The Stochastic Stationary Root Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Trajectory Averaging for Stochastic Approximation MCMC AlgorithmsThe Annals of Statistics 2010, Vol. 38, No. 5, 2823–2856 DOI: 10.1214/10-AOS807 c Institute of Mathematical Statistics, 2010 TRAJECTORY AVERAGING FOR STOCHASTIC APPROXIMATION MCMC ALGORITHMS1 By Faming Liang Texas A&M University The subject of stochastic approximation was founded by Rob- bins and Monro [Ann. Math. Statist. 22 (1951) 400–407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line esti- mation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and opti- mizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approxima- tion MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algo- rithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305–320]. The application of the trajectory averaging estimator to other stochastic approximation MCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. 1. Introduction. Robbins and Monro (1951) introduced the stochastic approximation algorithm to solve the integration equation (1) h(θ)= H(θ,x)fθ(x) dx = 0, ZX where θ Θ Rdθ is a parameter vector and f (x), x Rdx , is a density ∈ ⊂ θ ∈X ⊂ function depending on θ. The dθ and dx denote the dimensions of θ and x, arXiv:1011.2587v1 [math.ST] 11 Nov 2010 respectively.
- 
												  Stochastic Approximation for the Multivariate and the Functional Median 3 It Can Not Be Updated Simply If the Data Arrive OnlineSTOCHASTIC APPROXIMATION TO THE MULTIVARIATE AND THE FUNCTIONAL MEDIAN Submitted to COMPSTAT 2010 Herv´eCardot1, Peggy C´enac1, and Mohamed Chaouch2 1 Institut de Math´ematiques de Bourgogne, UMR 5584 CNRS, Universit´ede Bourgogne, 9, Av. A. Savary - B.P. 47 870, 21078 Dijon, France [email protected], [email protected] 2 EDF - Recherche et D´eveloppement, ICAME-SOAD 1 Av. G´en´eralde Gaulle, 92141 Clamart, France [email protected] Abstract. We propose a very simple algorithm in order to estimate the geometric median, also called spatial median, of multivariate (Small, 1990) or functional data (Gervini, 2008) when the sample size is large. A simple and fast iterative approach based on the Robbins-Monro algorithm (Duflo, 1997) as well as its averaged version (Polyak and Juditsky, 1992) are shown to be effective for large samples of high dimension data. They are very fast and only require O(Nd) elementary operations, where N is the sample size and d is the dimension of data. The averaged approach is shown to be more effective and less sensitive to the tuning parameter. The ability of this new estimator to estimate accurately and rapidly (about thirty times faster than the classical estimator) the geometric median is illustrated on a large sample of 18902 electricity consumption curves measured every half an hour during one week. Keywords: Geometric quantiles, High dimension data, Online estimation al- gorithm, Robustness, Robbins-Monro, Spatial median, Stochastic gradient averaging 1 Introduction Estimation of the median of univariate and multivariate data has given rise to many publications in robust statistics, data mining, signal processing and information theory.
- 
												  Simulation Methods for Robust Risk Assessment and the Distorted MixSimulation Methods for Robust Risk Assessment and the Distorted Mix Approach Sojung Kim Stefan Weber Leibniz Universität Hannover September 9, 2020∗ Abstract Uncertainty requires suitable techniques for risk assessment. Combining stochastic ap- proximation and stochastic average approximation, we propose an efficient algorithm to compute the worst case average value at risk in the face of tail uncertainty. Dependence is modelled by the distorted mix method that flexibly assigns different copulas to different regions of multivariate distributions. We illustrate the application of our approach in the context of financial markets and cyber risk. Keywords: Uncertainty; average value at risk; distorted mix method; stochastic approximation; stochastic average approximation; financial markets; cyber risk. 1 Introduction Capital requirements are an instrument to limit the downside risk of financial companies. They constitute an important part of banking and insurance regulation, for example, in the context of Basel III, Solvency II, and the Swiss Solvency test. Their purpose is to provide a buffer to protect policy holders, customers, and creditors. Within complex financial networks, capital requirements also mitigate systemic risks. The quantitative assessment of the downside risk of financial portfolios is a fundamental, but arduous task. The difficulty of estimating downside risk stems from the fact that extreme events are rare; in addition, portfolio downside risk is largely governed by the tail dependence of positions which can hardly be estimated from data and is typically unknown. Tail dependence is a major source of model uncertainty when assessing the downside risk. arXiv:2009.03653v1 [q-fin.RM] 8 Sep 2020 In practice, when extracting information from data, various statistical tools are applied for fitting both the marginals and the copulas – either (semi-)parametrically or empirically.
- 
												  An Empirical Bayes Procedure for the Selection of Gaussian Graphical ModelsAn empirical Bayes procedure for the selection of Gaussian graphical models Sophie Donnet CEREMADE Universite´ Paris Dauphine, France Jean-Michel Marin∗ Institut de Mathematiques´ et Modelisation´ de Montpellier Universite´ Montpellier 2, France Abstract A new methodology for model determination in decomposable graphical Gaussian models (Dawid and Lauritzen, 1993) is developed. The Bayesian paradigm is used and, for each given graph, a hyper inverse Wishart prior distribution on the covariance matrix is considered. This prior distribution depends on hyper-parameters. It is well-known that the models’s posterior distribution is sensitive to the specification of these hyper-parameters and no completely satisfactory method is registered. In order to avoid this problem, we suggest adopting an empirical Bayes strategy, that is a strategy for which the values of the hyper-parameters are determined using the data. Typically, the hyper-parameters are fixed to their maximum likelihood estimations. In order to calculate these maximum likelihood estimations, we suggest a Markov chain Monte Carlo version of the Stochastic Approximation EM algorithm. Moreover, we introduce a new sampling scheme in the space of graphs that improves the add and delete proposal of Armstrong et al. (2009). We illustrate the efficiency of this new scheme on simulated and real datasets. Keywords: Gaussian graphical models, decomposable models, empirical Bayes, Stochas- arXiv:1003.5851v2 [stat.CO] 23 May 2011 tic Approximation EM, Markov Chain Monte Carlo ∗Corresponding author: [email protected] 1 1 Gaussian graphical models in a Bayesian Context Statistical applications in genetics, sociology, biology , etc often lead to complicated interaction patterns between variables.
- 
												  Testing for Cointegration When Some of TheEconometricTheory, 11, 1995, 984-1014. Printed in the United States of America. TESTINGFOR COINTEGRATION WHEN SOME OF THE COINTEGRATINGVECTORS ARE PRESPECIFIED MICHAELT.K. HORVATH Stanford University MARKW. WATSON Princeton University Manyeconomic models imply that ratios, simpledifferences, or "spreads"of variablesare I(O).In these models, cointegratingvectors are composedof l's, O's,and - l's and containno unknownparameters. In this paper,we develop tests for cointegrationthat can be appliedwhen some of the cointegratingvec- tors are prespecifiedunder the null or underthe alternativehypotheses. These tests are constructedin a vectorerror correction model and are motivatedas Waldtests from a Gaussianversion of the model. Whenall of the cointegrat- ing vectorsare prespecifiedunder the alternative,the tests correspondto the standardWald tests for the inclusionof errorcorrection terms in the VAR. Modificationsof this basictest are developedwhen a subsetof the cointegrat- ing vectorscontain unknown parameters. The asymptoticnull distributionsof the statisticsare derived,critical values are determined,and the local power propertiesof the test are studied.Finally, the test is appliedto data on for- eign exchangefuture and spot pricesto test the stabilityof the forward-spot premium. 1. INTRODUCTION Economic models often imply that variables are cointegrated with simple and known cointegrating vectors. Examples include the neoclassical growth model, which implies that income, consumption, investment, and the capi- tal stock will grow in a balanced way, so that any stochastic growth in one of the series must be matched by corresponding growth in the others. Asset This paper has benefited from helpful comments by Neil Ericsson, Gordon Kemp, Andrew Levin, Soren Johansen, John McDermott, Pierre Perron, Peter Phillips, James Stock, and three referees.
- 
												  Stochastic Approximation of Score Functions for Gaussian ProcessesThe Annals of Applied Statistics 2013, Vol. 7, No. 2, 1162–1191 DOI: 10.1214/13-AOAS627 c Institute of Mathematical Statistics, 2013 STOCHASTIC APPROXIMATION OF SCORE FUNCTIONS FOR GAUSSIAN PROCESSES1 By Michael L. Stein2, Jie Chen3 and Mihai Anitescu3 University of Chicago, Argonne National Laboratory and Argonne National Laboratory We discuss the statistical properties of a recently introduced un- biased stochastic approximation to the score equations for maximum likelihood calculation for Gaussian processes. Under certain condi- tions, including bounded condition number of the covariance matrix, the approach achieves O(n) storage and nearly O(n) computational effort per optimization step, where n is the number of data sites. Here, we prove that if the condition number of the covariance matrix is bounded, then the approximate score equations are nearly optimal in a well-defined sense. Therefore, not only is the approximation ef- ficient to compute, but it also has comparable statistical properties to the exact maximum likelihood estimates. We discuss a modifi- cation of the stochastic approximation in which design elements of the stochastic terms mimic patterns from a 2n factorial design. We prove these designs are always at least as good as the unstructured design, and we demonstrate through simulation that they can pro- duce a substantial improvement over random designs. Our findings are validated by numerical experiments on simulated data sets of up to 1 million observations. We apply the approach to fit a space–time model to over 80,000 observations of total column ozone contained in the latitude band 40◦–50◦N during April 2012.
- 
												  Conditional Heteroscedastic Cointegration Analysis with Structural Breaks a Study on the Chinese Stock MarketsConditional Heteroscedastic Cointegration Analysis with Structural Breaks A study on the Chinese stock markets Authors: Supervisor: Andrea P.G. Kratz Frederik Lundtofte Heli M.K. Raulamo VT 2011 Abstract A large number of studies have shown that macroeconomic variables can explain co- movements in stock market returns in developed markets. The purpose of this paper is to investigate whether this relation also holds in China’s two stock markets. By doing a heteroscedastic cointegration analysis, the long run relation is investigated. The results show that it is difficult to determine if a cointegrating relationship exists. This could be caused by conditional heteroscedasticity and possible structural break(s) apparent in the sample. Keywords: cointegration, conditional heteroscedasticity, structural break, China, global financial crisis Table of contents 1. Introduction ............................................................................................................................ 3 2. The Chinese stock market ...................................................................................................... 5 3. Previous research .................................................................................................................... 7 3.1. Stock market and macroeconomic variables ................................................................ 7 3.2. The Chinese market ..................................................................................................... 9 4. Theory .................................................................................................................................
- 
												  Stochastic Approximation Methods and Applications in Financial Optimization ProblemsStochastic Approximation Methods And Applications in Financial Optimization Problems by Chao Zhuang (Under the direction of Qing Zhang) Abstract Optimizations play an increasingly indispensable role in financial decisions and financial models. Many problems in mathematical finance, such as asset allocation, trading strategy, and derivative pricing, are now routinely and efficiently approached using optimization. Not until recently have stochastic approximation methods been applied to solve optimization problems in finance. This dissertation is concerned with stochastic approximation algorithms and their appli- cations in financial optimization problems. The first part of this dissertation concerns trading a mean-reverting asset. The strategy is to determine a low price to buy and a high price to sell so that the expected return is maximized. Slippage cost is imposed on each transaction. Our effort is devoted to developing a recursive stochastic approximation type algorithm to esti- mate the desired selling and buying prices. In the second part of this dissertation we consider the trailing stop strategy. Trailing stops are often used in stock trading to limit the maximum of a possible loss and to lock in a profit. We develop stochastic approximation algorithms to estimate the optimal trailing stop percentage. A modification using projection is devel- oped to ensure that the approximation sequence constructed stays in a reasonable range. In both parts, we also study the convergence and the rate of convergence. Simulations and real market data are used to demonstrate the performance of the proposed algorithms. The advantage of using stochastic approximation in stock trading is that the underlying asset is model free. Only observed stock prices are required, so it can be performed on line to provide guidelines for stock trading.
- 
												  Lecture 18 CointegrationRS – EC2 - Lecture 18 Lecture 18 Cointegration 1 Spurious Regression • Suppose yt and xt are I(1). We regress yt against xt. What happens? • The usual t-tests on regression coefficients can show statistically significant coefficients, even if in reality it is not so. • This the spurious regression problem (Granger and Newbold (1974)). • In a Spurious Regression the errors would be correlated and the standard t-statistic will be wrongly calculated because the variance of the errors is not consistently estimated. Note: This problem can also appear with I(0) series –see, Granger, Hyung and Jeon (1998). 1 RS – EC2 - Lecture 18 Spurious Regression - Examples Examples: (1) Egyptian infant mortality rate (Y), 1971-1990, annual data, on Gross aggregate income of American farmers (I) and Total Honduran money supply (M) ŷ = 179.9 - .2952 I - .0439 M, R2 = .918, DW = .4752, F = 95.17 (16.63) (-2.32) (-4.26) Corr = .8858, -.9113, -.9445 (2). US Export Index (Y), 1960-1990, annual data, on Australian males’ life expectancy (X) ŷ = -2943. + 45.7974 X, R2 = .916, DW = .3599, F = 315.2 (-16.70) (17.76) Corr = .9570 (3) Total Crime Rates in the US (Y), 1971-1991, annual data, on Life expectancy of South Africa (X) ŷ = -24569 + 628.9 X, R2 = .811, DW = .5061, F = 81.72 (-6.03) (9.04) Corr = .9008 Spurious Regression - Statistical Implications • Suppose yt and xt are unrelated I(1) variables. We run the regression: y t x t t • True value of β=0. The above is a spurious regression and et ∼ I(1).
- 
												  Testing Linear Restrictions on Cointegration Vectors: Sizes and Powers of Wald Tests in Finite SamplesA Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Haug, Alfred A. Working Paper Testing linear restrictions on cointegration vectors: Sizes and powers of Wald tests in finite samples Technical Report, No. 1999,04 Provided in Cooperation with: Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475), University of Dortmund Suggested Citation: Haug, Alfred A. (1999) : Testing linear restrictions on cointegration vectors: Sizes and powers of Wald tests in finite samples, Technical Report, No. 1999,04, Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund This Version is available at: http://hdl.handle.net/10419/77134 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung
- 
												  Stochastic Approximation AlgorithmLearning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 5 The Stochastic Approximation Algorithm 5.1 Stochastic Processes { Some Basic Concepts 5.1.1 Random Variables and Random Sequences Let (; F;P ) be a probability space, namely: {  is the sample space. { F is the event space. Its elements are subsets of , and it is required to be a σ- algebra (includes ; and ; includes all countable union of its members; includes all complements of its members). { P is the probability measure (assigns a probability in [0,1] to each element of F, with the usual properties: P () = 1, countably additive). A random variable (RV) X on (; F) is a function X :  ! R, with values X(!). It is required to be measurable on F, namely, all sets of the form f! : X(!) · ag are events in F. A vector-valued RV is a vector of RVs. Equivalently, it is a function X :  ! Rd, with similar measurability requirement. d A random sequence, or a discrete-time stochastic process, is a sequence (Xn)n¸0 of R -valued RVs, which are all de¯ned on the same probability space. 1 5.1.2 Convergence of Random Variables A random sequence may converge to a random variable, say to X. There are several useful notions of convergence: 1. Almost sure convergence (or: convergence with probability 1): a:s: Xn ! X if P f lim Xn = Xg = 1 : n!1 2. Convergence in probability: p Xn ! X if lim P (jXn ¡ Xj > ²) = 0 ; 8² > 0 : n!1 3. Mean-squares convergence (convergence in L2): 2 L 2 Xn ! X if EjXn ¡ X1j ! 0 : 4.
- 
												  Stochastic Approximation: from Statistical Origin to Big-Data, Multidisciplinary ApplicationsSTOCHASTIC APPROXIMATION: FROM STATISTICAL ORIGIN TO BIG-DATA, MULTIDISCIPLINARY APPLICATIONS By Tze Leung Lai Hongsong Yuan Technical Report No. 2020-05 June 2020 Department of Statistics STANFORD UNIVERSITY Stanford, California 94305-4065 STOCHASTIC APPROXIMATION: FROM STATISTICAL ORIGIN TO BIG-DATA, MULTIDISCIPLINARY APPLICATIONS By Tze Leung Lai Stanford University Hongsong Yuan Shanghai University of Finance and Economics Technical Report No. 2020-05 June 2020 This research was supported in part by National Science Foundation grant DMS 1811818. Department of Statistics STANFORD UNIVERSITY Stanford, California 94305-4065 http://statistics.stanford.edu Submitted to Statistical Science Stochastic Approximation: from Statistical Origin to Big-Data, Multidisciplinary Applications Tze Leung Lai and Hongsong Yuan Abstract. Stochastic approximation was introduced in 1951 to provide a new theoretical framework for root finding and optimization of a regression function in the then-nascent field of statistics. This review shows how it has evolved in response to other developments in statistics, notably time series and sequential analysis, and to applications in artificial intelligence, economics, and engineering. Its resurgence in the Big Data Era has led to new advances in both theory and applications of this microcosm of statistics and data science. Key words and phrases: Control, gradient boosting, optimization, re- cursive stochastic algorithms, regret, weak greedy variable selection. 1. INTRODUCTION The year 2021 will mark the seventieth anniversary of the seminal paper of Robbins and Monro (1951) on stochastic approximation. In 1946, Herbert Robbins entered the then-nascent field of statistics somewhat serendipitously. He had enlisted in the Navy during the Second World War and was demobilized as a lieutenant commander in 1945.