Annual08electronic.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Annual08electronic.Pdf TABLE OF CONTENTS Executive Summary 5 Faculty and Staff 6 Teaching 6 Undergraduate Programs 6 Observatory and Facilities 8 The Boston University Astronomical Society 9 Graduate Program 10 Colloquium Series 12 Alumni Affairs/Public Outreach 12 Research 13 Future Plans/Departmental Needs 14 APPENDIX A: Faculty, Staff, and Graduate Students 18 APPENDIX B: 2007/08 Astronomy Graduates 20 APPENDIX C: Seminar Series 21 APPENDIX D: Sponsored Project Funding 23 Cover photo: Part of the interior structure of a telescope mounted on the PICTURE rocket. PICTURE, scheduled to launch in March 2009, will be making observations of the dust rings from which planets are born. EXECUTIVE SUMMARY volcanic moon Io and interacting with Jupi- ter’s intense magnetic field. In the second, The Department of Astronomy teaches Prof. Alan Marscher and collaborators con- science to hundreds of non-science majors firmed a theory of the formation of high- from throughout the university, and runs one speed plasma jets from the centers of active of the largest astronomy degree programs in galaxies. His optical and radio observa- the country. The faculty’s substantial grant tions show that such jets arise from twisted activity, scientific productivity, and profes- magnetic fields surrounding a massive black sional service demonstrate the Depart- hole. Prof. Marscher was also featured on ment’s excellence. the Nature and CNN websites as a scientific singer-songwriter. The Department graduated a class of nine undergraduates, all with a major concentra- tion. Currently, 43 undergraduates major in astronomy. While our program is small by CAS standards, among astronomy pro- grams it is among the largest in the US. In our graduate program, three students completed a PhD. Our graduate recruiting for next year was successful: we have an incoming class of eight new students, bring- ing our total of new and ongoing astronomy graduate students to 45. The Department’s infrastructure was greatly enhanced by a long-needed renovation of its graduate student offices. The Department Part of an image from a Nature article on Jupi- also purchased and installed a new tele- ter’s moon Io, published this year by Professor scope dome on the roof of the CAS building Mendillo’s group. The red coloring in the bottom which will be used to train both undergradu- left-hand corner shows a “wake region” around Io ate and graduate students in modern astro- that may be the source of heavy ions in Jupiter’s nomical observing techniques. magnetosphere. The Astronomy Department had a spec- All three of the Department’s main research tacular year in securing research funds centers: the Center for Space Physics, through grants. Last year, our best ever, the Center for Integrated Space Weather faculty in the Astronomy Department raised Modeling, and the Institute for Astrophysi- $19,655,540, or about $1,200,000 per cal Research, passed significant external teaching faculty. Our faculty and research reviews with enthusiastic endorsements by associates authored or co-authored a total the review panels. of 65 refereed, scholarly papers in the disci- plines’ most prestigious journals. In summary, the Department continues to thrive, serve, lead, and prosper with a strong The Department had several noteworthy sci- educational programs and an outstand- entific achievements. Research highlights ing research program. We look forward to for 2007/08 include two papers published in working with the College to find solutions to Nature. In the first, Prof. Michael Mendillo the Department’s pressing needs for more and collaborators took detached images of space, more faculty, and a state-of-the-art sodium atoms arising from Jupiter’s highly research telescope. FACULTY AND STAFF level courses provide a rigorous technical education for students wishing a career in The Department of Astronomy currently astronomy or a related field. About 1/3 of has twenty-four faculty members: sixteen our majors go on to graduate school in academic faculty and eight research faculty. astronomy or physics. Those who enter the The full list of the Department’s faculty and workforce instead have gained important staff is provided in Appendix A. This com- skills in problem solving, mathematics, and ing fall, we plan to conduct a search for a physics. Many of these students find jobs new faculty member. The astronomy faculty where skills in analysis are highly sought. continues to provide outstanding service to the nation and profession by serving on . Graduate-level astronomy. Our gradu- advisory committees for NASA and NSF, ate program trains the next generation of as- national observatories, learned societies, trophysicists and space physicists. Because and professional journals. This activity not of our department’s strong concentration in only keeps our faculty informed of national space physics research, our students are and international developments, but it also all required to take elementary courses in allows us to form and influence national both astrophysics and space physics. After research policies. This high level of external passing the qualifying exams, a student may activity demonstrates our stature among the choose advanced courses in either field. first rank of the nation’s research depart- ments. UNDERGRADUATE PROGRAMS TEACHING Director of Undergraduate Studies: Professor Kenneth Janes Approximately 700 – 900 undergraduate students and 25 – 30 graduate students Divisional Studies Courses per year enroll in astronomy courses. The In terms of number of students, the depart- Astronomy Department has three distinct ment’s largest teaching mission by far is to suites of courses to serve Boston University offer courses designed to satisfy College students: divisional study requirements and similar requirements within the other undergraduate 1. Astronomy for non-science majors. schools and colleges of the University. Undergraduate non-science majors at Boston University usually take our 100-level We offer five such 100-level courses. Two courses to fill the natural science distribution of these, AS 101: The Solar System, and requirement. Since astronomy is rarely part AS 102: The Astronomical Universe, pro- of the high school curriculum, these courses vide surveys of solar system astronomy and offer an attractive opportunity for students extra-solar system astronomy and carry wishing to experience a new field of science. laboratory credit. The other three, AS 100 Cosmic Controversies, AS 109 Cosmology . Core Curriculum. The Astronomy and AS 117 Cosmic Evolution, are more Department plays a key role in the Core focused topical courses which do not carry Curriculum Natural Sciences course CC105 laboratory credit. This year we offered eight by providing three faculty members each sections of these courses: three sections year, more than any other CAS department. of AS 101, two of AS 102, and one each About 300 students per year enroll in this of AS 100, AS 109, and AS 117. AS 100, course. Cosmic Controversies is a new course this year. Instead of a survey of astronomical . Astronomy for majors. Our 200-400 knowledge, AS 100 focuses on a few key, unresolved issues in modern astronomical tinued the strong presence of Department research. This course demonstrates to non- of Astronomy faculty and leadership in this science majors that astronomy is a vibrant, important program. The Astronomy Depart- evolving discipline. In addition, we offered ment provides as many additional faculty two honors sections, which were run as ad- members to this course as our other teach- ditions to regular courses. ing commitments allow. Typically, the As- tronomy Department commits three faculty The total 100-level enrollment was 456 in per year to CC105, more than any other 2007/2008. Of the students taking these department. courses, approximately 73% (327) were CAS students and 27% (126) came from This year, Professors Brainerd, Jackson, other schools and colleges (see chart). and Marscher staffed the Core Curriculum course. We anticipate an- other strong representation of astronomy faculty and leadership in CC105 next academic year. Undergraduate Majors The Department continues to have one of the largest and strongest undergradu- ate majors programs in astronomy in the country. In terms of bachelor’s degrees awarded in astronomy, Boston University ranks fifth in the US with an average of 11 graduates per year, behind U.C. Berkeley (18), Arizona (13), UCLA (12) and the University of Wisconsin Madison (12). The Core Curriculum In the spirit of promoting a true liberal arts During the 2007/08 academic year, 43 education, the Department is committed to students (some of whom have declared an providing excellent science education to stu- additional concentration) were declared in dents not concentrating in science. Since one of the Department’s concentrations, and an increasing number of CAS students many additional students who expressed a choose to meet this component of their strong interest in astronomy were being ad- education through the Core, the Department vised by an astronomy faculty member. The provides a major commitment the physical most popular concentration is Astronomy science component of the Core Curriculum, and Physics (31), followed by Astronomy (8) CC105. and Geophysics and Planetary Sciences (5). These numbers are distributed fairly evenly One of our own faculty members, Profes- over the freshman to senior classes and sor Alan Marscher, developed and coordi- remain comparable with last year’s distribu- nated CC105 for many years. Professor tion. James Jackson has since served for seven years as course coordinator, and has con- This year’s graduating class consisted of nine students; 6 received BAs in Astronomy advising challenges, but the numbers are and Physics, 2 in Geophysics and Planetary small enough that each case can be dealt Sciences, and 1 in Astrophysics and Space with carefully on an individual basis. Science (through the BA/MA program). As has been the case now for many years, this We attempt to assign as many students as class represents a significant fraction of the possible to their advisor from the previous total number of Bachelor’s degrees awarded year.
Recommended publications
  • Experimental Investigation of Plasma Dynamics in Jets and Bubbles
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs Fall 11-14-2016 Experimental Investigation of Plasma Dynamics in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma Yue Zhang University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Part of the Electrical and Computer Engineering Commons, and the Plasma and Beam Physics Commons Recommended Citation Zhang, Yue. "Experimental Investigation of Plasma Dynamics in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma." (2016). https://digitalrepository.unm.edu/ece_etds/309 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Yue Zhang Candidate Electrical and Computer Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Mark Gilmore, Chairperson Edl Schamilogu Scott Hsu Ylva M Pihlstrom EXPERIMENTAL INVESTIGATION OF PLASMA DYNAMICS IN JETS AND BUBBLES USING A COMPACT COAXIAL PLASMA GUN IN A BACKGROUND MAGNETIZED PLASMA By YUE ZHANG B.S., Electrical Engineering, Xi'an Jiaotong University, 2003 M.S., Electrical Engineering, Xi'an Jiaotong University, 2006 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico December, 2016 Dedication To my parents Zhiping Zhang and Fenghong Ji iii Acknowledgements I would like to my dissertation committee, Dr.
    [Show full text]
  • Robotic and Human Lunar Missions Past and Future
    VOL. 96 NO. 5 15 MAR 2015 Earth & Space Science News Robotic and Human Lunar Missions Past and Future Increasing Diversity in the Geosciences Do Tiny Mineral Grains Drive Plate Tectonics? Cover Lines Ways To Improve AGU FellowsCover Program Lines Cover Lines Recognize The Exceptional Scientific Contributions And Achievements Of Your Colleagues Union Awards • Prizes • Fellows • Medals Awards Prizes Ambassador Award Climate Communication Prize Edward A. Flinn III Award NEW The Asahiko Taira International Charles S. Falkenberg Award Scientific Ocean Drilling Research Prize Athlestan Spilhaus Award Medals International Award William Bowie Medal Excellence in Geophysical Education Award James B. Macelwane Medal Science for Solutions Award John Adam Fleming Medal Robert C. Cowen Award for Sustained Achievement in Maurice Ewing Medal Science Journalism Robert E. Horton Medal Walter Sullivan Award for Excellence Harry H. Hess Medal in Science Journalism – Features Inge Lehmann Medal David Perlman Award for Excellence in Science Journalism – News Roger Revelle Medal Fellows Scientific eminence in the Earth and space sciences through achievements in research, as demonstrated by one or more of the following: breakthrough or discovery; innovation in disciplinary science, cross-disciplinary science, instrument development, or methods development; or sustained scientific impact. Nominations Deadline: 15 March honors.agu.org Earth & Space Science News Contents 15 MARCH 2015 FEATURE VOLUME 96, ISSUE 5 13 Increasing Diversity in the Geosciences Studies show that increasing students’ “sense of belonging” may help retain underrepresented minorities in geoscience fields. A few programs highlight successes. MEETING REPORT Developing Databases 7 of Ancient Sea Level and Ice Sheet Extents RESEARCH SPOTLIGHT 8 COVER 26 How Robotic Probes Helped Humans Survival of Young Sardines Explore the Moon…and May Again Flushed Out to Open Ocean Despite favorable conditions within eddies Robotic probes paved the way for humankind’s giant leap to the Moon.
    [Show full text]
  • Dipole Tilt Effects on the Magnetosphereionosphere
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A07218, doi:10.1029/2009JA014910, 2010 Dipole tilt effects on the magnetosphere‐ionosphere convection system during interplanetary magnetic field BY‐dominated periods: MHD modeling Masakazu Watanabe,1 Konstantin Kabin,2 George J. Sofko,3 Robert Rankin,2 Tamas I. Gombosi,4 and Aaron J. Ridley4 Received 17 September 2009; revised 8December 2009; accepted 14 January 2010; published 21 July 2010. [1] Using numerical magnetohydrodynamic simulations, we examine the dipole tilt effects on the magnetosphere‐ionosphere convection system when the interplanetary magnetic field is oblique northward (BY =4nT and BZ =2nT). In particular, we clarify the relationship between viscous‐driven convection and reconnection‐driven convection. The azimuthal locations of the two viscous cell centers in the equatorial plane rotate eastward (westward) when the dipole tilt increases as the Northern Hemisphere turns toward (away from) the Sun. This rotation is associated with nearly the same amount of eastward (westward) rotation of the equatorial crossing point of the dayside separator. The reason for this association is that the viscous cell is spatially confined within the Dungey‐type merging cell whose position is controlled by the separator location. The ionospheric convection is basically around/crescent cell pattern, but the round cell in the winter hemisphere is significantly deformed. Between its central lobe cell portion and its outer Dungey‐type merging cell portion, the round cell streamlines are deformed owing to the combined effects of the viscous cell and the hybrid merging cell, the latter of which is driven by both Dungey‐type reconnection and lobe‐closed reconnection. Citation: Watanabe, M., K.
    [Show full text]
  • Multi-Scale Physics in Coronal Heating and Solar Wind Acceleration - from the Sun Into the Inner Heliosphere
    Hallerstrasse 6 • CH-3012 Bern • Switzerland Workshop of the International Space Science Institute (ISSI) Multi-scale physics in coronal heating and solar wind acceleration - from the Sun into the inner heliosphere Bern, Switzerland, 25-29 January 2010 Convenors: David Burgess, Queen Mary, Univ. of London, [email protected] James F. Drake, Univ. of Maryland, College Park, [email protected] Eckart Marsch, MPS Lindau, [email protected] Marco Velli, JPL, [email protected] Rudolf von Steiger, ISSI, [email protected] Thomas H. Zurbuchen, Univ. of Michigan, Ann Arbor, [email protected] Local Organisation: Brigitte Schutte ([email protected], +41 31 631 4896) Maurizio Falanga Andrea Fischer Saliba F. Saliba Katja Schüpbach Silvia Wenger Tel: +41 31 631 4896 • Fax: +41 31 631 4897 List of Participants Spiro Antiochos NASA GSFC [email protected] Ester Antonucci Osservatorio Astronomico di Torino [email protected] Jaime Araneda Universidad de Concepcion [email protected] Stuart Bale UC Berkeley [email protected] David Burgess Queen Mary, Univ. of London [email protected] Enrico Camporeale Queen Mary, Univ. of London [email protected] Vincenzo Carbone Università della Calabria [email protected] Paul Cassak West Virginia University, Morgantown [email protected] Ben Chandran UNH Durham [email protected] Steve Cranmer CfA Harvard [email protected] Nancy Crooker Boston University [email protected] Bill Daughton LANL [email protected] Jim Drake Univ. of Maryland, College Park [email protected] Justin Edmondson Univ. of Michigan, Ann Arbor [email protected] Jack Gosling Univ.
    [Show full text]
  • Universal Heliophysical Processes (IHY) Savannah, Georgia, USA 10–14 November 2008
    UPCOMING MEETINGS Reserve Housing by 14 November 2008 Register at Discounted Rates by 14 November 2008 Abstract Submission Deadline: 4 March 2009, 2359UT 2010 Meeting of the Americas 8–13 August Iguassu Falls, Brazil For complete details on these meetings please visit the AGU Web site at www.agu.org AGU Chapman Conference on Universal Heliophysical Processes (IHY) Savannah, Georgia, USA 10–14 November 2008 Conveners • Nancy Crooker, Boston University, Boston, Massachusetts, USA • Marina Galand, Imperial College, London, England, UK Program Committee • Terry Forbes, University of New Hampshire, Durham, New Hampshire, USA • Joe Giacalone, University of Arizona, Tucson, Arizona, USA • Wing Ip, National Central University, Jhongli City, Taiwan • Chris Owen, University College London, Surrey, England, UK • George Siscoe, Boston University, Boston, Massachusetts, USA • Roger Smith, University of Alaska, Fairbanks, Alaska, USA • Jan-Erik Wahlund, Swedish Institute of Space Physics, Uppsala, Sweden • Gary Zank, University of California, Riverside, Riverside, California, USA Sponsor U.S. National Science Foundation 1 *************** MEETING AT A GLANCE Sunday, 9 November 18:30 – 20:00 Registration and Welcome Reception Monday, 10 November 8:00 – 8:45 Registration 9:00 – 10:30 Oral Discussions 10:30 – 11:00 Morning Refreshments 11:00 – 12:30 Oral Discussions 12:30 – 14:00 Lunch (on own) 14:00 – 15:30 Oral Discussions 15:30 – 16:00 Afternoon Refreshments 16:00 – 17:00 Oral Discussions 17:00 – 18:30 Poster Viewings (refreshments and cash bar) Tuesday,
    [Show full text]
  • Radar Probing of the Sun
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 231 Radar Probing of the Sun MYKOLA KHOTYAINTSEV ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 91-554-6681-8 2006 urn:nbn:se:uu:diva-7192 ! " # $%%& %'%% ( ( ( ) * + , ) - .) $%%&) / ( ! ) 0 ) $1 ) 21 ) ) 3!4" 5 677#6&&2 62) * ( ) * ! ( ( ) 0 ! ) * + 5&%8 ,9 * (( ( + ( : (( ) / + ) "+ : ( ( ( ; + ! ( ) * ( ' < ( + < ( ( < ( = < ( ( ! ) 3 ( 33 333 ( + = <) * ( ( ( ) ! ( + ; ( + 6; ) ! (: ( 6 (( ( = (( ( < ( ) * 33 ; + + ;) > ( ; ( ; ( ) ( ( 33 ) * ; ( ; + ) ( ; + + ) 3 + ( ; ( ( ( ) 3 + ( ) * ( ( ( ( ( ) !" # $ %# & ' ()(# # *+,()-. # ? .; - $%%& 3!!" &7 6&$ # 3!4" 5 677#6&&2 62 ' ''' 6@ 5$ = 'AA );)A B C ' ''' 6@ 5$< Cover illustration: North-South arm of the UTR-2 radio telescope, located near Kharkiv,
    [Show full text]
  • Boston University Center for Space Physics
    2011-2012 Annual Report Boston University Center for Space Physics Director: John Clarke 1 Associate Director: Josh Semeter Table of Contents Executive Summary ................................................................................................................................................................. 1 Overview ............................................................................................................................................................................. 1 Highlights ............................................................................................................................................................................ 1 CSP Operations ........................................................................................................................................................................ 2 Selected Research Highlights .................................................................................................................................................. 3 PICTURE: The Search for Extra‐solar Planets ...................................................................................................................... 3 Preparing for the Mars Science Lander ............................................................................................................................... 3 Detecting Aurora on Uranus ..............................................................................................................................................
    [Show full text]
  • Final Technical Report
    Final Technical Report Summary of Research on Grant NAGS-6658, 1/1/1998 - 6/30/2001 Ulysses Data Analysis: Magnetic Topology of Heliospheric Structures Research supported by this grant was reported in the following nine publications: 1. Kahler, S. W., Detecting interplanetary CMEs with solar wind heat fluxes, in Physics of Space Plasmas (1998). Number 15, et_ted by T. Chang and J. R. Jasperse, 191-196, MIT Center for Theoretical Geo/Cosmo Plasma Physics, Cambridge, MA, 1998. 2. Kahler, S. W., N. U. Crooker, and J. T. Gosling, A magnetic polarity and chirality analysis of ISEE 3 interplanetary magnetic clouds, J. Geophys. Res., 104, 9911-9918, 1999. 3. Kahler, S. W., N. U. Crooker, and J. T. Gosling, The polarities and locations of interplanetary coronal mass ejections in large interplanetary magnetic sectors, J. Geophys. Res., 104, 9919-9924, 1999. 4. Kahler, S. W., N. U., Cro_er, and J. T. Gosling, Exploring ISEE 3 magnetic cloud polarities with electron heat flux, in Solar WindNine, edited by S. Habbal et al., 681-684, Amer. hist. Phys., New York, 1999. 5. Crooker, N. U., J. T. Gosling, et al., CIR morphology, turbulence, discontinuities, and energetic particles, in Corotating Interaction Regions, ISSI Space Sci. Ser., edited by A. Balogh, J. T. Gosling, J. R. Jokipii, R. Kallenbach, and H. Kunow, pp. 179-220, Kluwer Acad., Dordrecht, 1999. Also, Space Sci. Rev., 89, 179- 220, 1999. 6. Crooker, N. U., S. Shodhan, R. J. Forsyth, M. E. Burton, J. T. Gosling, R. J. Fitzenreiter, and R. P. Lepping, Transient aspects of stream interface signatures, in Solar Wind Nine, ecfited by S.
    [Show full text]
  • The Relationship of Coronal Mass Ejections to Streamers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server 1 To appear in the Journal of Geophysical Research, 1999. The Relationship of Coronal Mass Ejections to Streamers Prasad Subramanian Center For Earth Observing and Space Research, George Mason University, Fairfax, VA 22030, USA. K. P. Dere Code 7660, Naval Research Laboratory, Washington, DC 20375, USA. N. B. Rich Interferometrics, Inc., Chantilly, VA 22021, USA. R. A. Howard Code 7660, Naval Research Laboratory, Washington, DC 20375, USA. Abstract We have examined images from the Large Angle Spectroscopic Coronagraph (LASCO) to study the relationship of Coronal Mass Ejections (CMEs) to coronal streamers. We wish to test the suggestion (Low 1996) that CMEs arise from flux ropes embedded in a streamer erupting, thus disrupting the streamer. The data span a period of two years near sunspot minimum through a period of increased activity as sunspot numbers increased. We have used LASCO data from the C2 coronagraph which records Thomson scattered white light from coronal electrons at heights between 1.5 and 6R . Maps of the coronal streamers have been constructed from LASCO C2 observations at a height of 2.5R at the east and west limbs. We have superposed the corresponding positions of CMEs observed with the C2 coronagraph onto the synoptic maps. We identified the different kinds of signatures CMEs leave on the streamer structure at this height (2.5R ). We find four types of CMEs with respect to their effect on streamers 1. CMEs that disrupt the streamer 2. CMEs that have no effect on the streamer, even though they are related to it.
    [Show full text]
  • Correlation of Magnetic Field Intensities and Solar Wind Speeds of Events Observed by ACE Mathew J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A5, 1050, 10.1029/2001JA000238, 2002 Correlation of magnetic field intensities and solar wind speeds of events observed by ACE Mathew J. Owens and Peter J. Cargill Space and Atmospheric Physics, Blackett Laboratory, Imperial College, London, United Kingdom Received 27 July 2001; revised 30 November 2001; accepted 10 December 2001; published 10 May 2002. [1] The relationship between the magnetic field intensity and speed of solar wind events is examined using 3 years of data from the ACE spacecraft. No preselection of coronal mass ejections (CMEs) or magnetic clouds is carried out. The correlation between the field intensity and maximum speed is shown to increase significantly when |B| > 18 nT for 3 hours or more. Of the 24 events satisfying this criterion, 50% are magnetic clouds, the remaining half having no ordered field structure. A weaker correlation also exists between southward magnetic field and speed. Sixteen of the events are associated with halo CMEs leaving the Sun 2 to 4 days prior to the leading edge of the events arriving at ACE. Events selected by speed thresholds show no significant correlation, suggesting different relations between field intensity and speed for fast solar wind streams and ICMEs. INDEX TERMS: 2111 Interplanetary Physics: Ejecta, driver gases, and magnetic clouds; 2134 Interplanetary Physics: Interplanetary magnetic fields; 7513 Solar Physics, Astrophysics, and Astronomy: Coronal mass ejections; KEYWORDS: field intensity, speed correlation, solar wind 1. Introduction enhance existing regions of southward IMF associated with the ejecta. [2] Geomagnetic storms transfer energy and momentum from [6] The forecasting of geomagnetic activity depends on evalu- the solar wind into the Earth’s magnetosphere [e.g., Gonzalez et ating the arrival time of a geoeffective event at 1 AU and on al., 1994].
    [Show full text]
  • Modeling Solar Flare Hard X-Ray Images and Spectra Observed with RHESSI
    NASA/TM—2005–212776 Modeling Solar Flare Hard X-ray Images and Spectra Observed with RHESSI L. Sui National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 January 2005 The NASA STI Program Offi ce … in Profi le Since its founding, NASA has been ded i cated to the • CONFERENCE PUBLICATION. Collected ad vancement of aeronautics and space science. The pa pers from scientifi c and technical conferences, NASA Sci en tifi c and Technical Information (STI) symposia, sem i nars, or other meetings spon sored Pro gram Offi ce plays a key part in helping NASA or co spon sored by NASA. maintain this impor tant role. • SPECIAL PUBLICATION. Scientifi c, tech ni cal, The NASA STI Program Offi ce is operated by or historical information from NASA pro grams, Langley Research Center, the lead center for projects, and mission, often concerned with sub- NASAʼs scientifi c and technical in for ma tion. The jects having substan tial public interest. NASA STI Program Offi ce pro vides ac cess to the NASA STI Database, the largest collec tion of • TECHNICAL TRANSLATION. En glish-language aero nau ti cal and space science STI in the world. trans la tions of foreign scien tifi c and tech ni cal ma- The Pro gram Offi ce is also NASAʼs in sti tu tion al terial pertinent to NASAʼs mis sion. mecha nism for dis sem i nat ing the results of its research and devel op ment activ i ties. These results Specialized services that complement the STI Pro- are published by NASA in the NASA STI Report gram Offi ceʼs diverse offerings include cre at ing Series, which includes the following report types: custom thesau ri, building customized data bas es, organizing and publish ing research results .
    [Show full text]
  • 2012 Annual Report
    2012 Annual Report Promoting Collaboration and Discovery Scientific Leadership and Mission Collaboration The purpose of the American Geophysical Union is pg. 6-7 to promote discovery in Earth and space science for the benefit of humanity. Vision AGU galvanizes a community of Earth and space scientists that collaboratively advances and Science communicates science and its power to ensure a sustainable future. and Society pg. 8-9 STRATEGIC GOALS Scientific Leadership and Collaboration The American Geophysical Union is a leader, collaborator and sought after partner for scientific innovation, rigor and interdisciplinary focus on global issues. Science and Society The American Geophysical Union engages members, shapes policy, Talent Pool and informs society about the excitement of Earth and space science pg. 10-11 and its role in developing solutions for the sustainability of the planet. Talent Pool The American Geophysical Union is a diverse and inclusive organization that uses its position to build the global talent pool in Earth and space science. Organizational Excellence As a scientific society, the American Geophysical Union operates within a new business model that is sustainable, transparent, and Organizational inclusive in ways that are responsive to members and stakeholders. Excellence pg. 12-13 Financial Summary pg. 14-15 2 Promoting Colaboration and Discovery 2012 Membership Data – At A Glance • 2012 year-end AGU membership number is 62,812. The • The 2012 year-end gender distribution is 22% Female, 2011 year-end number was 61,676. 65% Male, and 13% unreported • The retention rate of members in 2012 was 80%. • AGU members resided in 146 countries in 2012.
    [Show full text]