S41467-018-04370-X.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

S41467-018-04370-X.Pdf ARTICLE DOI: 10.1038/s41467-018-04370-x OPEN rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences Chantal Sellier1, Estefanía Cerro-Herreros2,3, Markus Blatter4, Fernande Freyermuth1, Angeline Gaucherot1, Frank Ruffenach1, Partha Sarkar5, Jack Puymirat6, Bjarne Udd7,8,9, John W. Day10, Giovanni Meola11,12, Guillaume Bassez13, Harutoshi Fujimura14, Masanori P. Takahashi15, Benedikt Schoser16, Denis Furling13, Ruben Artero 2,3, Frédéric H.T. Allain4, Beatriz Llamusi2,3 & Nicolas Charlet-Berguerand1,17,18,19 1234567890():,; Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle cells. Furthermore, expression of rbFOX1 corrects alternative splicing alterations and rescues muscle atrophy, climbing and flying defects caused by expression of expanded CCUG repeats in a Drosophila model of DM2. 1 IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France. 2 Translational Genomics Group, Interdisciplinary Research Structure for Biotechnology and Biomedicine BIOTECMED, University of Valencia, 46010 Valencia, Spain. 3 INCLIVA Health Research Institute, 46010 Valencia, Spain. 4 Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland. 5 Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA. 6 Human Genetics Research Unit, Laval University, CHUQ, Ste-Foy, Quebec QC G1V 4G2, Canada. 7 Neuromuscular Research Center, Tampere University Hospital, 33521 Tampere, Finland. 8 Department of Medical Genetics, Folkhälsan Institute of Genetics, Helsinki University, 00290 Helsinki, Finland. 9 Department of Neurology, Vasa Central Hospital, 65130 Vaasa, Finland. 10 Department of Neurology, Stanford University, San Francisco, CA 94305, USA. 11 Department of Biomedical Sciences for Health, University of Milan, 20097 Milan, Italy. 12 Neurology Unit, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy. 13 Sorbonne Université, Inserm, Association Institut de Myologie, Center of Research in Myology, 75013 Paris, France. 14 Department of Neurology, Toneyama National Hospital, Toyonaka 560-0045, Japan. 15 Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan. 16 Friedrich-Baur-Institute, Department of Neurology, Ludwig Maximilian University, 80539 Munich, Germany. 17 UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France. 18 Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France. 19 Université de Strasbourg, 67404 Illkirch, France. Correspondence and requests for materials should be addressed to B.L. (email: [email protected]) or to N.C.-B. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2009 | DOI: 10.1038/s41467-018-04370-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04370-x yotonic dystrophy is the most common muscular dys- genomic localization as CCUG repeats are embedded in the first trophy in adults and comprises two genetically distinct intron of the CNBP pre-mRNA, which is presumably less stable M ′ forms. Myotonic dystrophy type 1 (DM1) and its severe compared to the 3 UTR of the DMPK mRNA that hosts the CUG congenital form (CDM1) are caused by an expansion of repeats. In favor of this hypothesis, transgenic Drosophila CTG repeats in the 3′-untranslated region (UTR) of the DMPK expressing either expanded CUG or CCUG repeats, embedded in – gene1 3. In contrast, myotonic dystrophy type 2 (DM2) is caused a comparable genomic context deprived of any DMPK or CNBP by an expansion of CCTG repeats within the first intron of the sequences, show similar DM-like phenotypes37,38. Nonetheless, it CNBP (also known as ZNF9) gene4. Expression of mutant RNAs is not excluded that other mechanisms may further contribute to containing hundreds to thousands of CUG or CCUG repeats the lesser toxicity of expanded CCUG repeats in DM2. interferes with the metabolism of other RNAs through dysfunc- Searching for novel RNA binding proteins that interact spe- tions of mainly two classes of RNA binding proteins. First, cifically with either CUG or CCUG expanded repeats, we iden- expression and phosphorylation of the CUG-binding protein 1 tified that the rbFOX RNA binding proteins bind to expanded (CUGBP1, encoded by the CELF1 gene) are increased in DM1 CCUG repeats, but not to expanded CUG repeats. The rbFOX heart samples, especially in the most severely affected indivi- family comprises three members, rbFOX1 (also named Fox-1, duals5. Second, Muscleblind-like proteins (MBNL1, MBNL2 and A2BP1 or HRNBP1), rbFOX2 (also known as Fox-2, RBM9, Fxh MBNL3), which are RNA binding proteins specifically recogniz- or HRNBP2) and rbFOX3 (also called Fox-3, NeuN or HRNBP3), ing YGC RNA motifs, are titrated away from their normal mRNA which are involved in the regulation of various aspects of mRNA – targets as a result of their binding to expanded CUG and CCUG metabolism39 47. While rbFOX2 is widely expressed, rbFOX1 is RNA repeats. MBNL proteins titration is illustrated by their enriched in skeletal muscle, heart and brain, and rbFOX3 mislocalization within nuclear RNA foci formed by expanded expression is restricted to neuronal cells48. All three rbFOX CUG and CCUG repeats in cell and animal models of myotonic proteins possess a near-identical RNA-recognition motif (RRM) – – dystrophy6 8. MBNL and CUGBP1 are RNA binding proteins that recognizes the UGCAUGY RNA sequence39 41,49. – that regulate pre-mRNA alternative splicing9 14. Thus, alterations Here, we find that rbFOX1 also binds to expanded CCUG of MBNL and CUGBP1 functional levels result in reversion to repeats, albeit with a lesser affinity compared to its favorite embryonic splicing patterns for various mRNAs, which are UGCAUGY sequence. Interestingly, rbFOX1 co-localizes with – associated with several symptoms of myotonic dystrophy15 22. CCUG RNA foci in muscle cells and skeletal muscle tissues of Importantly, knockout of Mbnl1 and/ or Mbnl2 in mouse individuals with DM2. In contrast, rbFOX1 does not bind to reproduces splicing alterations and keys features of myotonic expanded CUG repeats and does not co-localize with CUG RNA dystrophy10,13,14,20,23. Conversely, overexpression of MBNL1 foci in DM1 samples. Furthermore, we find that the binding of corrects splicing alterations and myotonia in mice expressing MBNL1 and rbFOX1 to expanded CCUG repeats are mutually expanded CUG repeats24. Finally, a higher number of pathogenic exclusive. Addition of rbFOX1 competes with MBNL1 binding to CUG repeats leads to a greater titration of MBNL proteins, CCUG repeats and partially releases MBNL1 from CCUG RNA resulting in increased RNA metabolism alterations that correlate foci in DM2 muscle cells. Importantly, expression of rbFOX1 with increased disease severity in DM1 individuals23,25. These corrects splicing alterations and reduces muscle atrophy, as well results highlight the importance of MBNL titration in myotonic as climbing and flying defects caused by expression of expanded dystrophy type 1. CCUG repeats in Drosophila models of DM2. Thus, we propose Myotonic dystrophy type 2 resembles adult-onset DM1 with that the rbFOX proteins, by competing with and reducing the autosomal dominant inheritance pattern and similar clinical titration of MBNL1 within CCUG RNA foci, may participate to multi-organ features, including progressive skeletal muscle atro- the lesser toxicity of the CCTG repeat expansion in myotonic phy and weakness, myotonia, cardiac arrhythmia and conduction dystrophy type 2. defects, posterior subcapsular iridescent cataract, insulin resis- tance, hypogammaglobulinemia, as well as cognitive and per- – sonality changes26 28. Despite these similarities, there are Results significant differences between DM1 and DM2, including a Identification of proteins associated with expanded CCUG usually more favorable clinical course in DM2 compared to DM1. repeats. To identify novel RNA binding proteins involved in Indeed, symptoms are generally milder in DM2 compared to myotonic dystrophy, we incubated radioactively labeled CUG or DM1 and include slower and less severe progression of the dis- CCUG RNA repeats with nuclear extract of differentiated mouse ease, reduced severity of the cardiac involvement, later and less C2C12 muscle cells and analyzed the RNA-bound proteins by prominent weakness of the respiratory, facial and bulbar muscles, UV-light crosslink followed by SDS page gel electrophoresis less evocable myotonia and preserved social and cognitive abil- (Fig. 1a). Consistent with the pioneering work of the Swanson – ities29 31. A milder involvement in DM2 compared to DM1 is group6, a UV-crosslink signal around 42 to 45 kDa, which cor- also found at the cellular level as in vitro cultures of muscle cells responds to Mbnl1 molecular weight, was evident for
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • MBNL1 Regulates Essential Alternative RNA Splicing Patterns in MLL-Rearranged Leukemia
    ARTICLE https://doi.org/10.1038/s41467-020-15733-8 OPEN MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia Svetlana S. Itskovich1,9, Arun Gurunathan 2,9, Jason Clark 1, Matthew Burwinkel1, Mark Wunderlich3, Mikaela R. Berger4, Aishwarya Kulkarni5,6, Kashish Chetal6, Meenakshi Venkatasubramanian5,6, ✉ Nathan Salomonis 6,7, Ashish R. Kumar 1,7 & Lynn H. Lee 7,8 Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, 1234567890():,; targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A.Wefinally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins. 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 2 Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 3 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
    [Show full text]
  • Accepted By:- Signature Redacted Department of Biology Graduate Co-Chair: Michael T
    EXPLORING THE FUNCTIONAL CONSERVATION OF MUSCLEBLIND (MBL) PROTEINS by MASSACH USETTS INSTITUTE Julia C. Oddo d o ECHNOLOGY B.S. Molecular, Cellular, and Developmental Biology, SE 1 7 2015 Minor Biochemistry 2011 LIB RARIES SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN BIOLOGY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2015 C 2015 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Signature of Auth or:_ Department of Biology May 22, 2015 Certified by: Signature redacte Thesis Supervisor: Chris B. Burge Professor of Biology and Biological Engineering Director Program CSB Certified by: Signature redactec Thesis Co-Supervisor: Eric T. Wang Research Fellow Accepted by:- Signature redacted Department of Biology Graduate Co-Chair: Michael T. Hemann Associate Professor of Biology 1 EXPLORING THE FUNCTIONAL CONSERVATION OF MUSCLEBLIND (MBL) PROTEINS by Julia C. Oddo Submitted to the Department of Biology on September 8th, 2015 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology ABSTRACT Muscleblind (Mbl) is an evolutionarily conserved family of proteins involved in many aspects of RNA metabolism, including alternative splicing. Disruption of Muscleblind in several animals lends to a variety of defects and disease, including the multi-systemic disorder Myotonic Dystrophy (DM). Though much is known about the involvement of Muscleblind in DM, there is much basic knowledge of the protein's function to be discovered.
    [Show full text]
  • Downloads/ (Accessed on 17 January 2020)
    cells Review Novel Approaches for Identifying the Molecular Background of Schizophrenia Arkadiy K. Golov 1,2,*, Nikolay V. Kondratyev 1 , George P. Kostyuk 3 and Vera E. Golimbet 1 1 Mental Health Research Center, 34 Kashirskoye shosse, 115522 Moscow, Russian; [email protected] (N.V.K.); [email protected] (V.E.G.) 2 Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russian 3 Alekseev Psychiatric Clinical Hospital No. 1, 2 Zagorodnoye shosse, 115191 Moscow, Russian; [email protected] * Correspondence: [email protected] Received: 5 November 2019; Accepted: 16 January 2020; Published: 18 January 2020 Abstract: Recent advances in psychiatric genetics have led to the discovery of dozens of genomic loci associated with schizophrenia. However, a gap exists between the detection of genetic associations and understanding the underlying molecular mechanisms. This review describes the basic approaches used in the so-called post-GWAS studies to generate biological interpretation of the existing population genetic data, including both molecular (creation and analysis of knockout animals, exploration of the transcriptional effects of common variants in human brain cells) and computational (fine-mapping of causal variability, gene set enrichment analysis, partitioned heritability analysis) methods. The results of the crucial studies, in which these approaches were used to uncover the molecular and neurobiological basis of the disease, are also reported. Keywords: schizophrenia; GWAS; causal genetic variants; enhancers; brain epigenomics; genome/epigenome editing 1. Introduction Schizophrenia is a severe mental illness that affects between 0.5% and 0.7% of the human population [1]. Both environmental and genetic factors are thought to be involved in its pathogenesis, with genetic factors playing a key role in disease risk, as the heritability of schizophrenia is estimated to be 70–85% [2,3].
    [Show full text]
  • The Splicing Factor RNA-Binding Fox Protein 1 Mediates the Cellular Immune Response in Drosophila Melanogaster
    The Splicing Factor RNA-Binding Fox Protein 1 Mediates the Cellular Immune Response in Drosophila melanogaster This information is current as Ashley E. Nazario-Toole, Javier Robalino, Kwame Okrah, of September 27, 2021. Hector Corrada-Bravo, Stephen M. Mount and Louisa P. Wu J Immunol published online 11 July 2018 http://www.jimmunol.org/content/early/2018/07/10/jimmun ol.1800496 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/07/10/jimmunol.180049 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 11, 2018, doi:10.4049/jimmunol.1800496 The Journal of Immunology The Splicing Factor RNA-Binding Fox Protein 1 Mediates the Cellular Immune Response in Drosophila melanogaster Ashley E. Nazario-Toole,*,† Javier Robalino,* Kwame Okrah,‡ Hector Corrada-Bravo,‡ Stephen M. Mount,*,‡ and Louisa P.
    [Show full text]
  • Generalised Anxiety Disorder – a Twin Study of Genetic Architecture, Genome-Wide Association and Differential Gene Expression
    RESEARCH ARTICLE Generalised Anxiety Disorder – A Twin Study of Genetic Architecture, Genome-Wide Association and Differential Gene Expression Matthew N. Davies1,2☯*, Serena Verdi1☯, Andrea Burri1, Maciej Trzaskowski3, Minyoung Lee4, John M. Hettema4, Rick Jansen5, Dorret I. Boomsma6, Tim D. Spector1 1 Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom, 2 Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom, 3 Social Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom, 4 Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America, 5 Department of Biological Psychology, VU University Amsterdam, Neuroscience Campus, Amsterdam, the Netherlands, 6 Department of Psychiatry, VU University Medical Center, Neuroscience Campus, Amsterdam, the Netherlands ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Citation: Davies MN, Verdi S, Burri A, Trzaskowski M, Lee M, Hettema JM, et al. (2015) Generalised Abstract Anxiety Disorder – A Twin Study of Genetic Architecture, Genome-Wide Association and Generalised Anxiety Disorder (GAD) is a common anxiety-related diagnosis, affecting Differential Gene Expression. PLoS ONE 10(8): approximately 5% of the adult population. One characteristic of GAD is a high degree of e0134865. doi:10.1371/journal.pone.0134865 anxiety sensitivity (AS), a personality trait which describes the fear of arousal-related sensa- Editor: Valerie W Hu, The George Washington tions. Here we present a genome-wide association study of AS using a cohort of 730 MZ University, UNITED STATES and DZ female twins.
    [Show full text]
  • The Splicing Regulator Rbfox1 (A2BP1) Controls Neuronal Excitation in the Mammalian Brain
    LETTERS The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain Lauren T Gehman1, Peter Stoilov2, Jamie Maguire3, Andrey Damianov4, Chia-Ho Lin4, Lily Shiue5, Manuel Ares Jr5, Istvan Mody6,7 & Douglas L Black1,4,8 The Rbfox family of RNA binding proteins regulates alternative The three mouse Rbfox paralogues show a high degree of sequence splicing of many important neuronal transcripts, but its role in conservation, especially within the RNA binding domain, which is neuronal physiology is not clear1. We show here that central identical in Rbfox1 and Rbfox2 and is only slightly altered in Rbfox3 nervous system–specific deletion of the gene encoding Rbfox1 (94% amino acid identity). Rbfox1 is specifically expressed in neurons, results in heightened susceptibility to spontaneous and kainic heart and muscle6,18, whereas Rbfox2 is expressed in these tissues acid–induced seizures. Electrophysiological recording revealed and in other cell types, including the embryo, hematopoetic cells and a corresponding increase in neuronal excitability in the dentate embryonic stem cells6,19,20. Expression of Rbfox3 is limited to neu- gyrus of the knockout mice. Whole-transcriptome analyses rons21,22. In the mature brain, most neurons express all three Rbfox identified multiple splicing changes in the Rbfox1−/− brain with paralogs, but certain neuronal subtypes and sporadic individual cells few changes in overall transcript abundance. These splicing can be seen that express only one or two of the proteins23 (Fig. 1a). changes alter proteins that mediate synaptic transmission and All three proteins have similar N- and C-terminal domains that are membrane excitation. Thus, Rbfox1 directs a genetic program diversified by alternative promoter use and alternative splicing to required in the prevention of neuronal hyperexcitation and produce a cohort of related protein isoforms with variable localization seizures.
    [Show full text]
  • Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2020/01/24/dmd.119.089102.DC1 1521-009X/48/4/272–287$35.00 https://doi.org/10.1124/dmd.119.089102 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 48:272–287, April 2020 Copyright ª 2020 by The American Society for Pharmacology and Experimental Therapeutics Minireview Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism s Andrew J. Annalora, Craig B. Marcus, and Patrick L. Iversen Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.) Received August 16, 2019; accepted December 31, 2019 ABSTRACT Downloaded from The human genome encodes 48 nuclear receptor (NR) genes, whose Exon inclusion options are differentially distributed across NR translated products transform chemical signals from endo- subfamilies, suggesting group-specific conservation of resilient func- xenobiotics into pleotropic RNA transcriptional profiles that refine tionalities. A deeper understanding of this transcriptional plasticity drug metabolism. This review describes the remarkable diversifica- expands our understanding of how chemical signals are refined and tion of the 48 human NR genes, which are potentially processed into mediated by NR genes. This expanded view of the NR transcriptome over 1000 distinct mRNA transcripts by alternative splicing (AS). The informs new models of chemical toxicity, disease diagnostics, and dmd.aspetjournals.org average human NR expresses ∼21 transcripts per gene and is precision-based approaches to personalized medicine.
    [Show full text]
  • RNA Splicing Regulated by RBFOX1 Is Essential for Cardiac Function in Zebrafish Karen S
    © 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 3030-3040 doi:10.1242/jcs.166850 RESEARCH ARTICLE RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish Karen S. Frese1,2,*, Benjamin Meder1,2,*, Andreas Keller3,4, Steffen Just5, Jan Haas1,2, Britta Vogel1,2, Simon Fischer1,2, Christina Backes4, Mark Matzas6, Doreen Köhler1, Vladimir Benes7, Hugo A. Katus1,2 and Wolfgang Rottbauer5,‡ ABSTRACT U2, U4, U5 and U6) and several hundred associated regulator Alternative splicing is one of the major mechanisms through which proteins (Wahl et al., 2009). Some of the best-characterized the proteomic and functional diversity of eukaryotes is achieved. splicing regulators include the serine-arginine (SR)-rich family, However, the complex nature of the splicing machinery, its associated heterogeneous nuclear ribonucleoproteins (hnRNPs) proteins, and splicing regulators and the functional implications of alternatively the Nova1 and Nova2, and the PTB and nPTB (also known as spliced transcripts are only poorly understood. Here, we investigated PTBP1 and PTBP2) families (David and Manley, 2008; Gabut et al., the functional role of the splicing regulator rbfox1 in vivo using the 2008; Li et al., 2007; Matlin et al., 2005). The diversity in splicing is zebrafish as a model system. We found that loss of rbfox1 led to further increased by the location and nucleotide sequence of pre- progressive cardiac contractile dysfunction and heart failure. By using mRNA enhancer and silencer motifs that either promote or inhibit deep-transcriptome sequencing and quantitative real-time PCR, we splicing by the different regulators. Adding to this complexity, show that depletion of rbfox1 in zebrafish results in an altered isoform regulating motifs are very common throughout the genome, but are expression of several crucial target genes, such as actn3a and hug.
    [Show full text]
  • The Alternative Splicing Factor MBNL1 Inhibits Glioblastoma Tumor Initiation and Progression by Reducing Hypoxia-Induced Stemness
    Author Manuscript Published OnlineFirst on September 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1233 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The Alternative Splicing Factor MBNL1 Inhibits Glioblastoma Tumor Initiation and Progression by Reducing Hypoxia-induced Stemness Dillon M. Voss1*, Anthony Sloan1*, Raffaella Spina, PhD2,3,4, Heather M. Ames, MD PhD2,4, and Eli E. Bar, PhD2,3,4 1 Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America. 2 Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America. 3 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America. 4 Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America. *Authors contributed equally to the study Running Title: MBNL1 Regulates GBM Initiation and Progression The authors declare no potential conflicts of interest. Correspondence to: Eli E. Bar, Ph.D. Departments of Pathology and Neurosurgery, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine 655 W. Baltimore St., Bressler Research Bldg., Room 8-039, Baltimore, MD 21201; [email protected] (office) 410-706-4826, (lab) 410-706- 2299 Word Count: 7946 1 Downloaded from cancerres.aacrjournals.org on September 23, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1233 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Secondary Motifs Enable Concentration-Dependent Regulation
    bioRxiv preprint doi: https://doi.org/10.1101/840272; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Secondary motifs enable concentration-dependent regulation by Rbfox family proteins 12 November 2019 Bridget E. Begg1, Marvin Jens1, Peter Y. Wang1, Christopher B. Burge1* 1Department of Biology Massachusetts Institute of Technology Cambridge MA 02139 * Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/840272; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The Rbfox family of splicing factors regulate alternative splicing during animal development and in disease, impacting thousands of exons in the maturing brain, heart, and muscle. Rbfox proteins have long been known to bind to the RNA sequence GCAUG with high affinity, but just half of Rbfox CLIP peaks contain a GCAUG motif. We incubated recombinant RBFOX2 with over 60,000 transcriptomic sequences to reveal significant binding to several moderate-affinity, non-GCAYG sites at a physiologically relevant range of RBFOX concentrations. We find that many of these “secondary motifs” bind Rbfox robustly in vivo and that several together can exert regulation comparable to a GCAUG in a trichromatic splicing reporter assay. Furthermore, secondary motifs regulate RNA splicing in neuronal development and in neuronal subtypes where cellular Rbfox concentrations are highest, enabling a second wave of splicing changes as Rbfox levels increase.
    [Show full text]
  • 100002369.Pdf
    “The Rbfox1 gene: expression analysis and study of the transcrip onal regula on” Disserta on zur Erlangung des Grades “Doktor der Naturwissenscha en” Am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz Sònia Casanovas Palau geb. am 13.01.1982 in Reus-SPAIN Mainz 2018 Summary Summary The RBFOX1 gene, which is located on chromosome 16p13.2, encodes an RNA-binding protein that regulates pre-mRNA splicing events in specific cell types including neurons. In the mouse, the gene contains a large noncoding part in its 5' end with at least four alternative promoters, promoters 1B, 1C, 1D and 1E. Promoters 1B, 1C and 1D are brain specific and promoter 1E is muscle specific. The promoters drive the expression of the alternative Rbfox1 transcript isoforms, which differ in their 5'UTR but not in their coding exons. Copy number variants (CNVs) in the human RBFOX1 gene that are located in the 5'-noncoding part of the gene and that typically only affect some but not all RBFOX1 transcript isoforms, have been associated with a range of neurodevelopmental disorders such as autism spectrum disorder, intellectual disability, epilepsy, attention deficit hyperactivity disorder and schizophrenia. In this thesis, I analyzed the expression of the three brain-specific Rbfox1 transcript isoforms controlled by the promoters 1B, 1C and 1D during embryonic development of the cerebral cortex as well as in various brain regions of the juvenile mouse. Furthermore, through in silico analysis and luciferase assays, I characterized the alternative Rbfox1 promoters and demonstrated that the expression of Rbfox1 in primary cortical neurons is driven by promoters 1B and 1C.
    [Show full text]