22 Inv Dup(15) and Inv Dup(22)

Total Page:16

File Type:pdf, Size:1020Kb

22 Inv Dup(15) and Inv Dup(22) Chapter 22 / inv dup(15) and inv dup(22) 315 22 inv dup(15) and inv dup(22) Heather E. McDermid, PhD and Rachel Wevrick, PhD CONTENTS INTRODUCTION SMALL MARKER CHROMOSOMES INV DUP SMALL MARKER CHROMOSOMES INV DUP(15) INV DUP(22) SUMMARY REFERENCES INTRODUCTION The presence of a small supernumerary marker chromosome (SMC) in a karyotype creates a diagnostic dilemma, because the resulting duplications/triplications may cause abnormal development, depending on the location and size of the extra material. The most common SMC is the inv dup(15), the effect of which varies with size of triplication as well as the parent of origin. inv dup(22) is associated with the highly variable cat eye syndrome. Both are thought to be caused by U-type recombination between neighboring low-copy repeats (LCRs), result- ing in both symmetric and asymmetric bisatellited dicentric supernumerary chromosomes. Studies are underway to associate the abnormal features of each syndrome with specific genes in the duplicated regions. SMALL MARKER CHROMOSOMES SMCs, detected prenatally or postnatally, have presented a diagnostic dilemma since the birth of cytogenetics nearly 50 years ago. SMCs, also referred to as extra structurally abnormal chro- mosomes, are present in addition to the normal chromosome complement, usually not identifi- able by standard staining techniques, and typically smaller than the smallest autosome (1–4). In a landmark study of almost 400,000 amniocenteses, 0.04% had an SMC of cytogeneti- cally unidentifiable origin (reviewed in ref. 1). The incidence of SMCs at live birth has been variously reported as 0.05% (2) and 0.07% (3). SMCs can also exist as rings and occasionally may be present in multiple copies per cell. Mosaicism has been seen in 59% of all SMC cases, but is higher (69%) for SMCs derived from nonacrocentric chromosomes (4). In any case, the presence of an SMC may lead to an imbalance for whatever genes are duplicated in the SMC. From: Genomic Disorders: The Genomic Basis of Disease Edited by: J. R. Lupski and P. Stankiewicz © Humana Press, Totowa, NJ 315 316 Part IV / Genomic Rearrangements and Disease Traits When studied using fluorescence in situ hybridization (FISH), the chromosomal origin of most SMCs can be identified by the presence of chromosome-specific α-satellite DNA (although commercial satellite probes to differentiate chromosomes 13 from 21 and 14 from 22 are not available). More recent variants of the FISH technique, such as spectral karyotyping, centromere-specific multicolor FISH, and subcentromeric multicolor-FISH have allowed finer identification, the latter technique determining the presence of specific subcentromeric euchromatin (5–7). SMCs derived from chromosome 15 can also be identified by specific staining with DAPI, a DNA-binding dye. In a study of 112 autosomal SMCs ascertained both prenatally and postnatally, 68% were derived from acrocentric autosomes, and of those, 51% were derived from chromosome 15 (35% of all SMCs) (4). The risk of an abnormal phenotype associated with the 32% of SMCs that are nonacrocentric-derived has been calculated as approx 28%, whereas SMCs derived from acrocentric autosomes, excluding chromosome 15, carry a lower risk (approx 7%) of abnormal phenotype (8). Correlations between the SMC origin and phenotype have been attempted (7,8). SMCs derived from chromosome 15 are associated with defined risk and distinct phenotype, depending on their genetic composition. As described below, imprinting of the proximal region of the chromosome 15 long arm also alters gene dosage effects. Specific SMCs derived from chromosome 22 cause a distinct phenotype, the cat eye syndrome (OMIM 115470). INV DUP SMALL MARKER CHROMOSOMES SMCs containing two copies of a centromere, arranged in an apparent mirror image sym- metry around a central axis, have been referred to as isodicentric (idic), pseudoisodicentric (psu dic) or, more correctly, inverted duplication (inv dup) (Fig. 1). The best studied, recurrent inv dup SMCs are derived from chromosomes 15 or 22. These chromosomes are bisatellited because of an acrocentric p-arm on each end. They also contain two centromeres, usually separated by at least several megabases of euchromatin. Such chromosomes are often stable, presumably because one centromere is inactivated (hence the term pseudoisodicentric). An inv dup SMC associated with an otherwise normal karyotype results in a total of four copies of the excess region, and is therefore a triplication or partial tetrasomy. inv dup SMCs have been referred to as isodicentric, but this term is appropriate only if the duplications on each side are symmetrical (Fig. 1). inv dup chromosomes have been found often to be asymmetrical, with one side of the chromosome considerably larger than the other. This results in a total of four copies of some regions and only three copies of others (9). inv dup SMCs can also originate from the other acrocentric chromosomes, but with less frequency and are associated with a less well-defined phenotype than that for chromosomes 15 and 22. Nonacrocentric chromosomes are also a source for inv dup SMCs. These may contain no α-satellite DNA and yet are stable, providing an opportunity to address the question of centromeric function in the absence of the DNA normally present at centromeres (10). These unusual inv dup SMCs are C-band negative, yet have a G-banded primary constriction, which acts as an active kinetochore and reacts with CENP-C antibodies (11). It is presumed that these SMCs activate noncentromeric sequences that function as neocentromeres. It has long been suggested that inv dup chromosomes are derived from a “U-type” rather than the normal “X-type” exchange between nonsister or sister chromatids at meiosis I (12,13). Mediated by LCRs on chromosomes 15 or 22, a U-type exchange between repeats in opposite Chapter 22 / inv dup(15) and inv dup(22) 317 Fig. 1. Structure of bisatellited and dicentric inv dup chromosomes. These chromosomes can have a symmetrical duplication (A) or be asymmetrical, where one side of the duplication is larger than the other (B). In an asymmetric inv dup, the region nearest the centromere is present in two extra copies (light gray), whereas the more distal region is present in only one extra copy (dark gray). orientation would lead to a dicentric SMC as well as an acentric fragment composed of two copies of the rest of each chromatid. The acentric fragment would be lost, whereas the SMC would be retained through nondisjunction and inactivation of one centromere. Each LCR in chromosome 22q11 is composed of complex blocks of repeats (14). LCR2 and LCR4, in which most rearrangements occur, contain shared repeat blocks in both the same and opposite orien- tations, which facilitate U-type exchanges. If a U-type exchange occurs between elements of the same LCR (allelic), the resulting inv dup chromosome would essentially be symmetrical. A U-type exchange between similar elements of different LCRs (nonallelic) would produce an asymmetric SMC. Asymmetric inv dup SMCs could also result from a paracentric inversion of a region between LCRs, followed by recombination within the inversion loop (15). This would similarly result in a dicentric SMC and an acentric fragment that is lost. INV DUP(15) inv dup chromosomes derived from chromosome 15 account for approx 35% of SMCs (4), and, after trisomy 21, are the most common autosomal chromosomal aberration (16). Although the phenotype associated with the inv dup(15) itself can be variable, uniparental disomy or deletion of the normal chromosome 15 can accompany the inv dup chromosome with addi- tional clinical consequences (17,18). The presence of abnormalities on the “normal” chromo- somes 15, the size of the inv dup(15), and the parental origin of the chromosomal abnormalities all affect the severity of the outcome. This information is critical in the context of genetic counseling, particularly in the setting of prenatal ascertainment of a de novo inv dup(15). Because of their relatively common frequency, chromosome 15 rearrangements have pro- vided a rich source of information for the study of chromosomal abnormalities. The presence of a set of LCRs on the proximal long arm of chromosome 15 predisposes this region to a 318 Part IV / Genomic Rearrangements and Disease Traits Fig. 2. Examples of various types of inv dup(15)s. Chromosome 15q11-q14 contains a set of genes that are expressed only from the paternally inherited allele (black diamonds, Prader-Willi syndrome [PWS] candidate genes), from the maternal allele in a tissue-specific fashion (white diamonds, including the Angelman syndrome [AS] gene UBE3A) or from both alleles (not imprinted, gray diamonds). Rear- rangements of chromosome 15q11-q14 generally involve a set of low-copy repeats labeled BP1 through BP5; the PWS/AS interstitial deletions typically occur between BP2 and BP3A/3B. inv dup(15) chro- mosomes can involve any of the breakpoint regions, and can be symmetrical or asymmetrical, as in the bottom example. inv dup(15)s that contain material telomeric to BP2 (shaded gray) are associated with an adverse outcome. The centromere is represented by the black circle toward the left. heterogeneous group of inter- and intrachromosomal rearrangements (19,20). The nonallelic copies of these LCRs can misalign during meiosis, and the resulting nonallelic homologous recombination or unequal crossover event gives rise to structurally abnormal chromosomes. The LCRs are present in the breakpoint regions involved in the rearrangements, and are named in ascending order from the most centromeric, as break point (BP)1 to BP5 (Fig. 2). The chromosomal disorders Prader-Willi syndrome (PWS; OMIM 176270) and Angelman syndrome (AS; OMIM 105830) most commonly involve a deletion of the genetic material between BP2 and BP3A/3B, with PWS deletions occurring on the paternally derived chromo- some, and AS deletions occurring on the maternally derived chromosome (19,20) (Fig.
Recommended publications
  • Trisomy 21 with a Small Supernumerary Marker Chromosome Derived From
    BJMG 13 (1) (2010) 10.2478/v10034-010-0020-x SHORT COMMUNICATION TRISOMY 21 WITH A SMALL SUPERNUMERARY MARKER CHROMOSOME DERIVED FROM CHROMOSOMES 13/21 AND 18 Niksic SB1, Deretic VI2, Pilic GR1, Ewers E3, Merkas M3, Ziegler M3, Liehr T3,* *Corresponding Author: Thomas Liehr, Institut für Humangenetik, Postfach, D-07740 Jena, Germany; Tel.: +49-3641-935-533; Fax: +49-3641-935-582; E-mail: [email protected] ABSTRACT influenced by maternal age and affected fetuses are at an increased risk of miscarriage [1]. Different theories We describe a trisomy 21 with a small are discussed how free trisomy 21 develops during supernumerary marker chromosome (sSMC) maternal meiosis [2,3]. In 35 reported DS cases instead derived from chromosomes 13/21 and 18 in which of a karyotype 47,XN,+21 there was a karyotype the karyotype was 48,XY,+der(13 or 21)t(13 48,XN,+21,+mar, i.e., a small supernumerary or 21;18)(13 or 21pter→13q11 or 21q11.1::18p marker chromosome (sSMC) was also present [4]. 11.21→18pter),+21. Of the 35 case reports in the The sSMC are a morphologically heterogeneous literature for a karyotype 48,XN,+21,+mar, in group of structurally abnormal chromosomes only 12 was the origin of the sSMC determined by which may represent different types of inverted fluorescence in situ hybridization (FISH), and only duplicated chromosomes, minute chromosomes one was a der(13 or 21) and none were derived and ring chromosomes. They can be characterized from two chromosomes. The influence of the partial unambiguously by molecular cytogenetics and are trisomy 18p on the clinical outcome was hard to usually equal in size or smaller than a chromosome determine, however, there are reports on clinically 20 in the same metaphase spread.
    [Show full text]
  • Derived from Chromosome 22, a Case Report
    1802 Case Report Hypogonadotropic hypogonadism associated with another small supernumerary marker chromosome (sSMC) derived from chromosome 22, a case report Abdullah1#, Cui Li2#, Minggang Zhao2, Xiang Wang2, Xu Li2, Junping Xing1 1Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China; 2Centre for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China #These authors contributed equally to this work. Correspondence to: Junping Xing. Department of Urology, School of Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China. Email: [email protected]. Abstract: The idiopathic hypogonadotropic hypogonadism (IHH) is portrayed as missing or fragmented pubescence, cryptorchidism, small penis, and infertility. Clinically it is characterized by the low level of sex steroids and gonadotropins, normal radiographic findings of the hypothalamic-pituitary areas, and normal baseline and reserve testing of the rest of the hypothalamic-pituitary axes. Delay puberty and infertility result from an abnormal pattern of episodic GnRH secretion. Mutation in a wide range of genes can clarify ~40% of the reasons for IHH, with the majority remaining hereditarily uncharacterized. New and innovative molecular tools enhance our understanding of the molecular controls underlying pubertal development. In this report, we aim to present a 26-year-old male of IHH associated with a small supernumerary marker chromosome (sSMC) that originated from chromosome 22. The G-banding analysis revealed a karyotype of 47,XY,+mar. High-throughput DNA sequencing identified an 8.54 Mb duplication of 22q11.1-q11.23 encompassing all the region of 22q11 duplication syndrome. Pedigree analysis showed that his mother has carried a balanced reciprocal translocation between Chromosomes 22 and X[t(X;22)].
    [Show full text]
  • First Case Report of Maternal Mosaic Tetrasomy 9P Incidentally Detected on Non-Invasive Prenatal Testing
    G C A T T A C G G C A T genes Article First Case Report of Maternal Mosaic Tetrasomy 9p Incidentally Detected on Non-Invasive Prenatal Testing Wendy Shu 1,*, Shirley S. W. Cheng 2 , Shuwen Xue 3, Lin Wai Chan 1, Sung Inda Soong 4, Anita Sik Yau Kan 5 , Sunny Wai Hung Cheung 6 and Kwong Wai Choy 3,* 1 Department of Obstetrics and Gynaecology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China; [email protected] 2 Clinical Genetic Service, Hong Hong Children Hospital, Ngau Tau Kok, Hong Kong, China; [email protected] 3 Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Hong Kong, China; [email protected] 4 Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China; [email protected] 5 Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Sai Ying Pun, Hong Kong, China; [email protected] 6 NIPT Department, NGS Lab, Xcelom Limited, Hong Kong, China; [email protected] * Correspondence: [email protected] (W.S.); [email protected] (K.W.C.); Tel.: +852-25-957-359 (W.S.); +852-35-053-099 (K.W.C.) Abstract: Tetrasomy 9p (ORPHA:3390) is a rare syndrome, hallmarked by growth retardation; psychomotor delay; mild to moderate intellectual disability; and a spectrum of skeletal, cardiac, renal and urogenital defects. Here we present a Chinese female with good past health who conceived her pregnancy naturally. Non-invasive prenatal testing (NIPT) showed multiple chromosomal aberrations were consistently detected in two sampling times, which included elevation in DNA from Citation: Shu, W.; Cheng, S.S.W.; chromosome 9p.
    [Show full text]
  • Molecular Delineation of Small Supernumerary Marker
    Zhou et al. Molecular Cytogenetics (2020) 13:19 https://doi.org/10.1186/s13039-020-00486-2 RESEARCH Open Access Molecular delineation of small supernumerary marker chromosomes using a single nucleotide polymorphism array Lili Zhou1, Zhaoke Zheng1, Lianpeng Wu2, Chenyang Xu1, Hao Wu1, Xueqin Xu1 and Shaohua Tang1,2* Abstract Background: Defining the phenotype-genotype correlation of small supernumerary marker chromosomes (sSMCs) remains a challenge in prenatal diagnosis. We karyotyped 20,481 amniotic fluid samples from pregnant women and explored the molecular characteristics of sSMCs using a single nucleotide polymorphism (SNP) array. Results: Out of the 20,481 samples, 15 abnormal karyotypes with sSMC were detected (frequency: 0.073%) and the chromosomal origin was successfully identified by SNP array in 14 of them. The origin of sSMCs were mainly acrocentric-derived chromosomes and the Y chromosome. Two cases of sSMC combined with uniparental disomy (UPD) were detected, UPD(1) and UPD(22). More than half of the cases of sSMC involved mosaicism (8/15) and pathogenicity (9/15) in prenatal diagnosis. A higher prevalence of mosaicism for non-acrocentric chromosomes than acrocentric chromosomes was also revealed. One sSMC derived from chromosome 3 with a neocentromere revealed a 24.99-Mb pathogenic gain of the 3q26.31q29 region on the SNP array, which presented as an abnormal ultrasound indicating nasal bone hypoplasia. Conclusion: The clinical phenotypes of sSMCs are variable and so further genetic testing and parental karyotype analysis are needed to confirm the characteristics of sSMCs. The SNP array used here allows a detailed characterisation of the sSMC and establishes a stronger genotype-phenotype correlation, thus allowing detailed genetic counselling for prenatal diagnosis.
    [Show full text]
  • General Contribution
    24 Abstracts of 37th Annual Meeting A1 A SCREENING METHOD FOR FRAGILE X MUTATION: DETECTION OF THE CGG REPEAT IN FMR-1 GENE BY PCR WITH BIOTIN-LABELED PRIMER. ..Eiji NANBA, Kousaku OHNO and Kenzo TAKESHITA Division of Child Neurology, Institute of Neurological Sciences, Tot- tori University School of Medicine. Yonago We have developed a new polymerase chain reaction(PCR)-based method for detection of the CGG repeat in FMR-1 gene. No specific product from PCR was detected on the gel with ethidium bromide staining, because 7-deaza-2'-dGTP is necessary for amplification of this repeat. Biotin-labeled primer was used for PCR and the product was transferred to a nylon membrane followed the detection of biotin by Smilight kit. The size of PCR product from normal control were slightly various and around 300bp. No PCR product was detected from 3 fragile X male patients in 2 families diagnosed by cytogenetic examination. This method is useful for genetic screen- ing of male mental retardation patients to exclude the fragile X mutation. A2 DNA ANALYSISFOR FRAGILE X SYNDROME Osamu KOSUDA,Utak00GASA, ~.ideynki INH, a~ji K/NAGIJCltI, and Kazumasa ]tIKIJI (SILL Inc., Tokyo) Fragile X syndrome is X-linked disease having the amplification of (CG6)n repeat sequence in the chromsomeXq27.3. We performed Southern blot analysis using three probes recognized repetitive sequence resion. Normal controle showed 5.2Kb with Eco RI digest and 2.7Kb with Eco RI/Bss ttII digest as the germ tines by the Southern blot analysis. However, three cell lines established fro~ unrelated the patients with fragile X showed the abnormal bands between 5.2 and 7.7Kb with Eco RI digest, and between 2.7 and 7.7Kb with Eco aI/Bss HII digest.
    [Show full text]
  • Presence of Harmless Small Supernumerary Marker Chromosomes Hampers Molecular Genetic Diagnosis: a Case Report
    MOLECULAR MEDICINE REPORTS 3: 571-574, 2010 Presence of harmless small supernumerary marker chromosomes hampers molecular genetic diagnosis: a case report HEIKE NELLE1,2, ISOLDE SCHREYER1,3, ELISABETH EWERS1, KRISTIN MRASEK1, NADEZDA KOSYAKOVA1, MARTINA MERKAS1,6, AHMED BASHEER HAMID1, RAIMUND FAHSOLD4, ANIKÓ UJFALUSI7, JASEN ANDERSON8, NIKOLAI RUBTSOV9, ALMA KÜCHLER5, FERDINAND VON EGGELING1, JULIA HENTSCHEL1, ANJA WEISE1 and THOMAS LIEHR1 1Institute of Human Genetics and Anthropology; 2Clinic for Children and Juvenile Medicine, Jena University Hospital, 07740 Jena; 3Center for Ambulant Medicine - Jena University Hospital gGmbH, Practice for Human Genetics, 07743 Jena; 4Middle German Practice Group, 01067 Dresden; 5Institute of Human Genetics, 45122 Essen, Germany; 6School of Medicine Zagreb University, Croatian Institute for Brain Research, 1000 Zagreb, Croatia; 7University of Medical and Health Science Center, Department of Pediatrics, Genetic Laboratory, Debrecen 4032, Hungary; 8Department of Cytogenetics, Sullivan Nicolaides Pathology, Taringa QLD, Australia; 9SA of RAderW, Institute of Cytologie and Genetics, 630090 Novosibrisk, Russian Federation Received April 7, 2010; Accepted May 25, 2010 DOI: 10.3892/mmr_00000299 Abstract. Mental retardation is correlated in approximately chromosomes, minute chromosomes and ring chromosomes. 0.4% of cases with the presence of a small supernumerary sSMC can only be characterized unambiguously by molecular marker chromosome (sSMC). However, here we report a (cyto)genetics and are equal in size or smaller than a chromo- case of a carrier of a heterochromatic harmless sSMC with some 20 of the same metaphase spread (1). The phenotypes fragile X syndrome (Fra X). In approximately 2% of sSMC associated with the presence of an sSMC vary from normal to cases, similar heterochromatic sSMC were observed in a clini- severely abnormal (2).
    [Show full text]
  • Poster Presentations in Cytogenetics
    Poster Presentations in Cytogenetics Trisomy 8 in cervical cancer. D. Feldman. S. Das. H. Kve. C:L. Sun. !vL Mosaicism for duplication of 17q21 .qter with lymphedema and normal phenotype. M. Descartes. L. Baldwln. P. Cosper. A. Carroll. Department Samv and H. F. L. Mark. Lifespan Academic Medical Center Cytogenetics Laboratory, Rhode Island Hospital and Brown University School of of Human Genetics, University of Alabama at Birmingham, Alabama. Medicine, Providence, R1. Duplication of 17q21 .qter is associated with a clinically recognizable Cervical cancer is a malignancy which typically occurs at the syndrome. The major features are, profound mental retardation; dwartism; transformation zone between squamous and glandular epithelium. The vast frontal bossing and temporal retraction, narrowing of the eyes; thln lips wlth malorlty fall into two histologic types: squamous cell and adenocarcinoma. overlapping of the lower lip by the upper lip; abnormal ears; cleft palate' We have previously reported extensively on abnormal chromosome 8 copy The region that appears to be respons~blefor the phenotype Is number in varlous cancers, wh~chappears to be an ubiquitous phenomenon. 17q23 .qterl Serothken et al, reported an infant mosaic for the duplication In the present pilot project, we studied chromosome 8 copy number together 17q21.1 -qter, their patient had many features suggestive of the 17q with a chromosome 17 control using formalin-fixed paraffin-embedded duplications syndrome except for the craniofacial dysmorphism3. We arch~valcervlcal cancer tissues. HER-2/neu oncogene amplification was report an infant who was found to be mosaic for duplication 17q21 .qter also studied in this sample, as reported in a previous abstract presented at who had none of the features associated wlth thls syndrome the 1998 Annual Meeting of the Amencan Society of Human Genetics.
    [Show full text]
  • Soonerstart Automatic Qualifying Syndromes and Conditions
    SoonerStart Automatic Qualifying Syndromes and Conditions - Appendix O Abetalipoproteinemia Acanthocytosis (see Abetalipoproteinemia) Accutane, Fetal Effects of (see Fetal Retinoid Syndrome) Acidemia, 2-Oxoglutaric Acidemia, Glutaric I Acidemia, Isovaleric Acidemia, Methylmalonic Acidemia, Propionic Aciduria, 3-Methylglutaconic Type II Aciduria, Argininosuccinic Acoustic-Cervico-Oculo Syndrome (see Cervico-Oculo-Acoustic Syndrome) Acrocephalopolysyndactyly Type II Acrocephalosyndactyly Type I Acrodysostosis Acrofacial Dysostosis, Nager Type Adams-Oliver Syndrome (see Limb and Scalp Defects, Adams-Oliver Type) Adrenoleukodystrophy, Neonatal (see Cerebro-Hepato-Renal Syndrome) Aglossia Congenita (see Hypoglossia-Hypodactylia) Aicardi Syndrome AIDS Infection (see Fetal Acquired Immune Deficiency Syndrome) Alaninuria (see Pyruvate Dehydrogenase Deficiency) Albers-Schonberg Disease (see Osteopetrosis, Malignant Recessive) Albinism, Ocular (includes Autosomal Recessive Type) Albinism, Oculocutaneous, Brown Type (Type IV) Albinism, Oculocutaneous, Tyrosinase Negative (Type IA) Albinism, Oculocutaneous, Tyrosinase Positive (Type II) Albinism, Oculocutaneous, Yellow Mutant (Type IB) Albinism-Black Locks-Deafness Albright Hereditary Osteodystrophy (see Parathyroid Hormone Resistance) Alexander Disease Alopecia - Mental Retardation Alpers Disease Alpha 1,4 - Glucosidase Deficiency (see Glycogenosis, Type IIA) Alpha-L-Fucosidase Deficiency (see Fucosidosis) Alport Syndrome (see Nephritis-Deafness, Hereditary Type) Amaurosis (see Blindness) Amaurosis
    [Show full text]
  • Uniparental Disomy (UPD) in Clinical Genetics Thomas Liehr • UNIQUE
    Uniparental Disomy (UPD) in Clinical Genetics Thomas Liehr • UNIQUE Uniparental Disomy (UPD) in Clinical Genetics A Guide for Clinicians and Patients With Contributions by Unique 123 Thomas Liehr UNIQUE Institut für Humangenetik The Rare Chromosome Disorder Universitätsklinikum Jena Support Group Jena Caterham, Surrey Germany UK ISBN 978-3-642-55287-8 ISBN 978-3-642-55288-5 (eBook) DOI 10.1007/978-3-642-55288-5 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2014937951 Ó Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • 22Q12 and 22Q13 Duplications
    22q12 and 22q13 duplications rarechromo.org Duplications of 22q12 and 22q13 A duplication of 22q12 and/or 22q13 is a very rare genetic condition in which the cells of the body have a small but variable amount of extra genetic material from one of the body’s 46 chromosomes – chromosome 22. For healthy development, chromosomes should contain just the right amount of genetic material (DNA) – not too much and not too little. Like most other chromosome disorders, having an extra part of chromosome 22 may increase the risk of birth defects, developmental delay and intellectual disability. However, there is individual variation. Background on Chromosomes Chromosomes are structures which contain our DNA and are found in almost every cell of the body. Every chromosome contains thousands of genes which may be thought of as individual instruction booklets (or recipes) that contain all the genetic information telling the body how to develop, grow and function. Chromosomes (and genes) usually come in pairs with one member of each chromosome pair being inherited from each parent. Most cells of the human body have a total of 46 (23 pairs of) chromosomes. The egg and the sperm cells, however have 23 unpaired chromosomes, so that when the egg and sperm join together at conception, the chromosomes pair up and the number is restored to 46. Of these 46 chromosomes, two are the sex chromosomes that determine gender. Females have two X chromosomes and males have one X chromosome and one Y chromosome. The remaining 44 chromosomes are grouped in 22 pairs, numbered 1 to 22 approximately from the largest to the smallest.
    [Show full text]
  • Common and Individually Specific Chromosomal Characteristics
    [CANCER RESEARCH 36, 398-404, February 1976] Common and Individually Specific Chromosomal Characteristics of Cultured Human Melanoma1 Peter B. McCulloch,2 Peter B. Dent, Paula R. Hayes, and Shuen-Kuei Liao Hamilton Clinic, Ontario Cancer Treatment and Research Foundation [P. B. M., P. B. D., P. R. H., S. K. L.], and Departments of Medicine [P. B. M., P. R. H.] and Pediatrics [P. B. D. , 5. K. L.J, McMaster University, Hamilton, Ontario, Canada SUMMARY any histological class of tumor. However, with the advent of individual chromosome identification, this whole area ne Since individual chromosomes can be accurately identi quires further study. fied by new banding techniques, atebnin fluorescence was used for chromosome analysis in six cell lines and two MATERIALS AND METHODS primary outgrowths derived from human malignant mela noma. Gross aneuploidy was seen in all specimens, but Eight different cultures obtained from human malignant each culture contained at least 1 distinctive marker chromo melanoma were studied. Their sources, individual chromo some specific for that cell line in 87 to 100% of metaphases. somal characteristics, and modal distribution of 50 meta One of the primary explants contained a marker that was phases from each culture are summarized in Table 1. demonstrable in fresh tissue and persisted through 2 weeks M-6 and 73-61 were primary explants established from of culture. The same marker was found in all metaphases metastatic malignant melanomas in our laboratory. The tis from 2 different metastases, but skin fibroblasts from the sue was minced and trypsinized. Some cultures were ob same patient had a normal chromosome complement.
    [Show full text]
  • Small Supernumerary Markerchromosomes (Ssmc)
    Inform Network Support Rare Chromosome Disorder Support Group, The Stables, Station Road West, Oxted, Surrey RH8 9EE, United Kingdom Tel: +44(0)1883 723356 [email protected] I www.rarechromo.org Unique is a charity without government funding, existing entirely on donations Small Supernumerary and grants. If you are able to support our work in any way, however small, please make a donation via our website at: http://www.rarechromo.org/donate Please help us to help you! Marker Chromosomes This leaflet is not a substitute for personal medical advice. Families should consult a medically qualified clinician in all matters relating to genetic diagnosis, management and health. Information on genetic changes is a very (sSMC) fast-moving field and while the information in this guide is believed to be the best available at the time of publication, some facts may later change. Unique does its best to keep abreast of changing information and to review its published guides as needed. The information is believed to be the best available at the time of publication and was compiled and written for Unique by Privatdozent Dr Thomas Liehr, Institut für Humangenetik, University of Jena, Germany. Version 1.1 2007 (TL) Version 1.2 2017 (TL/AP) Version 1.2.1 2019 (TL/CA/AP) Copyright © Unique 2019 Rare Chromosome Disorder Support Group Charity Number 1110661 Registered in England and Wales Company Number 5460413 rarechromo.org 8 What are the effects of an sSMC on fertility? Small supernumerary marker chromosomes This leaflet tells you what we know about the estimated 3.5 million people in the There are many different reasons for fertility problems and it is difficult to say world who have a small supernumerary marker chromosome (sSMC).
    [Show full text]