational isometries relate super- symmetric with non-supersymmetric backgrounds in string theory. We find that non-local world-sheet effects have to be taken into account in order to restore supersymmetry at the string level. The underlying superconformal al- gebra remains the same, but in this case T-duality relates local with non-local realizations of the algebra in terms of parafermions. This is another example where stringy effects resolve paradoxes of the effective field theory. CERN-TH/95-258 FTUAM/95-34 October 1995 ∗Contribution to the proceedings of the Trieste conference on S-Duality and Mirror Symmetry, 5–9 June 1995; to be published in Nuclear Physics B, Proceedings Supplement Section, edited by E. Gava, K. Narain and C. Vafa †Permanent address: Departamento de Fisica Teorica, Universidad Autonoma, 28049 Madrid, Spain ‡Permanent address: Department of Physics, University of Patras, 26110 Patras, Greece 1 Outline and summary These notes, based on two lectures given at the Trieste conference on “S-Duality and Mirror Symmetry”, summarize some of our recent results on supersymmetry and duality [1, 2, 3]. The problem that arises in this context concerns the supersymmetric properties of the lowest order effective theory and their behaviour under T-duality (and more gener- ally U-duality) transformations (see also [4]). We will describe the geometric conditions for the Killing vector fields that lead to the preservation or the loss of manifest space- time supersymmetry under duality, and classify them as translational versus rotational respectively.
    [Show full text]
  • Introduction to Superstring Theory
    Introduction to Superstring Theory Carmen N´u~nez IAFE (UBA-CONICET) & PHYSICS DEPT. (University of Buenos Aires) VI ICTP LASS 2015 Mexico, 26 October- 6 November 2015 . Programme Class 1: The classical fermionic string Class 2: The quantized fermionic string Class 3: Partition Function Class 4: Interactions . Outline Class 1: The classical fermionic string The action and its symmetries Gauge fixing and constraints Equations of motion and boundary conditions Oscillator expansions . The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V . If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? . The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V . If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V .
    [Show full text]
  • Aspects of Brane World-Volume Dynamics in String Theory
    Aspects of Brane World-Volume Dynamics in String Theory Gianni Tallarita y A thesis submitted for the degree of Doctor of Philosophy y Centre for Research in String Theory, School of Physics Queen Mary University of London Mile End Road, London E1 4NS, UK [email protected] To my Parents Abstract This thesis investigates the non-abelian dynamics of D-Brane systems in String Theory, specifically focussing on the fate of the open string Tachyon. Starting from the action of two coincident non-BPS D9-branes, we investigate kink configura- tions of the U(2) matrix tachyon field, considering both symmetrised (Str) and conventional (Tr) prescriptions for the trace over gauge indices of the non-BPS action. Non-abelian tachyon condensation in the theory with Tr prescription, and the resulting fluctuations about the kink profile, are shown to give rise to a theory of two coincident BPS D8-branes. Next we investigate magnetic monopole solutions of the non-abelian Dirac- Born-Infeld (DBI) action describing two coincident non-BPS D9-branes in flat space. These monopole configurations are singular in the first instance and require regularization. We discuss a suitable non-abelian ansatz which describes a point- like magnetic monopole and show it solves the equations of motion to leading order in the regularization parameter. Fluctuations are studied and shown to describe a codimension three BPS D6-brane, a formula is derived for its tension. Finally, we investigate the dynamics of a pair of coincident D5 branes in the background of k NS5 branes. We extend Kutasov's original proposal to the non- abelian case of multiple D-Branes and find that the duality still holds provided one promotes the radial direction to a matrix valued field associated with a non- abelian geometric tachyon and a particular parametrization for the transverse scalar fields is chosen.
    [Show full text]