Finite Groups, Volume 1

Total Page:16

File Type:pdf, Size:1020Kb

Finite Groups, Volume 1 http://dx.doi.org/10.1090/pspum/001 FINITE GROUPS PROCEEDINGS OF A SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY Held in New York April 23-24,1959 Cosponsored by THE INSTITUTE FOR DEFENSE ANALYSIS under contract Nonr 2631 (00) with the Office of Naval Research Editorial Committee A. A. Albert Irving Kaplansky PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS VOLUME I FINITE GROUPS AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1959 Prepared by the American Mathematical Society under Contract Nonr 2631(00) with the Office of Naval Research International Standard Serial Number 0082-0717 International Standard Book Number 0-8218-1401-X Library of Congress Catalog Number 50-1183 Copyright © 1959 by the American Mathematical Society Third printing, 1979 Printed in the United States of America All rights reserved except those granted to the United States Government May not be reproduced in any form without permission of the publishers INTRODUCTION This volume consists of eleven articles each corresponding to one of the eleven addresses given at the FINITE GROUPS SYMPOSIUM which took place at the Hotel New Yorker on April 23 and 24, 1959. The three sessions of the SYMPOSIUM were presided over by A. A. Albert, I. N. Herstein, and I. Kaplansky and formal discussion was led by Olga Taussky and L. J. Paige, by G. de B. Robinson and D. G. Higman, and by Charles Curtis and Irving Reiner. The table of contents provides a list of the ad• dresses in the order in which they took place. The sessions were well attended and the discussion was lively. The SYMPOSIUM was a well deserved recognition of an enormous renewed interest in one of the oldest branches of algebra. The three keynote ad• dresses, by John Thompson, Marshall Hall, and Michio Suzuki, called at• tention to major new results in the field and the Symposium should serve to stimulate research activity in the Theory of Groups, one of the most beautiful subjects in Mathematics. The mathematical community greatly appreciates the support which was given to this SYMPOSIUM by the Communications Division of the In• stitute for Defense Analyses. A. A. Albert, Symposium Chairman v CONTENTS Page Introduction v Finite groups with normal p-complements By John G. Thompson 1 Burnside groups and Engel rings By Roger C. Lyndon 4 On the structure of certain solvable groups By Daniel Gorenstein 15 On groups which contain Frobenius groups as subgroups By Walter Feit 22 Current studies on permutation groups By Marshall Hall, Jr 29 Review of some results in collineation groups By Daniel R. Hughes 42 Some finite groups with geometrical properties By Wilhelm Magnus 56 Symmetrical definitions for the binary polyhedral groups By H. S. M. Coxeter 64 Applications of group characters By Michio Suzuki 88 On maximal subgroups By W. E. Deskins 100 On an application of the theory of Lie algebras to group theory. By Hans Zassenhaus 105 vii INDEX ABA-groups, 15 dicyclic, 66 AMITSUR, S. A., 86 dihedral, 65 Andre V-W planes, 48 finite, 1 Autotopism, 46 generalized quaternion, 66 icosahedral, 65 Binary icosahedral group, 83 Mathieu, 32, 37 Binary octahedral group, 79 metanilpotent, 99 Binary tetrahedral group, 78, 81 octahedral, 65 plane projective, 56 Central collineation, 43 polyhedral, 64 Central expansions, 104 quadruply transitive, 37 Characters, irreducible, 87 quaternion, 78 of subgroups, 87 regular, 18 CLIFFORD, W. K., 72 solvable, 15 Closed subset, 88 supersolvable, 99 Commutator group, 84 tetrahedral, 65 Continuous groups, 68 zero-dimensional, 56 COXETER, H. S. M., 64 Cross polytope, 69 Hall V-W planes, 48 Cyclic group, 79 HAMILTON, W. R., 66 HIGMAN, G., 39 DEHN, M., 56 Homology, 43 Dickson rings, 50 HUPPERT, B., 39 Dicyclic group, 66 HURWITZ, A., 81 Dihedral group, 65 Hyperbolic dedecahedron space, 78 Dimension of a geometry, 58 DIRICHLET, G. L., 70 Icosahedral group, 65 Division ring, 45 Index, complex, 102 Index, normal, 101 Engel condition, 4 Integral quaternions, 81 FEIT, W., 38 KLEIN, F., 87 Finite groups with normal LAVES, F., 87 p-complements, 1 Lens, 70 FOWLER, K. A., 93 Lens space, 76 Frattini subgroup, 100 FROBENIUS, G., 38 Mathieu groups, 32, 37 Frobenius group, 16, 22, 27 Metanilpotent group, 99 kernel, 32 MOSER, W. O. J., 87 problem, 33 reciprocity law, 87, 96 Near-field, 32, 49 theorem, 59 planes, 49 NEUMANN, B. H., 79 Generalized quaternion group, 66 Normal index, 101 Gleason-Andre theorem, 52 Golden section, 84 Octahedral group, 65 Group binary, 78, 79, 81, 83 PARKER, E., 33 characters, 87 Perspectivity, 43 commutator, 84 Plane projective group, 56 continuous, 68 Polyhedral group, 64 cyclic, 79 Projective planes, 42, 48, 49 109 Quadruply transitive group, 37 TITS, J., 38 Quaternion, 65 Trace bilinear form, 104 group, 78 Transfer map, 17 Translations, 43 Radical of a form, 104 Trefoil knot, 81 Regular (#> -group, 18 Truncation, 70 poly tope, 69 Twisted field planes, 49 subgroup, 22 Unit quaternion, 67 SCHLEGEL, V., 67 SEIFERT, H., 75, 78 Semi-nuclear rings, 49 Veblen-Wedderburn planes, 48 Singer's theorem, 52 systems, 45 Solvable group, 150 Spherical dodecahedron space, 78 VINCENT, G., 87 Spherical honeycomb, 70 VOR6NOI, G., 70 S-ring, 30 Steiner triple system, 40 WALL, G. E., 24 SUZUKI, M., 25 WIELANDT, H., 33, 39 WYTHOFF, W. A., 70 Tetrahedral group, 65 THRELFALL, W., 75, 78 ZASSENHAUS, H., 25 TIETZE, H. 76 Zero dimensional group, 56 110 .
Recommended publications
  • Frattini Subgroups and -Central Groups
    Pacific Journal of Mathematics FRATTINI SUBGROUPS AND 8-CENTRAL GROUPS HOMER FRANKLIN BECHTELL,JR. Vol. 18, No. 1 March 1966 PACIFIC JOURNAL OF MATHEMATICS Vol. 18, No. 1, 1966 FRATTINI SUBGROUPS AND φ-CENTRAL GROUPS HOMER BECHTELL 0-central groups are introduced as a step In the direction of determining sufficiency conditions for a group to be the Frattini subgroup of some unite p-gronp and the related exten- sion problem. The notion of Φ-centrality arises by uniting the concept of an E-group with the generalized central series of Kaloujnine. An E-group is defined as a finite group G such that Φ(N) ^ Φ(G) for each subgroup N ^ G. If Sίf is a group of automorphisms of a group N, N has an i^-central series ι a N = No > Nt > > Nr = 1 if x~x e N3- for all x e Nj-lf all a a 6 £%f, x the image of x under the automorphism a e 3ίf y i = 0,l, •••, r-1. Denote the automorphism group induced OR Φ(G) by trans- formation of elements of an £rgroup G by 3ίf. Then Φ{£ίf) ~ JP'iΦiG)), J^iβiG)) the inner automorphism group of Φ(G). Furthermore if G is nilpotent9 then each subgroup N ^ Φ(G), N invariant under 3ίf \ possess an J^-central series. A class of niipotent groups N is defined as ^-central provided that N possesses at least one niipotent group of automorphisms ££'' Φ 1 such that Φ{βίf} — ,J^(N) and N possesses an J^-central series. Several theorems develop results about (^-central groups and the associated ^^-central series analogous to those between niipotent groups and their associated central series.
    [Show full text]
  • ON the INTERSECTION NUMBER of FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-14-2019 ON THE INTERSECTION NUMBER OF FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons Recommended Citation Bautista Serrano, Humberto, "ON THE INTERSECTION NUMBER OF FINITE GROUPS" (2019). Math Theses. Paper 9. http://hdl.handle.net/10950/1332 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. ON THE INTERSECTION NUMBER OF FINITE GROUPS by HUMBERTO BAUTISTA SERRANO A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics Kassie Archer, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler April 2019 c Copyright by Humberto Bautista Serrano 2019 All rights reserved Acknowledgments Foremost I would like to express my gratitude to my two excellent advisors, Dr. Kassie Archer at UT Tyler and Dr. Lindsey-Kay Lauderdale at Towson University. This thesis would never have been possible without their support, encouragement, and patience. I will always be thankful to them for introducing me to research in mathematics. I would also like to thank the reviewers, Dr. Scott LaLonde and Dr. David Milan for pointing to several mistakes and omissions and enormously improving the final version of this thesis.
    [Show full text]
  • The Classification and the Conjugacy Classesof the Finite Subgroups of The
    Algebraic & Geometric Topology 8 (2008) 757–785 757 The classification and the conjugacy classes of the finite subgroups of the sphere braid groups DACIBERG LGONÇALVES JOHN GUASCHI Let n 3. We classify the finite groups which are realised as subgroups of the sphere 2 braid group Bn.S /. Such groups must be of cohomological period 2 or 4. Depend- ing on the value of n, we show that the following are the maximal finite subgroups of 2 Bn.S /: Z2.n 1/ ; the dicyclic groups of order 4n and 4.n 2/; the binary tetrahedral group T ; the binary octahedral group O ; and the binary icosahedral group I . We give geometric as well as some explicit algebraic constructions of these groups in 2 Bn.S / and determine the number of conjugacy classes of such finite subgroups. We 2 also reprove Murasugi’s classification of the torsion elements of Bn.S / and explain 2 how the finite subgroups of Bn.S / are related to this classification, as well as to the 2 lower central and derived series of Bn.S /. 20F36; 20F50, 20E45, 57M99 1 Introduction The braid groups Bn of the plane were introduced by E Artin in 1925[2;3]. Braid groups of surfaces were studied by Zariski[41]. They were later generalised by Fox to braid groups of arbitrary topological spaces via the following definition[16]. Let M be a compact, connected surface, and let n N . We denote the set of all ordered 2 n–tuples of distinct points of M , known as the n–th configuration space of M , by: Fn.M / .p1;:::; pn/ pi M and pi pj if i j : D f j 2 ¤ ¤ g Configuration spaces play an important roleˆ in several branches of mathematics and have been extensively studied; see Cohen and Gitler[9] and Fadell and Husseini[14], for example.
    [Show full text]
  • On the Similarity Transformation Between a Matirx and Its Transpose
    Pacific Journal of Mathematics ON THE SIMILARITY TRANSFORMATION BETWEEN A MATIRX AND ITS TRANSPOSE OLGA TAUSSKY AND HANS ZASSENHAUS Vol. 9, No. 3 July 1959 ON THE SIMILARITY TRANSFORMATION BETWEEN A MATRIX AND ITS TRANSPOSE OLGA TAUSSKY AND HANS ZASSENHAUS It was observed by one of the authors that a matrix transforming a companion matrix into its transpose is symmetric. The following two questions arise: I. Does there exist for every square matrix with coefficients in a field a non-singular symmetric matrix transforming it into its transpose ? II. Under which conditions is every matrix transforming a square matrix into its transpose symmetric? The answer is provided by THEOREM 1. For every n x n matrix A — (aik) with coefficients in a field F there is a non-singular symmetric matrix transforming A into its transpose Aτ'. THEOREM 2. Every non-singular matrix transforming A into its transpose is symmetric if and only if the minimal polynomial of A is equal to its characteristic polynomial i.e. if A is similar to a com- panion matrix. Proof. Let T = (ti1c) be a solution matrix of the system Σ(A) of the linear homogeneous equations. (1) TA-ATT=O ( 2 ) T - Tτ = 0 . The system Σ(A) is equivalent to the system (3) TA-ATTT = 0 ( 4 ) T - Tτ = 0 which states that Γand TA are symmetric. This system involves n2 — n equations and hence is of rank n2 — n at most. Thus there are at least n linearly independent solutions of Σ(A).1 On the other hand it is well known that there is a non-singular matrix To satisfying - A* , Received December 18, 1958.
    [Show full text]
  • Platonic Solids Generate Their Four-Dimensional Analogues.', Acta Crystallographica Section A., 69 (6)
    Durham Research Online Deposited in DRO: 26 January 2014 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Dechant, Pierre-Philippe (2013) 'Platonic solids generate their four-dimensional analogues.', Acta crystallographica section A., 69 (6). pp. 592-602. Further information on publisher's website: http://dx.doi.org/10.1107/S0108767313021442 Publisher's copyright statement: Additional information: Published on behalf of the International Union of Crystallography. Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk electronic reprint Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Platonic solids generate their four-dimensional analogues Pierre-Philippe Dechant Acta Cryst. (2013). A69, 592–602 Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.
    [Show full text]
  • Nilpotent Groups
    Chapter 7 Nilpotent Groups Recall the commutator is given by [x, y]=x−1y−1xy. Definition 7.1 Let A and B be subgroups of a group G.Definethecom- mutator subgroup [A, B]by [A, B]=! [a, b] | a ∈ A, b ∈ B #, the subgroup generated by all commutators [a, b]witha ∈ A and b ∈ B. In this notation, the derived series is given recursively by G(i+1) = [G(i),G(i)]foralli. Definition 7.2 The lower central series (γi(G)) (for i ! 1) is the chain of subgroups of the group G defined by γ1(G)=G and γi+1(G)=[γi(G),G]fori ! 1. Definition 7.3 AgroupG is nilpotent if γc+1(G)=1 for some c.Theleast such c is the nilpotency class of G. (i) It is easy to see that G " γi+1(G)foralli (by induction on i). Thus " if G is nilpotent, then G is soluble. Note also that γ2(G)=G . Lemma 7.4 (i) If H is a subgroup of G,thenγi(H) " γi(G) for all i. (ii) If φ: G → K is a surjective homomorphism, then γi(G)φ = γi(K) for all i. 83 (iii) γi(G) is a characteristic subgroup of G for all i. (iv) The lower central series of G is a chain of subgroups G = γ1(G) ! γ2(G) ! γ3(G) ! ··· . Proof: (i) Induct on i.Notethatγ1(H)=H " G = γ1(G). If we assume that γi(H) " γi(G), then this together with H " G gives [γi(H),H] " [γi(G),G] so γi+1(H) " γi+1(G).
    [Show full text]
  • Lattice of Subgroups of a Group. Frattini Subgroup
    FORMALIZED MATHEMATICS Vol.2,No.1, January–February 1991 Universit´e Catholique de Louvain Lattice of Subgroups of a Group. Frattini Subgroup Wojciech A. Trybulec1 Warsaw University Summary. We define the notion of a subgroup generated by a set of elements of a group and two closely connected notions, namely lattice of subgroups and the Frattini subgroup. The operations on the lattice are the intersection of subgroups (introduced in [18]) and multiplication of subgroups, which result is defined as a subgroup generated by a sum of carriers of the two subgroups. In order to define the Frattini subgroup and to prove theorems concerning it we introduce notion of maximal subgroup and non-generating element of the group (see page 30 in [6]). The Frattini subgroup is defined as in [6] as an intersection of all maximal subgroups. We show that an element of the group belongs to the Frattini subgroup of the group if and only if it is a non-generating element. We also prove theorems that should be proved in [1] but are not. MML Identifier: GROUP 4. The notation and terminology used here are introduced in the following articles: [3], [13], [4], [11], [20], [10], [19], [8], [16], [5], [17], [2], [15], [18], [14], [12], [21], [7], [9], and [1]. Let D be a non-empty set, and let F be a finite sequence of elements of D, and let X be a set. Then F − X is a finite sequence of elements of D. In this article we present several logical schemes. The scheme SubsetD deals with a non-empty set A, and a unary predicate P, and states that: {d : P[d]}, where d is an element of A, is a subset of A for all values of the parameters.
    [Show full text]
  • Historical Notes on Loop Theory
    Comment.Math.Univ.Carolin. 41,2 (2000)359–370 359 Historical notes on loop theory Hala Orlik Pflugfelder Abstract. This paper deals with the origins and early history of loop theory, summarizing the period from the 1920s through the 1960s. Keywords: quasigroup theory, loop theory, history Classification: Primary 01A60; Secondary 20N05 This paper is an attempt to map, to fit together not only in a geographical and a chronological sense but also conceptually, the various areas where loop theory originated and through which it moved during the early part of its 70 years of history. 70 years is not very much compared to, say, over 300 years of differential calculus. But it is precisely because loop theory is a relatively young subject that it is often misinterpreted. Therefore, it is extremely important for us to acknowledge its distinctive origins. To give an example, when somebody asks, “What is a loop?”, the simplest way to explain is to say, “it is a group without associativity”. This is true, but it is not the whole truth. It is essential to emphasize that loop theory is not just a generalization of group theory but a discipline of its own, originating from and still moving within four basic research areas — algebra, geometry, topology, and combinatorics. Looking back on the first 50 years of loop history, one can see that every decade initiated a new and important phase in its development. These distinct periods can be summarized as follows: I. 1920s the first glimmerings of non-associativity II. 1930s the defining period (Germany) III. 1940s-60s building the basic algebraic frame and new approaches to projective geometry (United States) IV.
    [Show full text]
  • The Fundamental Group of SO(N) Via Quotients of Braid Groups Arxiv
    The Fundamental Group of SO(n) Via Quotients of Braid Groups Ina Hajdini∗ and Orlin Stoytchevy July 21, 2016 Abstract ∼ We describe an algebraic proof of the well-known topological fact that π1(SO(n)) = Z=2Z. The fundamental group of SO(n) appears in our approach as the center of a certain finite group defined by generators and relations. The latter is a factor group of the braid group Bn, obtained by imposing one additional relation and turns out to be a nontrivial central extension by Z=2Z of the corresponding group of rotational symmetries of the hyperoctahedron in dimension n. 1 Introduction. n The set of all rotations in R forms a group denoted by SO(n). We may think of it as the group of n × n orthogonal matrices with unit determinant. As a topological space it has the structure of a n2 smooth (n(n − 1)=2)-dimensional submanifold of R . The group structure is compatible with the smooth one in the sense that the group operations are smooth maps, so it is a Lie group. The space SO(n) when n ≥ 3 has a fascinating topological property—there exist closed paths in it (starting and ending at the identity) that cannot be continuously deformed to the trivial (constant) path, but going twice along such a path gives another path, which is deformable to the trivial one. For example, if 3 you rotate an object in R by 2π along some axis, you get a motion that is not deformable to the trivial motion (i.e., no motion at all), but a rotation by 4π is deformable to the trivial motion.
    [Show full text]
  • Convex Polytopes and Tilings with Few Flag Orbits
    Convex Polytopes and Tilings with Few Flag Orbits by Nicholas Matteo B.A. in Mathematics, Miami University M.A. in Mathematics, Miami University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Abstract of Dissertation The amount of symmetry possessed by a convex polytope, or a tiling by convex polytopes, is reflected by the number of orbits of its flags under the action of the Euclidean isometries preserving the polytope. The convex polytopes with only one flag orbit have been classified since the work of Schläfli in the 19th century. In this dissertation, convex polytopes with up to three flag orbits are classified. Two-orbit convex polytopes exist only in two or three dimensions, and the only ones whose combinatorial automorphism group is also two-orbit are the cuboctahedron, the icosidodecahedron, the rhombic dodecahedron, and the rhombic triacontahedron. Two-orbit face-to-face tilings by convex polytopes exist on E1, E2, and E3; the only ones which are also combinatorially two-orbit are the trihexagonal plane tiling, the rhombille plane tiling, the tetrahedral-octahedral honeycomb, and the rhombic dodecahedral honeycomb. Moreover, any combinatorially two-orbit convex polytope or tiling is isomorphic to one on the above list. Three-orbit convex polytopes exist in two through eight dimensions. There are infinitely many in three dimensions, including prisms over regular polygons, truncated Platonic solids, and their dual bipyramids and Kleetopes. There are infinitely many in four dimensions, comprising the rectified regular 4-polytopes, the p; p-duoprisms, the bitruncated 4-simplex, the bitruncated 24-cell, and their duals.
    [Show full text]
  • [Math.RT] 2 Feb 2005 Ler for Algebra Eti Nt Ru Hc Cso H Peeado Matrices
    CERTAIN EXAMPLES OF DEFORMED PREPROJECTIVE ALGEBRAS AND GEOMETRY OF THEIR *-REPRESENTATIONS ANTON MELLIT λ Abstract. We consider algebras eiΠ (Q)ei obtained from deformed preprojective algebra λ of affine type Π (Q) and an idempotent ei for certain concrete value of the vector λ which corresponds to the traces of −1 ∈ SU(2, C) in irreducible representations of finite subgroups of SU(2, C). We give a certain realization of these algebras which allows us to construct the C∗-enveloping algebras for them. Some well-known results, including description of four projections with sum 2 happen to be a particular case of this picture. 1. Introduction Let us take the *-algebra, generated by self-adjoint projections a1, a2, a3, a4 with relation a1 + a2 + a3 + a4 = 2: ∗ A := C a1, a2, a3, a4 ai = a ,σ(ai) 0, 1 , a1 + a2 + a3 + a4 = 2 . D4 h | i ⊂ { } i Here and belowf σ(a) denotes the spectrum of self-adjoint element a and writing σ(a) ⊂ x1,x2,...xk for real numbers x1,x2,...,xk we mean that there is a relation { } (a x1)(a x2) . (a xk) = 0. − − − Classification of irreducible representations of A is well known (see [OS]). All irreducible D4 representations, except some finite number of exceptional cases, form a two dimensional family f of irreducible representations in dimension 2. The paper [M1] was devoted to the classification of irreducible representations of the algebra ∗ A := C a1, a2, a3 ai = a ,σ(ai) 0, 1, 2 , a1 + a2 + a3 = 3 . E6 h | i ⊂ { } i After that, the classificationf problem for irreducible representations of the *-algebra ∗ A := C a1, a2, a3 ai = a ,σ(a1) 0, 1, 2, 3 ,σ(a2 ) 0, 1, 2, 3 ,σ(a3 ) 0, 2 , E7 h | i ⊂ { } ⊂ { } ⊂ { } f a1 + a2 + a3 = 4 i was solved in [O].
    [Show full text]
  • Microfilms International 300 N /EE B ROAD
    INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy.
    [Show full text]