Two Applications of Art to Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
Introduction to Ultra Fractal
Introduction to Ultra Fractal Text and images © 2001 Kerry Mitchell Table of Contents Introduction ..................................................................................................................................... 2 Assumptions ........................................................................................................................ 2 Conventions ........................................................................................................................ 2 What Are Fractals? ......................................................................................................................... 3 Shapes with Infinite Detail .................................................................................................. 3 Defined By Iteration ........................................................................................................... 4 Approximating Infinity ....................................................................................................... 4 Using Ultra Fractal .......................................................................................................................... 6 Starting Ultra Fractal ........................................................................................................... 6 Formula ............................................................................................................................... 6 Size ..................................................................................................................................... -
Rendering Hypercomplex Fractals Anthony Atella [email protected]
Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements. -
Lecture 9: Newton Method 9.1 Motivation 9.2 History
10-725: Convex Optimization Fall 2013 Lecture 9: Newton Method Lecturer: Barnabas Poczos/Ryan Tibshirani Scribes: Wen-Sheng Chu, Shu-Hao Yu Note: LaTeX template courtesy of UC Berkeley EECS dept. 9.1 Motivation Newton method is originally developed for finding a root of a function. It is also known as Newton- Raphson method. The problem can be formulated as, given a function f : R ! R, finding the point x? such that f(x?) = 0. Figure 9.1 illustrates another motivation of Newton method. Given a function f, we want to approximate it at point x with a quadratic function fb(x). We move our the next step determined by the optimum of fb. Figure 9.1: Motivation for quadratic approximation of a function. 9.2 History Babylonian people first applied the Newton method to find the square root of a positive number S 2 R+. The problem can be posed as solving the equation f(x) = x2 − S = 0. They realized the solution can be achieved by applying the iterative update rule: 2 1 S f(xk) xk − S xn+1 = (xk + ) = xk − 0 = xk − : (9.1) 2 xk f (xk) 2xk This update rule converges to the square root of S, which turns out to be a special case of Newton method. This could be the first application of Newton method. The starting point affects the convergence of the Babylonian's method for finding the square root. Figure 9.2 shows an example of solving the square root for S = 100. x- and y-axes represent the number of iterations and the variable, respectively. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
Generating Fractals Using Complex Functions
Generating Fractals Using Complex Functions Avery Wengler and Eric Wasser What is a Fractal? ● Fractals are infinitely complex patterns that are self-similar across different scales. ● Created by repeating simple processes over and over in a feedback loop. ● Often represented on the complex plane as 2-dimensional images Where do we find fractals? Fractals in Nature Lungs Neurons from the Oak Tree human cortex Regardless of scale, these patterns are all formed by repeating a simple branching process. Geometric Fractals “A rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” Mandelbrot (1983) The Sierpinski Triangle Algebraic Fractals ● Fractals created by repeatedly calculating a simple equation over and over. ● Were discovered later because computers were needed to explore them ● Examples: ○ Mandelbrot Set ○ Julia Set ○ Burning Ship Fractal Mandelbrot Set ● Benoit Mandelbrot discovered this set in 1980, shortly after the invention of the personal computer 2 ● zn+1=zn + c ● That is, a complex number c is part of the Mandelbrot set if, when starting with z0 = 0 and applying the iteration repeatedly, the absolute value of zn remains bounded however large n gets. Animation based on a static number of iterations per pixel. The Mandelbrot set is the complex numbers c for which the sequence ( c, c² + c, (c²+c)² + c, ((c²+c)²+c)² + c, (((c²+c)²+c)²+c)² + c, ...) does not approach infinity. Julia Set ● Closely related to the Mandelbrot fractal ● Complementary to the Fatou Set Featherino Fractal Newton’s method for the roots of a real valued function Burning Ship Fractal z2 Mandelbrot Render Generic Mandelbrot set. -
Newton's Mathematical Physics
Isaac Newton A new era in science Waseda University, SILS, Introduction to History and Philosophy of Science LE201, History and Philosophy of Science Newton . Newton’s Legacy Newton brought to a close the astronomical revolution begun by Copernicus. He combined the dynamic research of Galileo with the astronomical work of Kepler. He produced an entirely new cosmology and a new way of thinking about the world, based on the interaction between matter and mathematically determinate forces. He joined the mathematical and experimental methods: the hypothetico-deductive method. His work became the model for rational mechanics as it was later practiced by mathematicians, particularly during the Enlightenment. LE201, History and Philosophy of Science Newton . William Blake’s Newton (1795) LE201, History and Philosophy of Science Newton LE201, History and Philosophy of Science Newton . Newton’s De Motu coporum in gyrum Edmond Halley (of the comet) visited Cambridge in 1684 and 1 talked with Newton about inverse-square forces (F 9 d2 ). Newton stated that he has already shown that inverse-square force implied an ellipse, but could not find the documents. Later he rewrote this into a short document called De Motu coporum in gyrum, and sent it to Halley. Halley was excited and asked for a full treatment of the subject. Two years later Newton sent Book I of The Mathematical Principals of Natural Philosophy (Principia). Key Point The goal of this project was to derive the orbits of bodies from a simpler set of assumptions about motion. That is, it sought to explain Kepler’s Laws with a simpler set of laws. -
The Newton Fractal's Leonardo Sequence Study with the Google
INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION e-ISSN: 1306-3030. 2020, Vol. 15, No. 2, em0575 OPEN ACCESS https://doi.org/10.29333/iejme/6440 The Newton Fractal’s Leonardo Sequence Study with the Google Colab Francisco Regis Vieira Alves 1*, Renata Passos Machado Vieira 1 1 Federal Institute of Science and Technology of Ceara - IFCE, BRAZIL * CORRESPONDENCE: [email protected] ABSTRACT The work deals with the study of the roots of the characteristic polynomial derived from the Leonardo sequence, using the Newton fractal to perform a root search. Thus, Google Colab is used as a computational tool to facilitate this process. Initially, we conducted a study of the Leonardo sequence, addressing it fundamental recurrence, characteristic polynomial, and its relationship to the Fibonacci sequence. Following this study, the concept of fractal and Newton’s method is approached, so that it can then use the computational tool as a way of visualizing this technique. Finally, a code is developed in the Phyton programming language to generate Newton’s fractal, ending the research with the discussion and visual analysis of this figure. The study of this subject has been developed in the context of teacher education in Brazil. Keywords: Newton’s fractal, Google Colab, Leonardo sequence, visualization INTRODUCTION Interest in the study of homogeneous, linear and recurrent sequences is becoming more and more widespread in the scientific literature. Therefore, the Fibonacci sequence is the best known and studied in works found in the literature, such as Oliveira and Alves (2019), Alves and Catarino (2019). In these works, we can see an investigation and exploration of the Fibonacci sequence and the complexification of its mathematical model and the generalizations that result from it. -
William Blake 1 William Blake
William Blake 1 William Blake William Blake William Blake in a portrait by Thomas Phillips (1807) Born 28 November 1757 London, England Died 12 August 1827 (aged 69) London, England Occupation Poet, painter, printmaker Genres Visionary, poetry Literary Romanticism movement Notable work(s) Songs of Innocence and of Experience, The Marriage of Heaven and Hell, The Four Zoas, Jerusalem, Milton a Poem, And did those feet in ancient time Spouse(s) Catherine Blake (1782–1827) Signature William Blake (28 November 1757 – 12 August 1827) was an English poet, painter, and printmaker. Largely unrecognised during his lifetime, Blake is now considered a seminal figure in the history of the poetry and visual arts of the Romantic Age. His prophetic poetry has been said to form "what is in proportion to its merits the least read body of poetry in the English language".[1] His visual artistry led one contemporary art critic to proclaim him "far and away the greatest artist Britain has ever produced".[2] In 2002, Blake was placed at number 38 in the BBC's poll of the 100 Greatest Britons.[3] Although he lived in London his entire life except for three years spent in Felpham[4] he produced a diverse and symbolically rich corpus, which embraced the imagination as "the body of God",[5] or "Human existence itself".[6] Considered mad by contemporaries for his idiosyncratic views, Blake is held in high regard by later critics for his expressiveness and creativity, and for the philosophical and mystical undercurrents within his work. His paintings William Blake 2 and poetry have been characterised as part of the Romantic movement and "Pre-Romantic",[7] for its large appearance in the 18th century. -
The Trigonometry of Hyperbolic Tessellations
Canad. Math. Bull. Vol. 40 (2), 1997 pp. 158±168 THE TRIGONOMETRY OF HYPERBOLIC TESSELLATIONS H. S. M. COXETER ABSTRACT. For positive integers p and q with (p 2)(q 2) Ù 4thereis,inthe hyperbolic plane, a group [p, q] generated by re¯ections in the three sides of a triangle ABC with angles ôÛp, ôÛq, ôÛ2. Hyperbolic trigonometry shows that the side AC has length †,wherecosh†≥cÛs,c≥cos ôÛq, s ≥ sin ôÛp. For a conformal drawing inside the unit circle with centre A, we may take the sides AB and AC to run straight along radii while BC appears as an arc of a circle orthogonal to the unit circle.p The circle containing this arc is found to have radius 1Û sinh †≥sÛz,wherez≥ c2 s2, while its centre is at distance 1Û tanh †≥cÛzfrom A. In the hyperbolic triangle ABC,the altitude from AB to the right-angled vertex C is ê, where sinh ê≥z. 1. Non-Euclidean planes. The real projective plane becomes non-Euclidean when we introduce the concept of orthogonality by specializing one polarity so as to be able to declare two lines to be orthogonal when they are conjugate in this `absolute' polarity. The geometry is elliptic or hyperbolic according to the nature of the polarity. The points and lines of the elliptic plane ([11], x6.9) are conveniently represented, on a sphere of unit radius, by the pairs of antipodal points (or the diameters that join them) and the great circles (or the planes that contain them). The general right-angled triangle ABC, like such a triangle on the sphere, has ®ve `parts': its sides a, b, c and its acute angles A and B. -
Perspectives on Projective Geometry • Jürgen Richter-Gebert
Perspectives on Projective Geometry • Jürgen Richter-Gebert Perspectives on Projective Geometry A Guided Tour Through Real and Complex Geometry 123 Jürgen Richter-Gebert TU München Zentrum Mathematik (M10) LS Geometrie Boltzmannstr. 3 85748 Garching Germany [email protected] ISBN 978-3-642-17285-4 e-ISBN 978-3-642-17286-1 DOI 10.1007/978-3-642-17286-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011921702 Mathematics Subject Classification (2010): 51A05, 51A25, 51M05, 51M10 c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation,reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) About This Book Let no one ignorant of geometry enter here! Entrance to Plato’s academy Once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, “and what is the use of a book,” thought Alice, “without pictures or conversations?” Lewis Carroll, Alice’s Adventures in Wonderland Geometry is the mathematical discipline that deals with the interrelations of objects in the plane, in space, or even in higher dimensions.