ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en          UNIVERSITAT AUTÒNOMA DE BARCELONA FACULTAT DE BIOCIÈNCES

Programa de Doctorat en Biologia i Biotecnologia Vegetal

Exploring the diversity of geranylgeranyl diphosphate synthases in Arabidopsis thaliana and Solanum lycopersicum

M. VICTORIA BARJA AFONSO

2019

  

    UNIVERSITAT AUTÒNOMA DE BARCELONA FACULTAT DE BIOCIÈNCES

Programa de Doctorat en Biologia i Biotecnologia Vegetal

PhD Thesis

Exploring the diversity of geranylgeranyl diphosphate synthases in Arabidopsis thaliana and Solanum lycopersicum

Dissertation presented by Victoria Barja for the degree of Doctor of Plant Biology and Biotechnology at Autonomous University of Barcelona. This work was developed in the Centre for Research in Agricultural Genomics

Thesis Director Thesis tutor PhD candidate

Dr. Manuel Dr. Roser M. Victoria Rodríguez Concepción Tolrà Perez Barja Afonso

Barcelona, January 2019

























% %#% %% % #%% % % % %%%   %  %   %   $% %% "%  %% %% %%#%% #%  %"99 !9 # 49 9 

















    

9  %% %   % % %%#% % % %% #% !% %% "%  % % %%  % %% % %  %   "% % 9  &49#$9! #9#9 99#' $9 ! #%& 99! #9 ##9!#%99%&9 #&! 49$9"&9%9'9 9"&9$9#( 9$&!9"&9"&#-9%##9 % 59 9"&9 9$-9 $9"&99 $%#-9% % 9#99# 49#$9! #9%&90 9)9! #9%&9$#9#59!# 9 $! %59! #9%  9 9"&99$9 $/ 49!#9$#+$99## %499 9#49&$9(#59! #9 #9 9$&9 #% # 9)9 $/#9 &'$9  #$9 9 %##49 , 9 9 &) 59 ! #9 9 $! $0 9 )9 )&9  $% %$49 #$59 ! #"&9 9  9 !#%9$!#9$&49 9 "& $9 "&9  9 !#%! 9  9 9 $##  9 9 $%9  '$%0 49  8&% #$9 )9   # #$59 #$9 ! #9 '&$%#$9 ! #% $59 0 9 )9  %&$$ 49 9 !#$ 9 9 $#' $9)9 $%#0 99 9! #99$ ! #%9)99$&#* 9 $% %59#$9! #9#9 9 9  '$%0 9 & 9  9 +$9 +49 , 59 9  $%# 9 9 &0 59 &%&#9 )9 ! #%9! #9  #99%$$9 % #49 9341249#$99%  $9)99& 99' $ %# $9! #9#999 %# 9 9  )9 +$9 #' $ 49#$9! #9##9%  $9  9 9  59! #9#9"&9 $9 # $99& 9$ 9 $9  # $99%  $49 #9%  59$%9%$$9%, 9$9'&$%#49 & 9% #,9& 9"&! 9 #49 9%  $9$9 $9)9 !/# $99 49#$9! #9 $/#9"&99 %( # 9$%+9  9& 9$ #$59 9& 9/9)9 9 ##9& 9 #9!#9#%9 % 9&  9+$9 9 $%$49 % %%% "% %% % % % % "% 9$9 $99   59! #9 $/#9"&9 9$99$% 59$ 99 %4% 9999# 49 #"&9&  9 $99#- 599!& %9$!#9 9#&* $9 & % $49 9%  9!#$9!#9$##9 9! #% %$9"&9$ $9!#9-49 99  % 9 &!#99$&/ 9 9' $ %# $59)9"&9 #9$+$9!#%99,49 9 &49#$9! #9' #999'59!# 9$ #9%  9! #9"&#%49 % 9%  9$9 #49 99 %99 ! 49#$9! #9#9"&9 9!$99%! 59! #9#9& 9&#99"&9 ' '#49 9$9!#$49#$9! #9 $/#99' #999 $% 9)99$&#* 59$ $99 #9 ! 9"&9! #-9% #49#$9! #9 $/#9"&96% %%% 79 %$9"&9 &"&#9 %#9  $49 9 #$9 ! #9 # 9 $# 9 %  9 !#9 "&9 $ %# $9 &! $9 &$%# $9$&/ $49 9$9# $59 #%9)9 #"&499' $ %# $9 $9 9%  9 9"&9$ )49#$9! #9 $/#9 9 !#%#599)&#599"&##49 9' $ %# $9!# -9! #9!##9'*9 9"&9#9$#9& 9"&! 9 )9"&9 9' $ %# $9) 9)99  9!#9$!#49 # 9! #9% $9$9'$9"&9 99 !  9$%#49 & 9 9$ %#+9+$9 #& 99"&9) 9$ % 9! #9' $ %# $49 $9# 9)9 $9 "&# 4949 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 

,

,,, , ",, ,, , , ,  ",  , ,  , , ,  , ',  ",  , , ,  , ,  #,  ,  , ,  " ",  , )*', , ", , , ,  , ,  "#, ", , , " , ) *, ,  "', ,  , ", , ,,,,     ',,,, (, ,,   , , ", #, ,', "(,",,,, ,, ,,$$,,,, ", ,,, ,,  , ,  ", ',,, , , ,#", ,, ,,,  , ,, ,', , ,,,, , ,)$*,, ,,  ,   ,  , , ,  ", ,  , ",   , ,  ++  , (, ,)%*,,",, ,,, , ",,      , ) *, ,   #, ,  , , ,   , , , , ", , + , +,, , , ',

,,, ,,,, , , ,,,, ,  ,, , ,  , , ,  ,  ",  ,  , #"', ,   , , , + ,#", , ,,,,  , ,"(, , ", , ',,, ,,,  ", ,, ,  + ,"', ,  (, (, ,,, , , , ,  ,, , ,+ , , ', ,,, , ,  ", , ,,, ",,,,,,,+ , + ,', , , ,  , ,  , , , , , , ,  ",  , ",, , ',,, ,  (, , , ,, ,  ,  + ,, , ,,,, ,, ,, ,,   , # ',,(,, ,, ,,, , ,,  ,) $(, %, , &*, ,, ,  ",   , , , ", ,    ,  , ', ,  , , ,  , , , " # , , + ,  , , ',  , !, ,  ",   , , " ,  (, , , , ,   ',  "(,  , , ",  , , , (, , , , , ,  , , ,  ', , +  ,    , , , ,  ,   , ,, ,,   # ,,,  ,',

,   ,  , , , ,  , ,  , , !", , ,  , , ",, ', , , , ,,,,  , ,,   , ,, , ,,  ,,,+ , ,,    ,, ,  ,  ',,

,

, ,

, 

22 2 2  2$2  22 2   2"22 2  2 2 2 2  .2  2 2  2 2  2  2 "2  #  2 22  2 20 1.2 2 &222 2 2   #  2 2  2   2 2 & 2  2   2 0 1/2 2 22   2  22     .2 2  22 2222 $2  2 2  2 222 # 2   .2  /2)2 2  222 2 2  2 2 2++2 2  /2" 2 22 2   22 2  2"22 .2 22 2  22 2# 2 2"2  2  )222  22%2  .22  22 22 22 0+12  2 2  2   2  2 2  2   2 2 2  2   2 2 2 2 2 % 2 2  )2 2 2 /2 "2 0,12  2 2  22 2  2 22 20      12"2  # 22 22 2  2 & 22 2 &22 2 2  2 2  2 2 2 2 2222 .2

2  2  2  2 2  2 2  2  2 2 2 2  2 $2 2 2  2  2   2 2 2 # 2  2  2  #  .2  2  2  22  22  2& 22 # )2  & 2  2  2  2   2  2 &2 2 2    2 2  2 &/2 2  2 "2  .2 2% 22 )22 2 2  22 22  2 .22 $2/22  /2 222)2 222  2 2 22 2  2)2 2 2 22 22  .2 2& 2  2 2 2   2  2 2  2 2 2   2  2 2  2 % 22%22 $2 2 22 2)22 .2 2 2 2 2 2)2 2 2 2  2 2)22 2  2$2 $22 2  22 #).2 22 2 & 2 2 2222 2 2  2 2 2 2  2  2   2 2 & 2 2 2  )2    .2 2 2  2  2 2  2 2  # 2 2  2 0 +/2 ,2 "2 -12 "2  2 $2   2 2 2&22 22 2& 2222  .22 2  2 2  2   2  2 # )2 2 2  2  2  2 2  .2 2!)22 22  2 2 22%22 2 2 * 22.2 /2 2 222 22  2 "  2  2 2   )22 222    222 2  2 2 2 2   .2 2 2 2 !)2&2"2 2  # )2   2 2 2  2 2   # )222.2

2 2 22 22 "2 222 2 22 2  2  22  .2 2 )2$2*2  2( 2  2% 2  2 2   2  2  # 2  2  2 2  2 2 2 %2 2 2 2  2  2   22 2$2 .2 2 

       +4;" !"6;;!;(;;#;""#;;" );##"; -; ,4;"(#"";;" !"; -; ,4+4;"(#"";;$%!";" !; !$!"!"; -; ,4,4;"(#"";; !(; " #;#!#"; /; ,4-4;( ";;"!#:; !(#!"!""; 0; ,4-4+4;!(; " #;7 8;"(#""; 0; ,4-4+4;!"(; " #;7 8;"(#""; 1; ,4-4+4;!(!(; " #;7 8;"(#""; 2; -4;    ; ;(; 3; .4; ;"(#"";;#!;! "; ++;   ;   ;  +4;#!$#; +3; ,4;"$#"; ,-; ,4+4;!#;#++:#%;";"&;;!;; #( ";!;%!#; ,-; #;!(;##(; ,4,4;;"##; #( ";;#++;";!!#;&#;!#;"$$!; ,.; )#;;#%#(;;#;!!" ;)("; , -4;%!;#!"! #;##;"#";;#;#++;;;#;#; !$#; ,1; ;"!";&#;!#; :#!;"; ,4.4; #++; #%#(; "; ""#; #; !$;#; "#;" !"; ; ,3; $#;'#! "#;" !";! $!;!;!(;% #4;; -4;"$""; -+; .4; #!";; #"; --; .4+4; #;#!;;"#!$#"; --; .4,4; ;#%#(;""("; --; .4-4; !" (; -.; .4.4;/9:; -.; .4/4;("";;##;%"; -/; /4;&#"; -/; 04;!"; -/; 14;$ #;!#; -3;  ;  +4;#!$#; .3; ,4;"$#"; /,; ,4+4;##;;#;##; ; !#;(; /,; ,4,4;; !#;##; ;"!";);#;!#;; !##"; /.; ,4-4;+5;,;;-;!;$#; : !$;)("; /0; ,4.4;""$:" ;;:' !"";#&!";"$"#;$#;" )#; /2; ;##; ;)(";; ,4/4; ; ' !""; (""; !; ; "!:" ; ""#; &#; !#$!; % #; !"""; %%; ; #%#; ; !#; 0,; "(#""; ,404;;!$#;; ;#!"! #;%";!""; (#;$$#;;!; 0.; ##;!$#"; -4;"$""; 00; .4; #!";; #"; 1+; .4+4; #;#!;;!&#;#"; 1+; .4,4;"#!$#"; 1,; .4-4; (#;(""; 1,; .4.4;$$!;)#;""("; 1-; .4/4;;!" (; 1-; .404;#;#!"!#;;##; #"; 1-; .414; ;#%#(;""(;; !$#;##; 1.; .424; #;(""; 1/; .434;;:' !""; #&!;7 8;(""; 1/; .4+*4;;' !"";("";(;: ; 1/; .4++4;'#!#;;("";; :!%;##"; 10; /4;&#"; 11; 04;!"; 11; 14;$ #;!#; 2/;     ; +*-; +4;$$#)#;; #; ; !"; +*/; ,4;;! ""; ;(; +*1; -4;;##; ;(; +*3; .4; $#;; ;"$ (;(; !#: !#;#!#"; ++*; /4; ; $"#"; +++;    ;         ;   ;   ;   %; ; //////////////////////////////////////////////////////////////////////////////////////////////////

@

!"//# !/ @      @@ # /%-@@ ()' *) $#@$@ ($%'#$ @ $(.#)) @%),.(@ #@%!#)@!!(@ 4@ # /&-@ $(.#)( (@$@($')? #@%'#.!@ %$(%)@ #)'" )(@ 6@ @ @   @ @ # /%-// ($%'#$ @ $(.#)) @%),.(@ #@' $%( (@ 20@ # /&-@)11@"*)#)@!!!(@#@(($ )@%#$).%(@ 24@ # /'-@ #@+ )'$@@) + ).@((.(@ 26@ # /(-@'#(' %) $#@#@)'#(!) $#@()')@( )(@ #@)@ @#@ 28@ # /)-@ +!(@$@ ?' +@ ($%'#$ @%'$*)(@ #@%!#)(@, )@'*@)11@ 30@ ) + ).@  *'@1:@' $%( (@ @#@#@"*)#)(@ 39@  *'@2:@&*#@! #"#)@$@' $%( (@@ ($$'"(@ 40@  *'@ 3:@ *!!*!'@ !$! /) $#@ $@ )11?@ #@ (11?@ *( $#@ %'$) #(@ #@ 41@ )'#(# @' $%( (@%!#)(@  *'@4:@#@) + ).@$@)'*#)@)11@ ($$'"(@ 42@  *'@5:@"'.$#( (@ (@!$ @)@)@')@()@ #@)@ "!@"*)#):@ 43@  *'@6:@+!$%"#)!@#@")$! @%#$).%(@$@)@ " #"*)#)@ 44@ @ @   @ @ # /%-//$"%')"#)! /) $#@$@ ($%'#$ @ $(.#)( (@ #@%!#)@!!(@ 51@ # /&-@.!$#) @)'@$@' $%( (@<)=@#@)$")$@<!=@%'#.!)'#('((@ 54@ # /'-@*!!*!'@!$! /) $#@$@)@)$")$@@# )(@*(@)$@@ 55@ # /(-@ #@+ )'$@@) + ).@((.(@ 57@ # /)-@#@$?-%'(( $#@#),$' (@< (=@$@)$")$@#(@#$ #@%!()  !@ 60@ @#/."(@ #@+)) +@#@'* )@) ((*(:@ # / *-@-%'(( $#@%'$ !(@$@#(@#$ #@)$")$@@#@@%'!$(@ 63@ *' #@ '#)@'$)#$ @ $(.#)) @%'$(((@ # /+-@'#(' %)@#@'$)#$ @!+!(@ #@'@'* )(@$@1@)'#(# @! #(@ 65@ # / ,-@ $!@ $@ )@ ##! #@ $@ ?' +@ ($%'#$ @ %'*'($'(@ )$,'(@ 69@ )@ $(.#)( (@$@'$)#$ (@, )@(%  @*#) $#(@ #@%') *!'@)$")$@) ((*(@  *'@1:@&*#@! #"#)@$@' $%( (@#@)$")$@@%'$) #(@ 85@  *'@2:@*!@(*!!*!'@!$! /) $#@$@)@!4?@*( $#@%'$) #:@ 88@  *'@3:@*'  ) $#@$@'$" ##)@6- (?)@@%'$) #(@ 89@ ###

 *'@4:@'#(' %)@!+!(@$@ @#@%!()  !@@%'!$@#(@ #@ '#)@ 90@ )$")$@) ((*(@  *'@5:@'$)#$ @!+!(@ #@'* )(@'$"@2@)'#(# @! #(@91@  *'@ 6:@ !$'$%.!!;@ )$$%'$!@ #@ %.!!$&* #$#@ !+!(@ #@ '* )(@ '$"@ 2@ 92@ )'#(# @! #(@ @ @      @@ # /%-@$"%') +@'%'(#)) $#@$@$*'@ #$,!@$#@' $%( (@#@)$")$@ 107@ @%'$) #@" ! (@ # /&-@'#(' %)@!+!(@$@@%'!$@#(@ #@ '#)@)$")$@) ((*(@ 110@ @ @ @ @ @ @ @ @ @ @ @ @ @ !"//!@ @   @ @ /%:@" ! (@$@ ($%'#$ @ $(.#)) @#(@ #@' $%( (@, )@%'!$(@))@ 22@ #$@"$'@)#@$#@ ($$'":@ !@1:@' "'(@*(@ #@) (@,$' @ 45@ !@2:@ ()@$@? @ #(') $#@@"*)#)@! #(@*(@ #@) (@,$' @ 45@ !@3:@$#()'*)(@#@!$# #@) !(@ 45@ @ @   @ @ /%-@ ()@$@%' )@@ ($$'"(@ #@)$")$@ 53@ /&-@ #) @%'")'(@$@%!()  !@@#/."(@ 58@ !@1:@ ()@$@' $%( (@<)=@#@)$")$@<!=@%'#.!)'#('((@ *(@ $'@ 93@ (&*#@#@%.!$#) @#!.((@ !@ 2:@ ()@ $@ %!()  !@ ($%'#$ ?'!)@ #(@ *(@ $'@ )@ )$")$@ @ 94@  @#!.((@ !@ 3:@ # + *!@  (@ $@ %!()  !@ @ %'!$(@ <* @ #(=@ %$( ) +!.@ $?-%'((@ , )@ ($%'#$ ?'!)@ #(@ <*'.@ #(=@ #@  '#)@ )$")$@ 98@ ) ((*(@ !@4:@' "'(@*(@ #@) (@,$' @ 100@ !@5:@$#()'*)(@#@!$# #@) !(@ 101@ @ ###

!"// $"!@

/ ( ( @ @ "/  #   # !/ '(( #$()'$ (@  !/ .)$ # #(@  /  #?!#)@)'" #) $#@  /  ").!!!.!@ %$(%)@ / $-.-.!*!$(@5?%$(%)@ / @(.#)(@ / #$%!(" @') *!*"@ / '#(.!@ %$(%)@ / @(.#)(@  /  '()@(%'))?' @"$) @ !/  '!! #(@ / !.'!.@3?%$(%)@ / '#.!@ %$(%)@ / '#.!'#.!@ %$(%)@ / '#.!'#(.!@ %$(%)@ / @(.#)(@ / @(.#)(@ / @(.#)(@ / '#.!'#.!@'*)(@ / ##  ./ .'$-.").!!*)'.!?@$@  /  ?$@'*)(@ / ($%#)#.!@ %$(%)@  / > @ ($"'(@ / *' ?')# @ . / &* ?'$")$'%.@$*%!@)$@"((?(%)'$")'.@ / '@(**# )@ / ).!'.)' )$!@4?%$(%)@ / *'( @#@ $$@ / +!$# @ @ !/  #  # / $!."'(@ #@') $#@ / #$'# @%.'$%$(%)@ / $!.%'#.!@ %$(%)@ / @(.#)(@ / .)$#@(.#)(@ / '#.!)'#('(@ / % @"%!  ) $#@$@ @#(@ ###

. / !@) "@&*#) )) +@@  / $#@(%'))?' @"$) @ ./ $')? #@%'#.!)'#('(@ /  #  @  !/ )' $!)$#(@ / $!#(.!@ %$(%)@(.#)(@ / "!!@(**# )@  / .%@ @@   .%@ @#  /  #?!.'@'$")$'%.@ @ ++++

+

+

+

+

+

+ +++++++++++++++++++++++++++++++++++++++++++++++     

L

$&,+L *L +$K+-!!&,L '* &!+%+L , ,L '&$1L -+L /,*CL %!&*$+L &L ,%'+( *!L

9L+L*/L%,*!$+CL+-&$! ,L+L&* 1L+'-*L&L( ','+1&, +!+L+L/'*#'*L,'L

(*'-L '* &!L %,,*L &L 9CL , L (!$$*+L , ,L -**&,$1L +-+,!&L $!L '&L *, BL +!+L !& L , L (*!%*1L +'-*L 'L *'&L &L &* 1L !&L $$L ''L  !&+CL ( ','+1&, ,!L '* &!+%+L $+'L (*'-L , L *,+,L !.*+!,1L 'L !'$' !$L '%('-&+L !&L &,-*BL  !+L !+L , L *+-$,L 'L &L .'$-,!'&*1L (, L ,'L '.*'%L , !*L +++!$L$!+,1$L&L+-*.!.L!&L$%'+,L&1L#!&L'L&.!*'&%&,BL L.$'(%&,L'L -%&#!&L +L $/1+L &L $!&#L ,'L , L -+L 'L %&1L 'L , +L ($&,L (*'-,+L +L ''+,-+L -,L $+'L ,'L %&-,-*L %,*!$+L '*L %!!&+L , *'- '-,L , L !+,'*1BL '/1+CL !%(*'.!& L '-*L -&*+,&!& L 'L '/L ($&,+L &-!&$1L ,*&+'*%L +'$*L ('/*L!&,'L-+-$L%,'$!,+L!+L'&L'L, L%"'*L $$& +L'*L -%&!,1L,'L!%(*'.L '-*L +-(($1L 'L .$-$L (*'-,+L &L +-++-$$1L ! ,L $!%,L  & CL '.*('(-$,!'&CL&L$&L&L/,*L+ '*, L, *,+BLL

L

L

L

LLLL +

+

+

+

+

- 1 - + +

+

++

- 2 - + +

!%+ '+ + +  ++ + +  +    + +

+'(*&'!+LF$+'L#&'/&L+L,*(&'!+GL'%(*!+CL1L*CL, L$* +,L%!$1L'L($&,L %,'$!,+CL+ '/!& LL'-&,$++L.*!,1L'L %!$L+,*-,-*+LF!#*+L,L$BCL978;EL  '$$CL978

+ "%+ ++ +

"%!+ ++ + + +

 L +,-&&!& L .*!,1L 'L !+'(*&'!L !'$' !$L -&,!'&+L !+L 0($!&L 1L , L *,L !.*+!,1L'L %!$L+,*-,-*+L&'%(++L!&L, !+L%!$1L'L%,'$!,+BL'/.*CL +(!,L , !+L +,*-,-*$L '%($0!,1CL '&$1L ,/'L !.K*'&L F

- 3 - + +

($+,')-!&'&CL,''( *'$+CL*',&'!+CLCL +L&L+L-+L, L($+,!!$L(''$+L 'L L &L  L (*'-L 1L , L L (, /1L F! -*L 8GBL &L , L +L 'L +'&*1L%,'$!,+CL%'+,L8

Cytosol MVA Plastid MEP pathway pathway

CKs CKs

IPP DMAPP IPP DMAPP

x2 x3 x1 x3 FPPS GGPPS GPPS GGPPS

FPP GGPP GPP GGPP

Protein Protein prenylation prenylation x2 x2 Sesquiterpenes Triterpenes Polyterpenes Diterpenes Monoterpenes Diterpenes Tetraterpenes Polyterpenes (C15) (C30) (C20) (C10) (C20) (C40)

GAs Plastoquinones Chlorophylls Mitochondrion Ubiquinone Polyprenols Phylloquinones Tocopherols

Phytosterols Carotenoids

BRs ABA SLs

+!%+ ++ +   +  ++ + %+ L&L CL, L -&!.*+$L

- 4 - + +

,*&+*!(,!'&$L &L ('+,K,*&+$,!'&$L $.$L !&$1L %'-$,+L , L $-0L 'L (*-*+'*+L ,'/*+L, L!&$L!+'(*&'!L%,'$!,+LF'*4 -2K'&(!6&L&L'*'&,CL978

L "%"%+ ++ +  +  ++

 L+)-&,!$L'&&+,!'&L'L&L!&*+!& L&-%*L'L L-&!,+L!&,'L'&L%'$-$L 'L  L *+-$,+L !&L $!&*L (*&1$L !( '+( ,L !&,*%!,+CL , L +!L #'&L +,*-,-*+L'*L, L%"'*!,1L'L!+'(*&'!L *'-(+BL +L!&,*%!,+CL*& !& L*'%L ,&L ,'L , '-+&+L 'L *'&L ,'%+CL *(*+&,L , L +,*,!& L ('!&,L '*L , L +,'&!+ !& L !.*+!!,!'&L 'L , !+L %,'$!L %!$1L +!&L , 1L &L , &L -&* 'L L +*!+L 'L &21%,!L %'!!,!'&+L %!&$1L +L '&L +$K'&&+,!'&CL 1$!2,!'&CL !+'%*!2,!'&CL '&"- ,!'&L &L *'0L *,!'&+BL  1L &L $+'L L !&'*('*,L ,'L (*',!&+L '*L &'&K!+'(*&'!L %,'$!,+L F((L  $'*'( 1$$+L '*L (*&1$)-!&'&+GL 1L $#1$,!'&L *,!'&+BL F *.1L &L *',-CL 8@@

+L ,$12L , L $!%!&,!'&L 'L , L !( '+( ,L %'!,1L *'%L , L $$1$!L +-+,*,CL , ,L *%!&+L +L &L $$1$!L ,!'&L (*'&L ,'L L ,,#L 1L &L L %'$-$BL  L !,!'&L'L, L L-&!,L &*,+LL&/L8IK;L'-$K'&L!&L, L(*'-,LF! -*L9GBL (&!& L'&L, L+,*' %!$L'&'*%,!'&L'L, +L'-$L'&+L'*%L-*!& L , L $'& ,!'&L 'L , L (*&1$L !( '+( ,CL +L *L $++!!L +L KL &L K+L F -*L &L '1%CL 8@@?EL !& L ,L $BCL 9779EL &*%',&L ,L $BCL 977@GBL +(!,L + *!& L, L+%L+-+,*,+L&L**1!& L'-,L+!%!$*L&21%,!L*,!'&+CLKL&L +K+L'*%L &,!$$1L-&*$,L(*',!&L%!$!+L/!, L'%($,$1L!*&,L(*',!&L +)-&+L &L !*&,L ,$1,!L &L +-+,*,L !&!& L % &!+%+BL &L &*$L ,*%+CL K+L *L  *,*!2L '*L &*,!& L L FGL '-$L '&+L !&L (*&1$L !( '+( ,+L /!, L $& , +L 'L -(L ,'L <7CL / *+L K+L -+-$$1L (*'-L $'& *L *'&L  !&+L /!, L L FGL '-$L '&+BL '/.*CL 0(,!'&+L ,'L , !+L *-$L !&$-L K+L &L K+L , ,L (*'-L $'& *L F+! L ,L $BCL 9788GL '*L + '*,*L (*'-,+L F%'L ,L $BCL 977?EL $$-L ,L $BCL 977@EL  !$%!$$*L ,L $BCL 977@EL # ,*L ,L $BCL 978:GCL *+(,!.$1BL,,&!& L,'L, L$& , L'L, !*L(*'-,+CLK+L&L, &LL!.!L !&L+ '*,KLF87K97GCL%!-%KLF9

- 5 - + +

++)-!KL&L,*!,*(&+CL&LL!+L, L(*-*+'*L'L!KL&L,,*,*(&+LF! -*L8GBLLL L

IPP DMAPP PPi (C5) (C5)(C5)

GPP synthase PPi GPP (C10)

FPP synthase PPi

FPP (C15)

GGPP synthase PPi

GGPP (C20)

+ "%+  + + *  +  +  +   %+ !&*L (*&1$L !( '+( ,L %'$-$+L *+-$,L *'%L , L +)-&,!$L !,!'&L 'L L-&!,+L,'L L1LKL &21%+LF!&L$! ,L$-GBL L L'&&+,!'&L!&.'$.+L, L*$+L'L'&L!L%'$-$LF!&L *1GBL '$!L**'/+L*(*+&,L'&L&21%,!L+,(J%'$-$B  $L'L'&,&,+ '*L*.!,!'&+B L L "%#%+ ++*  +   +

"%#%!%+  +  +()+  ++

L +1&, ++L F+GL ,$12L , L '&&+,!'&L 'L '&L  L &L '&L L %'$-$+L ,'L (*'-L CL , L (*-*+'*L 'L $$L %'&',*(&+L F$+'L $$L %'&',*(&'!+GBL$&,L%'&',*(&+L*L&'*%$$1L(*'-L!&L($+,!+L+L++&,!$L '!$+L &L .'$,!$+L , ,L *L %!&$1L !&.'$.L !&L $$$'(, !CL &+L '*L ('$$!&,!'&L (*'+++L F! -*L 8GBL '%L 'L , %L *L 'L !&-+,*!$L !&,*+,L +L * *&+L F((L *&!'$GCL$.'*+LF((L%&, '$GL'*L&,!K&*L*- +LF(+(L.!&$+,!&L&L.!&*!+,!&GL F!L ,L $BCL 978:GBL L ,!.!,1L &L L (*'.!L 1L ,*'!%*!L '*L '%'!%*!L &21%+L !&L ($&,+BL ,*'!%*!L L &21%+L '*%L 1L L $* L &L L +%$$L +--&!,LF L&LCL*+(,!.$1GL(*'.!LL!&L%&1L($&,L+(!+LF-*#L,L$BCL

- 6 - + +

8@@@EL '$$L,L$BCL977;EL & L,L$BCL9787EL!L,L$BCL978:EL &L,L$BCL978EL & L,L$BCL978?GBL

'%'!%*!L L &21%+L '-&L !&L +'%L & !'+(*%+L &L 1%&'+(*%+L *L $+'L *$,L ,'L K(*'-!& L +L -,L .L +-*L !*&,L .'$-,!'&*1L (*++-*CL '*%!& L ,/'L !&(&&,L $!& +L F+!'L ,L $BCL 977?EL  %!,L &L *+ &2'&CL977?EL %!,L,L$BCL9787EL!L,L$BCL978:GBL&,$1CL, L,!.!,1L'L+'%L & !'+(*%L '%'!%*!LL(*',!&+LF'-.!*L,L$BCL9777EL.&L !L,L$BCL977>GL +L &L *K.$-,CL + '/!& L , ,L , +L +L &L ,-$$1L (*'-L $'& K !&L (*&1$L!( '+( ,+L!&L($+,!+L&L%!,' '&*!LF+! L,L$BCL9788EL-$-2-L,L $BCL 9789EL '&+L ,L $BCL 978:GBL  L !.*+!,1L +*!L '*L K(*'-!& L &21%+L !$$-+,*,+L '/L !!-$,L !,L !+L ,'L (*!,L &L .&L 0(*!%&,$$1L ,*%!&L , L ,!.!,1L'L(*,!-$*L%%*+L'L, LKL%!$1L&CL &CL,'L-&*+,&L, !*L *'$L!&L($&,L!+'(*&'!L%,'$!+%BL

L

"%#%"%+  +  +()+  +

L +1&, ++L F+GL *L &21%+L , ,L +)-&,!$$1L '&&+L ,/'L L -&!,+L !&,'L '&L%'$-$L'L L,'L(*'-LBL+L'&+,!,-,L, L%'+,L+,-!LKL +-%!$1L !&L %&1L '* &!+%+CL '%!& L L %'$L '*L KL % &!+,!L +,-!+L F$*#L ,L $BCL 8@?>EL *+ !+L ,L $BCL 8@@;EL '-$,*CL 977=EL  '$$CL 978

- 7 - + +

 &L F-&!$$*L ,L $BCL 8@@=GBL  !$L  &L &'+L L 1,'+'$!L !+'21%L F9GCL , L  %L &L!+L,*&+*!(,!'&$$1L* -$,L,'L&'L$'& LF8 GL&L+ '*,LF8GL !+''*%+L, ,L$'$!2L,'L%!,' '&*!L&L1,'+'$CL*+(,!.$1LF-&!$$*L,L$BCL8@@>EL !%L,L$BCL9789GBL+(!,L-&,!'&!& L!&L!*&,L$$L'%(*,%&,+L&L+ '/!& L +(!!L !%($!,!'&+L !&L +'%L (*,!-$*L $$J,!++-L (*'+++CL +!& $L %-,&,+L *$1L !*L*'%L/!$K,1(L($&,+LF +***L,L$BCL9779EL &2&'L,L$BCL977=EL$'+L,L$BCL 9787EL !%L ,L $BCL 9789GBL &$1L '-$K%-,&,+L F((L ($&,+L '%($,$1L $#!& L L ,!.!,1GL + '/L L *+,!L ( &',1(L 'L %*1'L $, $!,1L F$'+L ,L $BCL 9787GBL L ,!.!,1L !+L $+'L -&%&,$L -*!& L *%!&,!'&CL '*L L (*'(*L  $'*'($+,L .$'(%&,L &L !&L !',!L &L !',!L *+('&++L F &2&'L ,L $BCL 978=GBL  !+L +!L &L'LL!+L$!.L,'LL%!&$1L++'!,L,'L, L!'+1&, +!+L'L( 1,'+,*'$+CL , ,L*L#1L'%('&&,+L'*L, L!&, *!,1L'L!'$' !$L%%*&+BLL+,*'& L!%(,L '&L +,*'$L $.$+L ,+L $$L (*'+++L !&L / ! L %%*&+L *L !&.'$.L +- L +L $$L 0(&+!'&L&L!.!+!'&CL.-'$L,*!#!& CL$-!!,1CL(*%!$!,1L'*L, L,!.!,1L'L %%*&K'&L(*',!&+BL L!'$' !$L*$.&L'L($&,L+,*'$+L/'-$L0($!&L, L *-&&,L *'$+L 'L L (*$' +L F*,%&&CL 8@@?EL L ,L $BCL 977:EL &-!L ,L $BCL 9789EL'*., L&L-%CL978:EL*'+"&L,L$BCL978

L

"%#%#%+    +  +()+  +

L +1&, +L FGL &21%+L &*,L L 1L , *L +)-&,!$L L '&&+,!'&L+,(+L,'L CLL&L!&$$1LBL' , *L/!, LCLL!+LL %"'*L *& K('!&,L !&,*%!,L '*L , L !'+1&, +!+L 'L %&1L ++&,!$L &L +(!$!2L!+'(*&'!L%,'$!,+L!&L!*&,L+-$$-$*L$',!'&+LF! -*L8GBLL !+L , L (*-*+'*L 'L %'+,L ++&,!$L !+'(*&'!+L +1&, +!2L !&L ($+,!+CL !&$-!& L '*%'&+L F+CL CL  +GL &L ( ','+1&, +!+K*$,L !+'(*&'!+L +- L +L *',&'!+L &L , L +!L  !&L 'L  $'*'( 1$$+CL ,''( *'$+CL ($+,')-!&'&L &L ( 1$$')-!&'&BL &L , L 1,'+'$L &L %!,' '&*!CL L $+'L '&,*!-,+L ,'L (*',!&L *&1$ *&1$,!'&L&L,'L, L(*'-,!'&L'L+(!$!2L!,*(&+L&L('$1(*&'$+L F !& L,L$BCL9779EL&*%',&L,L$BCL977@EL '$$CL978

+

+

- 8 - + +

#%+    ++  +

$, '- L+.*$LK&'!& L &L(*$' +L/*L$'&L-*!& L, L$+,LL 'L, L97, L&,-*1LF'$&!#L&L*,$1CL8@@;CL8@@CL8@@>GCL, L !*+,L &'%K/!L $!+,L 'L &!,+L &L -&!!L &'%&$,-*L 'L , L *!'(+!+L L%!$1L/+L*$+L!&L977:LF & L&L ++%!&CL977:GBL &!,!$$1CL,/$.L &+L F %*%&GL /*L (*!,L !&L , L &'%L 'L *!'(+!+L ,'L &'L L '%'$' +BL '/.*CL , L +-+)-&,L  *,*!2,!'&L 'L , L &!,+L *.$L, ,L, L*!'(+!+LL%!$1L'&$1L'&,!&+L!.L%%*+BL 'L /+L+*!L+LL(+-' &L&L, L,89L!+''*%L/+L$,*L!&,!!L+LL ,1(L L L 'L L ,*'!%*!L L +1&, +L &L *&%L +L , L F& L &L !0'&CL977@EL#L,L$BCL978:GBL L*+,L'L, L(*!,L!+'21%+LF,&GL/*L'-&L,'L (*'-LL+ L'*L,'L &,!$$1L'%($%&,L, L+&L'LL,!.!,1L!&L + L +,*!&+L & !&*L ,'L (*'-L *',&'!+L F -L ,L $BCL 8@@>CL 8@@>EL #L ,L $BCL 9777EL & L &L !0'&CL 977@EL #L ,L $BCL 978:GBL '/.*CL , L -+L 'L ! $1K+&+!,!.L&$1,!$L%, '+L'*L(*&1$L!( '+( ,L!&,!!,!'&L+ '/CL!&L -*, *L +,-!+L F $L ,L $BCL 978CL@L&L87L/*L*&%L+L,8CL9CL:L &L ;L *+(,!.$1CL / !$L ,?L /+L '&+!*L +L L ('$1(*&1$L !( '+( ,L +1&, +L F,9GL F& L ,L $BCL 978=GBL ,9CL :CL ;L &L 88L *,!&L , L &'%&$,-*CL +L /$$L +L ,8CL +!&L !,+L ,!.!,1L !*L *'%L '&L +,-1L ,'L &', *L&L!&L', L++L+! &!!&,L%'-&,+L'LL/*L,,BL &L+-%%*1CL +L'&L-**&,$1L.!$$L.!&L/L&L'&$-L, ,L, L*!'(+!+LL %!$1L!+L'*%L1L!.L%%*+DL,8CL9CL:CL;CL&L88BL

 *!& L +-$$-$*L $'$!2,!'&CL K-+!'&+L 'L !&!.!-$L %%*+L 'L , L *!'(+!+L L (*',!&L %!$1L /*L '-&L !&L %!,' '&*!L F,8GCL ($+,!+L F,9L &L 88GL &L &'($+%!L *,!-$-%L FEL ,:L &L ;GCL '&+!+,&,L/!, L, L$$-$*L!+,*!-,!'&L'LK'&+-%!& L(, /1+LF#L,L$BCL 9777EL!#L&L & CL977:EL#L,L$BCL978:GBL&+L&'!& L, L'* &$$*LL &21%+L F %CL &L &L %%GL *L '&+,!,-,!.$1L 0(*++L !&L %'+,L '* &+L &L

- 9 - + +

,!++-+CL /!, L  %%L + '/!& L , L ! +,L %L $.$+CL (*,!-$*$1L !&L ( ','+1&, ,!L ,!++-+BL  L 0(*++!'&L 'L , L &+L &'!& L , L K++'!,L !+''*%+LF,:L&L;GL!+CL&.*, $++CL*+,*!,L,'L+!$!)-+CL$'/*+L&L*'',+L F#L,L$BCL978:GBLL(*L+,-1L'L, L &+L&'!& L, L,/'L($+,!!$L!+''*%+L + '/L , ,L , L  &+ (*$' L /+L %'+,$1L 'K0(*++L /!, L &+L &'!& L L!'+1&, ,!L&21%+CL/ *+L, L %%L &L/+L'K* -$,L/!, L &+L !&.'$.L !&L , L L (, /1L &L !&L , L (*'-,!'&L 'L ( ','+1&, +!+K*$,L !+'(*&'!+LF-!2K'$L,L$BCL978=CLL+!)BL'&+!+,&,L/!, L, L+*!L &L 0(*++!'&L(,,*&L&L'K* -$,!'&L&,/'*#CL, L,88L(*',!&L/+L'-&L,'L ( 1+!$$1L !&,*,L /!, L ( 1,'&L +1&, +L FGCL *&1$ *&1$L *-,+L FGL &L+'$&+1$L!( '+( ,L+1&, +L9LF9GCL/ ! L*LK'&+-%!& L&21%+L !&.'$.L !&L , L +1&, +!+L 'L ( ','+1&, +!+K*$,L !+'(*&'!+LF-!2K'$L ,L $BCL 978=CLL+!GBLL!*,+L, LL(*-*+'*L,'L*',&'!L!'+1&, +!+CLL ,*&+'*%+L L !&,'L , L ( 1,1$L  !&L 'L  $'*'( 1$$+CL ,''( *'$+L &L ( 1$$')-!&'&CL &L 9L -++L L ,'L &*,L , L !+'(*&'!L +!L %'!,1L 'L ($+,')-!&'&BL&,L*+-$,+L .L'&!*%L, ,L,88L&LL/'*#L$'+$1L ,' , *L ,'L !!&,$1L  &&$L L !&,'L , L *',&'!L (, /1L !&L *!'(+!+L F% &L ,L $BCL 978?GBL !&$$1CL , L !&,*,!'&L 'L ,88L /!, L , L F,89GL/+L'-&L,'L+ !,L!,+L(*'-,L+(!!!,1L*'%LL,'LCL(*'$1L ,'L L +(!!L *)-!*%&,+L 1L !.*,!& L L (*-*+'*+L ,'L %'&',*(&L !'+1&, +!+LF& L&L!0'&CL977@EL &L,L$BCL978

&$!#L, ,L'+*.L'*L, L,/'L*!'(+!+LL!+''*%+CL&$1+!+L'L!&!.!-$L %-,&,+L ,!.L !&L ($+,!!$L L &21%+L *.$L , ,L ,9L &L ,88L *L *L *'%L !& L *-&&,BL +(!,L !& L 'K0(*++L /!, L L !'+1&, ,!L &+CL , L $'++L 'L ,9L ,!.!,1L !L &',L + '/L &1L ,*!%&,$L ( &',1(L'%(*L,'L/!$K,1(L($&,+L!&!,!& L, ,L,88L&L*+-L, L +&L 'L , !+L (*$' L F-!2K'$L ,L $BCL 978=CL L + !GBL 1L '&,*+,CL +.*L $,*!'-+L ( &',1(+L /*L '+*.L !&L !*&,L %-,&,L $$$+L 'L  %%L &CL !&!,!& L , ,L , L ,9L !+''*%L &&',L '%($%&,L , L $'++L 'L ,88L -&,!'&BL '/*L $.$+L 'L  %%L ,*&+*!(,+L !&L , L #&'#K'/&L $$$L%%*'L*+-$,L!&L($&,+L/!, LL($L( &',1(CL *'/, L$1L&L+%$$*L %+'( 1$$L  $'*'($+,+BL  +L $,*,!'&+L /*L '%(&!L 1L L +! &!!&,L *-,!'&L!&L, L$.$+L'L*',&'!+CL $'*'( 1$$+L&L(*&1$)-!&'&+CL/ ! L/*L *+,'*L,'L/!$K,1(L$.$+L/ &L'%($%&,!& L, L%%*'L%-,&,L$!&L/!, L, L

- 10 - + +

&,!.L &L F-!2K'$L ,L $BCL 978=CL L + !GBL  +L !&!& +L '&!*%L , ,L ,88L !+L L -L L !+'21%L '*L , L (*'-,!'&L 'L %'+,L ( ','+1&, +!+K *$,L($+,!!$L!+'(*&'!+CL/ !$L,9L%! ,L(*,!!(,L!&L%'*L+(!$!2L (*'+++BLL

KL !&+*,!'&L %-,&,+L -+!& L !*&,L ,*-&,L .*+!'&+L 'L , L ,88L (*',!&L/*L'-&CL '/.*CL,'L*+-$,L!&L!+,!&,L$, $L( &',1(+BL*-&,!'&L'L , L K,*%!&$L * !'&L 'L , L (*',!&L *+-$,L !&L +$!& K$, $L $!&'L ( &',1(+CL +!%!$*L,'L, '+L'L#&'#K'-,L%-,&,+L'L, L L(, /1CL'&!*%!& L, L*$.&L 'L, !+L!+'21%L'*L, L!'+1&, +!+L'L($+,!!$L!+'(*&'!+L+- L+L, '+L!&.'$.L !&L ( ','+1&, ,!L (*'+++L F-(($L ,L $BCL 978:GBL -*!'-+$1CL ,*-&,!'&L 'L , L K ,*%!&$L* !'&L'L,88L/+L'-&L,'L &*,L%*1'K$, $!,1LF-(($L,L$BCL 978:EL-!2K'$L,L$BCL978=CLL+!GCL+!%!$*L,'L, ,L'+*.L!&L'-$L%-,&,+L .'!L'LL,!.!,1LF$'+L,L$BCL9787GBL +  +  +  + +  +  + + + +  ++++  +++   +LFL (,*L CL+"GBL

L

$%++  +++ +

 !$L *!'(+!+L !+L ,*%&'-+$1L -+-$L +L L %'$L ,'L !&L %'$-$*L &L % &!+,!L#&'/$ L'-,L+!L($&,L%,'$!L(*'+++CL+,-!+L!&L%!!&$L &L*'(L+(!+L, &L$$'/L,'L-&*+,&L '/L, +L(*'+++L!%(,L($&,L,-*+L 'L+(!!L -%&L!&,*+,BL &L, !+L*%/'*#CL, L&$1+!+L'LL%!$!+L*'%L +.*$L ($&,L +(!+L + '-$L '&,*!-,L ,'L ,,*L -&*+,&L '/L K*!.L %,'$!,+L/!, L!&,*+,!& L-&,!'&+L*L(*'-BLL

&1L+(!$!2L%,'$!,+L+1&, +!2L*'%LL!&L 1%&'+(*%+L*L!&.'$.L !&L&+L !&+,L!',!L+,*+++CL!&$-!& L'$'*+!&+L!&L +L'*L,0'$L!&L " L +(!+LF %!,L,L$BCL9787EL&*L,L$BCL8@@?EL !'L,L$BCL977

&,$1CL, L+,-1L'LL&21%+L!&LL &-$L'L*'(+L +L*.$L!%('*,&,L * -$,!'&L% &!+%+L'*L+(!!LL$$',!'&BL ,L +L&L!+'.*L, ,L, L L ,!.!,1L !&L '(L F   +    GCL *!L F #$+  GL &L (((*L F +

- 11 - + +

 GL &L L * -$,L 1L , L !&,*,!'&L /!, L L (*',!&+L F& L &L !0'&CL 977@EL  '-L ,L $BCL 978>EL & L ,L $BCL 978?GBL '(L ,*! '%+L -%-$,L %1*&CL L %'&',*(&LL+LL$.'*L-*!& L*L(*'-,!'&BL 1*&L*!.+L*'%LCL / ! L !+L (*'-L 1L , L !&,*,!'&L ,/&L L L %'&'%*L ,!& L +L L F$ GL&LL,1(L LL(*',!&LF$ GBL !$L, L L &L!+L'&+,!,-,!.$1L 0(*++L ,'L (*'$1L +-(($1L L '*L (*!%*1L !'+1&, ,!L (, /1+CL  L !+L %!&$1L 0(*++L !&L ,*! '%+CL $!#$1L %!,!& L %1*&L (*'-,!'&L 1L  & !& L , L(*'-,L+(!!!,1L'L$ L*'%LL,'LLF& L&L!0'&CL977@GBL &L*!CL '&$1L'&LL!+''*%L!+L,* ,L,'L($+,!+LF+8GBL !+L&21%L&L'*%L '%'!%*+L!&L, L+,*'%L'L($+,!+CL-,L!,L&L$+'LL( 1+!$$1L**-!,L,'L, L , 1$#'!L%%*&+L1LL,1(L LL(*',!&LF&%L+GBL L!&,*,!'&L/!, L +L!%(*'.+L, L,$1,!L!!&1L'L+8L,'L(*'-LLF '-L,L$BCL 978>GBL &L , 1$#'!+CL , L ,*'!%*L -*, *L !&,*,+L /!, L &21%+L !&.'$.L !&L  $'*'( 1$$L !'+1&, +!+CL +- +,!& L , ,L , L ++%$1L 'L +(!!L %-$,!(*',!&L '%($0+L'&,!&!& L, +L&21%+L%! ,LLL% &!+%L,'L!!&,$1L'&,*'$L, L $-0L'LL,'L, L(*'-,!'&L'L $'*'( 1$$+L/ &L, L+1&, +!+L'L, +L(! %&,+L !+L*)-!*LF '-L,L$BCL978>GBL &L*L(((*CL*',&'!L-%-$,!'&L!+L*+('&+!$L '*L, L *,*!+,!L'$'*L'L*!(L*-!,BL*-!,L*',&'!L!'+1&, +!+L/+L++'!,L ,'L'&$1L'&LL!+''*%LF8GCL/ ! L&L$+'L!&,*,L/!, LL,1(L LL F GBL L L(*',!&L(*'%',+LL(*'-,!'&L&L$+'L, L!&,*,!'&L /!, L(((*LLF& L,L$BCL978?GBL !+L*+-$,L%'&+,*,+L !&L, L!$!,1L'L ,1(L L L &21%+L ,'L **-!,L L %'&'%*+L '*L , L !'+1&, +!+L 'L +(!!L !+'(*&'!L *'-(+BL

'%,'L F  + # GL !+L '&L 'L , L +,L ($&,L +1+,%+L ,'L +,-1L , L !'+1&, +!+L'LK*!.L($+,!!$L!+'(*&'!+L&L!,+L* -$,!'&BL &L(*,!-$*CL ,'%,'L *',&'!+L ($1L !%('*,&,L *'$+L !&L *'',+L FB BL %1'** !2,!'&GCL ( ','+1&, ,!L ,!++-+L FB BL ( ','(*',,!'&GCL &L *-!,+L FB BL (! %&,,!'&GBL '/.*CL!&'*%,!'&L'&LL&-%*CL!+,*!-,!'&L&L-&,!'&L!+L+*L!&L, !+L +(!+BL&$1L,/'LL!+''*%+LF$8L&L$9GL .L&L!&,!!L F%&,L,L$BCL977=GBL L'**+('&!& L &+L+ '/L(*,!-$*L0(*++!'&L(,,*&+L &L *+('&L !*&,!$$1L ,'L !',!L +,*++L '&!,!'&+CL +- +,!& L +--&,!'&$!2,!'&BL'/.*CL, !*L+-$$-$*L$'$!2,!'&L/+L&',L0(*!%&,$$1L '&!*%L &L , !*L &21%,!L ,!.!,1L /+L '&$1L !&!*,$1L !&**L F%&,L ,L $BCL 977=GBL + +   +  + + + &+ + + +   + + +  + +   +  &+  + + +   +    + + +

- 12 - + +

   + &+  +  + +  + + +  + +  +  ++   + +%+

++

- 13 - + +

+

+

+

+

L

- 14 - 











  

&

&   &&&&  && & & & &&&&   & & &  & &  &  &  &  &  &   &   "&&#& & &   &   &  &   $&

"  &  &  &  &    & &  &  &  &   &    & &   & % %  &   &  &       & "& & !"   &  & & & &   #&  &    &  &  &  #&  &   & & & &   & &   &  &&   && "&

&

&

&













- 15 -   

            &









































&

- 16 - 







  

.

             

   

  

.".! #.... .. .  .   (. . .. . # $. .   . .. .". . .   . . !. . # #. .* +.# $. #. .#  .* +.$#(. .    ).'..  . .. .. $..  .*&+). .  .    . *&+). .   . *%+(. "!). . . .   . . .   -  . %%..*. .. . %%+..  . . .   #(. .".".  . . .. . .   .  .  . . . . .   .. .  ..   .. . (. ..   .. . ." . .   .  . . .  . . .. . . . .  # - .    . (. "!).  .   . . .  .  . . . .   .  .. .#.. ..- . . . . . .$#  #.  !.. . .-  . (. . . $#. $.. .# . ..  .. #.! (. .  ..  . .  ..  #.  .$#... . ... .   . . . . . # ... .. .  ..    (. .

.

, .   .  . . .   .  !. .  . . .       .  .  .* +(.

.





- 17 -   









- 18 - (('((

" "  "  "  ""   "   "    "

  "  "!"

I

?I"-(+"I 6@I ?I ."%I H 6@I/"I 6@I+"+(I 6@I+-I

 7@I .%,I  7@I '.%I H 6I I

6? +( +&I ( I %'-I -(%",&I 'I -(%"I ' "'+"' @I '-+I (+I ,+!I "'I  +".%-.+%I '(&",I CDI  H HH@I &).,I I %%-++@I 5=6>8I +%('@I)"'?I 7? %'-I,+!I '-+'-"('%@II(1I6;@I;<55@I@I '"' '@I!I-!+%',?II I

AI!I1)+"&'-,I"'%.I"'I-!",I-!,",I!)-+I0+I(H," 'I'I)+ (+&I2I -!I!I'"-I.'+I-!I,.)+/","('I( I-!I!I"+-(+?I!I('-+".-"('I( I-!I+,-I( I -!I.-!(+,I-(I-!I+,.%-,I+)(+-I!+I0,I-!I (%%(0"' AI ???H?I,-+-I-!I)+(#-I'I )+(/"I,(&I"(%( "%I&-+"%,IC(',-+.-,I'I-+', '"I%"',DBI? ?I!%)I0"-!I-!I &,.+&'-I( I,-+(%I%/%,BI??@I'I ??I)+ (+&I)+'2%*."'('I)+( "%"' I1)+"&'-,BI ? ?I)+(/"I-!'"%I,,",-'I'I",.,,"('I('I-!I:EHI1)+"&'-%I," '?I!I ).%",!I/+,"('I( I-!",I!)-+I(&)%&'-I0"-!I"-"('%I1)+"&'-,I",I--!I,I  " ?I I

!"  I

%'-,I)+(.I-',I( I-!(.,',I( I",()+'("I(&)(.',@I"'%."' I,(&I-!-I+I ,,'-"%I (+I+,)"+-"('@I)!(-(,2'-!,",@I'I+ .%-"('I( I +(0-!I'I/%()&'-?I ,)"-I -!"+I ,-+.-.+%I 'I .'-"('%I "/+,"-2@I %%I ",()+'(",I +"/I +(&I -!I ,&I "/H+('IC:DI)+.+,(+,@I-!I(.%H('I",(&+,I",()'-'2%I")!(,)!-I C DI 'I "&-!2%%%2%I ")!(,)!-I C D@I 0!"!I 'I I "'-+('/+-I 2I G I ",(&+,I C  DI '32&,?I %'-,I .,I -0(I .'+%-I )-!02,I -(I ,2'-!,"3I -!,I .'"-,I C" .+I 6D?I !I &/%('"I "I C DI )-!02I ,2'-!,"3,I I "'I -!I 2-(,(%@I 0!+,I -!I &-!2%+2-!+"-(%I 9H)!(,)!-I C DI )-!02I ,.))%",I (-!I I 'I  I "'I -!I )%,-"I C(./"+I -I %?@I 755:BI +'(/I -I %?@I 7568BI (+" .3H(')"('I 'I (+('-@I 756:D?I I 'I  I .'"-,I 'I I 1!' I-0'I%%I(&)+-&'-,I-(II+-"'I%/%?I(+I1&)%@I H+"/I I 'I I "&)(+-I 2I &"-(!('+"I (+I -!I "(,2'-!,",I ( I ."*."'('I C 4-$H +"'$!.,I-I%?@I6>=9BI",!I-I%?@I6>>=D?I(0/+@I-!",I%"&"-I1!' I( I(&&('I ",()+'("I )+.+,(+,I ",I '(-I -"/I '(. !I -(I +,.I I '-"I (+I )!+&(%( "%I

- 19 - (('((

%($ I ( I ('I ( I -!I )-!02,I 0"-!I G I )+(.I 2I -!I '('H"'!""-I )-!02I C(./"+I -I %?@I 755:BI +'(/I -I %?@I 7568BI (+" .3H(')"('I 'I (+('-@I 756:D?I "-"('I ( I I .'"-,I -(I  I '+-,I %(' +I )+'2%I ")!(,)!-I &(%.%,@I "'%."' I 65I +'2%I ")!(,)!-I CD@I 6:I +',2%I ")!(,)!-I CD@I 'I 75I +'2% +'2%I ")!(,)!-I CD@I 0!"!I +I -!'I .,I"'I,)" "I(0',-+&I)-!02,I-(I)+(.I)+-".%+I",()+'(",IC" .+I6D?I I 'I I )((%,I +)+,'-I '(,I ( I -!I &#(+I &-(%"I +'!I )("'-,I "'I -!I ",()+'("I "(,2'-!,",I '-0(+$I C+'(/I -I %?@I 7566BI +'(/I -I %?@I 7568D?I ,I )+'2%I ")!(,)!-,I +(0I %(' +@I !(0/+@I -!"+I -+',)(+-I -0'I %%I (&)+-&'-,I(&,I"'+,"' %2I+,-+"'IC"$I'I ' @I7558D?II

acetyl-CoA pyruvate + GAP DXS DXP HMG-CoA HMGR MEP MVA

IPP DMAPP IPP DMAPP IDI IDI CKs CKs FPPS sesquiterpenes GPP monoterpenes FPP sterols BRs diterpenes SLs GGPPS triterpenes GGPPS GAs prenylated proteins carotenoids GGPP GGPP diterpenes chlorophylls ABA PPP polyterpenes PPP tocopherols dolichol phylloquinones ubiquinone plastoquinone

 " !"   "   "   " "   !" /%('"I "I C DI )-!02I 'I "-,I +"/I &-(%"-,I +I +)+,'-I ('I -!I % -?I -!2%+2-!+"-(%I 9H)!(,)!-I C DI )-!02I+"/-"/,I+I)"-I('I-!I+" !-?II(%"I++(0,I"'"-I,"' %I'32&-"I,-),I'I ,!I ++(0,I +)+,'-I &.%-")%I ,-),?I  H(@I !2+(12&-!2% %.-+2%H(BI @I %2+%!2I 8H)!(,)!-BI @I (1212%.%(,I :H)!(,)!-BI  @I  H(I +.-,BI @II,2'-!,BI  @I G I",(&+,?I I%I( I('-'-,I (+I-!I+,-I( I +/"-"(',?I

!I-0(I)-!02,I (+I-!I)+(.-"('I( I",()+'("I)+.+,(+,I!/I'I1-',"/%2I ,-."I"'I(?I%%I-!I I)-!02I'32&,I+I'(I2I'.%+I ',I 'I "&)(+-I "'-(I )%,-",@I 0!+,I 2-(,(%"@I '()%,&"I +-".%.&I CD@I 'I)+(1",(&%H,,("-I%(-"(',I!/I'I (.'I (+I I'32&,IC.%"(I-I

- 20 - (('((

%?@I 7567BI (+" .3H(')"('I 'I (+('-@I 756:D?I !I &"'I +-H-+&"'"' I '32&,I ( I -!I I 'I I )-!02,I +I (1212%.%(,I :H)!(,)!-I ,2'-!,I CDI'I!2+(12&-!2% %.-+2%I(I+.-,IC D@I+,)-"/%2IC" .+I6D?I (,-I )%'-,I ('-"'I ,&%%I 'I &"%",I '("' I -!,I -0(I '32&,I C(+" .3H (')"('I 'I (+('-@I 756:D?I !"%I ,/+%I +"(),",I ',I '(I )+(-"',I 0"-!I!(&(%( 2I-(I@I('%2I('I( I-!&I)+(.,II .'-"('%I'32&I0"-!II -"/"-2IC!"%%"),I-I%?@I755=D?I 'I-!I,I( I @I-!I !I 'I)+(.,I%(' I 'I ,!(+-I -+',+")-,I '("' I -0(I '32&I ",( (+&,I C 6 I 'I  6@I +,)-"/%2DI -!-I ('%2I " +I "'I -!"+I H-+&"'%I + "('@I 0!+,I -!I  "I 'I )+(.,I ('%2I ('I ",( (+&@I  7I C%%,I -I %?@I 6>=>BI '#.-(I -I %?@I 6>>9BI .&++,@I6>>:D?I!I-!+I I",( (+&,I+I)+"&+"%2I--!I-(I-!II'I !/I -!I ,&I -()(%( 2I "'I -!I &&+'@I 0"-!I -!I !" !%2I "/+ '-I H-+&"'%I + "('I'I-!I!" !%2I(',+/I-%2-"I(&"'I1)(,I-(I-!I2-(,(%IC%I6D?II

(0',-+&I '32&,I ,.!I ,I  @I I ,2'-!,I CD@I 'I I ,2'-!,I CDI +I %,(I '(I 2I ,&%%I 'I &"%",I "'I +"(),",I 'I %(%"3I -(I &.%-")%I ,.%%.%+I (&)+-&'-,I C%I 6D?I !I -0(I ',I '("' I  I "'I +"(),",@I !I 'I "@I )+(.I %(' I 'I ,!(+-I -+',+")-,I '("' I '32&I ",( (+&,I-!-I" +I"'I%' -!I-I-!"+IH-+&"'%I',IC$I-I%?@I755=BI!"%%"),I-I %?@I 755=BI )"+H "+I -I %?@I 755=D?I !I %(' I  6I ",( (+&I ",I -+ -I -(I )%,-",@I -!I %(' I  7I",( (+&I",I-+',)(+-I-(I&"-(!('+"@I'I(-!I,!(+-I",( (+&,I+I,(+-I -(I )+(1",(&,?I !I -0(I ',I '("' I I "'I +"(),",I )+(.I -!+I ",( (+&,I C.'"%%+@I 6>>><BI!.I-I%?@I6>><BI$I-I %?@I7555BI' I'I"1('@I755>BI$I-I%?@I7568BI(&'I-I%?@I7569BI."3H(%I-I%?@I 756;@II " D?I!I !I 'I'(,I-!I('%2I&"-(!('+"%I&&+I( I -!I &"%2@I .-I -!I (  I -"/"-2I ( I -!I )+(-"'I ",I ,-"%%I .'%+I C!.I -I %?@I 6>><BI $I-I%?@I7555BI$I-I%?@I7568BI %I-I%?@I756:BI' I-I%?@I756;D?I(I-@I-!I )+(.-"('I( I&(+I-!'I('I'32&I",( (+&I +(&II,"' %IH'("' I 'I !,I'(-I'I+)(+-?I

- 21 - (('((

I

I  " !"  ""  "   "  ""  ""  " "   " I "  "  "  " !I +/"-"(',AI  @I  H(I +.-,BI @I I ,2'-!,BI  @I G I ",(&+,BI @I I ,2'-!,BI @I I ,2'-!,BI @I '()%,&"I+-".%.&?IF ,( (+&,I+)(+-I"'I-!",I0(+$?IFFI I-"/"-2I.'%+?"

Enzyme Gene Accession Isoform Localization HMGR1S ER-cytosol HMG1 At1g76490 HMGR HMGR1L ER-cytosol HMG2 At2g17370 HMGR2 ER-cytosol DXS DXS At4g15560 DXS Plastids IDI1S Peroxisomes IDI1 At5g16440 IDI1L Plastids IDI IDI2S Peroxisomes IDI2 At3g02780 IDI2L Mitochondria FPPS1S Cytosol FPS1 At5g47770 FPPS FPPS1L Mitochondria FPS2 At4g17190 FPPS2L Cytosol GGPPS1 At1g49530 GGPPS1** Mitochondria GGPPS2 At2g18620 GGPPS2 Plastids GGPPS3 At2g18640 GGPPS3 ER GGPPS GGPPS4 At2g23801 GGPPS4 ER GGPPS11L / AtG11* Plastids GGPPS11 At4g36810 GGPPS11S / sG11* Cytosol

I

,)"-I -!I )+,'I ( I -I %,-I -0(I I '32&,I "'I +"(),",I )%,-",@I  !!IC$#%&! @I +(&I!+"'I+ ++I-(I,I!!DI",I2I +I-!I&(,-I.''-I 'I ."*."-(.,%2I 1)+,,I )+%( I C$I -I %?@I 7568BI ."3H(%I -I %?@I 756;@(I  " D?I -66I ",I +*."+I (+I -!I )+(.-"('I ( I %%I &#(+I +(.),I ( I )%,-""%I ",()+'(",@I"'%."' I+(-'(",I'I-!I,"I!"',I( I!%(+()!2%%,@I-(()!+(%,@I 'I )+'2%-I *."'(',I C."3H(%I -I %?@I 756;@I   " D?I -+"$"' %2@I ,/+%I )!'(-2),I !/I 'I ,+"I (+I !!H -"/I &.-'-I %%%,I C.))%I -I %?@I 7568BI."3H(%I-I%?@I756;@II " D?I2I++2"' I(.-II(&)+!',"/I'%2,",I ( I-!,I%%%,@I0I.'(/+I!+I-!I1",-'I( I-0(I" +'-"%%2I-+ -I-66I '32&,@I !I ( I -!&I "'",)',%I (+I I ",-"'-I /%()&'-%I )+(,,I %"$%2I -!+(. !I-!I)+(.-"('I( I" +'-I-2),I( I,,'-"%I",()+'(",?II

I

- 22 -  &&%& &

(,1  ! 1

(,',1 1 0 "1 1 #1111 % 11" 1 1%1  %1

&K ++)K ,%)*+%K + K )&#K &K +44@K + K $&*+K ,%%+K K *&&)$K %K ) &'* *@K .K ),##0K )- *K + K ' %&+0'*K **& +K +&K')+ #K &)K &$'#+K #&**K&K,%+ &%K$,+%+*KC ,)K5D?K K%K$,+%+@K&)  %##0K%$K%K C,''#K +K #?@K 5346DK %K )K )))K +&K *K %@K )&)*K K '& %+K $,++ &%K + +K  %*KK&%*)-K)* ,KC496DK %K+44KC ,)K5K%K ,)K4D?K K%K ###K* &.*KK+$')+,)J'%%+K-) +K' %&+0'K+ +K)*$#*K+ +K&K + K "K $,+%+K C)" K +K #?@K 5333D@K #+)K )%$K *K % K C ## '*K +K #?@K 533;D@K .  K )&)*KK95: K$,++ &%K %K?K +K *K+ )&)K# "#0K+ +K+ K' %&+0'K&K + *K $,+%+*K $  +K K **& +K +&K + K +$')+,)K *%* + - +0K &K + K &))*'&% %K $,+%+K %10$*@K &+ K &K + $K %-&#-K %K + K ')&,+ &%K &K ' &+&*0%+ * *J)#+K *&')%& *KC ,)K4D?KK

K *&%K ')+ #K #&**J&J,%+ &%K ###@K %"K C I473934@K %"D@K * &.*K K '#K' %&+0'K%KK-#&'$%+#K#0KC ,)K8D@K')&#0@K,*KKJ K %*)+ &%K,'*+)$K+ K') +KK+)%*#+ &%K*+)+K&&%KC ,)K5K%K ,)K 4DK)*,#+*K %KK)*K,$,#+ &%K&KK+)%*) '+*KC, 1J&#K+K#?@K5349@K K$1'D?K %K+ *K$,+%+@K#&.)K#-#*K&K+44J%& %K+)%*) '+*K)K/'+K +&K)*,#+K %K%K&-)##K),+ &%K %K+ K,$,#+ &%K&K,##0K+ -@K. #J+0'K+44K ')&+ %K C, 1J&#K +K #?@K 5349@K K $1 'D?K  $ #)#0@K K %)#K %  + &%K &K + K K '+ .0K . + K *,#+ #K &%%+)+ &%*K &K + K K %  +&)K #&$1&%@K #*&K )*,#+*K %K K '#K ' %&+0'K C,# &K +K #?@K 5346BK )##&K +K #?@K 5347D?K  )&)@K + K ' %&+0'K&K%K%K%"K'#%+*K *K&%* *+%+K. + K+ K)'&)+K)&#K&K+44K*K + K $!&)K *&&)$K +)%*&)$ %K J) -K '),)*&)*K %+&K K &)K ' &+&*0%+ * *J)#+K *&')%& K ')&,+*?K ,)+ )K *,''&)+ %K + *K &%#,* &%@K K *# %J#+ #K # %&K ' %&+0'K - *,##0K %+ #K +&K + +K &K "%&"J&,+K K '+ .0K $,+%+*K *, K *K %@K #*&K "%&.%K *K  K C ## '*K +K #?@K 533;D@K .*K &*)-K %K + K *K &K + K % K # %K C I3483<;@K % K &)K % D@K .  K )&)*KKJ K %*)+ &%K %K+ K J+)$ %#K%K&K+ K')&+ %K& %K) &%K&K+ K K %K C ,)K 5@K %K  ,)K 4DK C,''#K +K #?@K 5346D?K 0K &%+)*+@K J K %*)+ &%*K %+)),'+ %K+ KJ+)$ %#K%K&K+ K+44K')&+ %K %K###*K% K C I3;8<47@K% K&)K% DK%K%!KC I:45I39@K%!DK,*K%K))*+K &K$)0&K-#&'$%+KC ,)K5K%K ,)K4DKC,''#K+K#?@K5346BK, 1J&#K+K#?@K 5349@KK$1'D?K *K$)0&K#+ #K' %&+0'K *K%-)K%K&*)-K %K K '+ .0K$,+%+*KC ## '*K+K#?@K533;D?KK

- 23 -  &&%& &

K A g11-2 g11-3 !1 (,1  1 !  1  1 1 K   1  % ,K ./K K%K

) ) 1 2

( ( $&#K&) %K+&K K-43K%%&++ &%?K g11-5 g11-1 g11-4 TG K TGA ATG ATG (D163R)  K')&+ %J& %K*(,%KC.  K#"*K K %+)&%*DK *K* &.%K*KK. )K&/K. + KK )%K *+ &%K &))*'&% %K +&K + K K ') +K '#*+ K +)+ %K *(,%?K  K AtG11 '&* + &%K &K +)%*#+ &%K *+)+K %K *+&'K sG11 K &&%*K *K* &.%K. + K#"K+) %#*?K K G11s '&* + &%K &K J K %*)+ &%*K *K K )')*%+K . + K $'+0K +) %#*?K  K B WT g11-2 g11-3 K '&* + &%K&K+ K'& %+K$,++ &%K %K+ K%K ###K *K* &.%K. + KK* K# %?K &.)K K )*K )')*%+K %&K ')&+ %*?K ./K  %&+0'K &K %+ -K $,+%+*K K  + )K')&, %K&)K%&+K')&, %KK*44K ')&+ %?K ')*%++ -K *# %*K &K + K K % +K %&+0'*K )&.%K ,%)K #&%J 35S:sG11-GFP K 0K &% + &%*K&)K43K K)K* &.%K+&K + K WT g11-2 g11-3 *$K *#?K )+ %K '&',#+ &%*K &K K **K %K * # (,*K &K '#%+*K +)&10&,*K &)K + K % %K % $,++ &%*K *K #*&K K * &.%?K &/K **K &))*'&%K +&K + K K &$&10&,*K # %&K $,+%+*K )')*%+K %K + K )  +?K )&.% * K **K  K %&+K K ')&,K*# %*K,K+&KK#&"K %K C 35S:sG11-GFP $)0&K -#&'$%+K +K + K )+K *+K WT g11-2 g11-3 K C*K * &.%K %K + K &))*'&% %K ' +,)D?K ./K0+&*&# K#&# 1+ &%K&K+ K*44JK ')&+ %?K  +,)*K * &.K K #,&)*%K K )&$K+ K*44JK')&+ %K %K*+&$+K )&$K 43JJ&#K *# %*K &K + K % +K K %&+0'*KC +K)*@K8KM$D?1

K

K

(,(,1 1  1 % 11 1 1 1# 1 1 !!1 & 11 " %11 1 1&% 1K

&K %-*+ +K + K $&#,#)K * *K &K + K ',11# %K ' %&+0'K  )%*K &*)-K +.%K% KC# %&@K*# %K#+ #DK%K% KC$)0&K#+ #DK'#%+*KC ,)K5D@K + K'&* + &%K&K+ KJ K %K+ K$,+%+K%&$*K K%K')- &,*#0K-# +K %K + K #K 0K K $'#  + &%K %K *(,% %K &K + K %*)+ &%K * +*K C ,)K 4D?K %*)+ &%K&K+ KJ K. + %K+ K') +K'#*+ K+)+ %K*(,%K %K+ K% K

- 24 -  &&%& &

###K C ,)K 5K %K  ,)K 4DK *K /'+K +&K ')-%+K + K +)%*) '+ &%K &K K ,##J

#%+ KK K )&) %K+ K )*+KK&&%KCC4DD?K&.-)@KK*&%K %J

)$K K &&%K CC5DDK / *+*K &.%*+)$K + K J K %*)+ &%K + +K &,#K '&+%+ ##0K +K *K %K #+)%+ -K +)%*#+ &%K % + + &%K '& %+K +&K %)+K K * &)+)K ')&+ %@K + +K .K %$K *44K C ,)K 5K %K  ,)K 5D?K K *',#+K + +K + *K * &)+)K')&+ %K$  +K%&+KK $'&)+K+&K'#*+ *K*K +K#"K+ K J+)$ %#K'#*+ K +)+ %K&$ %?K&K+*+K+ *K') + &%@K+ K#&# 1+ &%K&KK,* &%K')&+ %*K.*K %#01K %K+)%*% K) &'* *K# %*K')- &,*#0K%)+K %K+ K#KC, 1J&#K +K#?@K5349@KK$1'-1, 1J&#K+K#?@K5349@KK$1(D?K*K* &.%K %K ,)K5K %K ,)K6@K)%K#,&)*%K&))*'&% %K+&K+ K*44JK')&+ %KC, 1J&#K +K#?@K5349@KK$1(DK.*K/#,K)&$K'#*+ *K%K#&# 1K %K+ K0+&*&#?K0K &%+)*+@K+)%*% K'#%+*K/')** %KK* $ #)K&%*+),+K. + K+ K. #J+0'K+44K *(,%KC, 1J&#K+K#?@K5349@KK$1'DK* &.KK')&$ %%+K**& + &%K&K K#,&)*%K+&K'#*+ *KC ,)K6D?KK

K%/+K-#,+K. + )K*44K)+ %K+ K%, %K%10$+ K+ - +0K&K+ K,##J #%+ K %10$K C ,)K 6D?K %+K & K + - +0K **0*K &##&.K 0K %#0* *K &K )+ &%K')&,+*K0K J KC #K+K#?@K5348DK&)K KC%K+K#?@K5349DK&% )$K + +K +44K *0%+ * 1*K K *K + K $ %K ')&,+?K  0K #*&K )-#K + +K &+ )K ')&+ %*K')- &,*#0K# -K+&KK+),KK *&&)$*K+,##0K#&%K+&KK%&-#K +0'K &K ')%0#K  ' &*' +K *0%+ **K + +K $ %#0K ')&,K 58K )%0#)%*0#K  ' &*' +K CDK &)K #&%)K ')&,+*K C #K +K #?@K 5348BK %K +K #?@K 5349D?K  K *44K')&+ %K#"*K4

- 25 -  &&%& &

%K + K *44K ')&+ %K ')&,K 0K % K '#%+*K ')-%+*K +*K +)+ %K +&K '#*+ *K ,+K &*K%&+K&-)) KK+ - +0?K

K 1.501,50 K 1.251,25

K

1.001,00 levels

1!1),1   1 " %1 % ,1)&+ %K/+)+*K 0.750,75 )&$K #& & ##*K &-)')&, %K * $ #)K $&,%+*K &K + K % +K ')&+ %*K &)K +)%*&)$K . + K %K $'+0K -+&)K 0.500,50 CDK.)K$ /K. + K K%K @K%K+ K')&,+ &%K

Relative GGPP Relative &KK.*K(,%+  K0K J ?K -#*K)K)')*%+K 0.250,25 )#+ -K +&K + &*K %K +44K *$'#*?K %K %K K &K %>6K /+)+*K)K* &.%?K &KK.*K++K %KK*$'#*@K 0.000,00 %K&%#0K+)*K.)K %+  K %K44*K/+)+*?KK K

K

%K + K *K &K + K % K $,+%+@K + K J K %+)),'+*K + K *(,%K %& %K + K  #0K &%*)-K J+)$ %#K ) &%K &K +44K C ,)K 5D@K )*,#+ %K %K K * &)+)K ')&+ %K + +K .K %$K 44*K C ,)K 5D?K )- &,*K *(,% %K &K + K J K %*)+ &%K* +K %K+ K% K%&$K K&% )$K+ +K+ K#*+K54K)* ,*K&K+ K. #J +0'K+44K')&+ %K)K)'#K0KK* %#K*) %K)* ,K %K+ K44*K')&+ %KC ,)K 4D?K&K+*+K. + )K+ K#&**K&K+ KJ+)$ %#K) &%K&$')&$ *KK+ - +0K %K + K 44*K ')&+ %@K + K &))*'&% %K  K *(,%K .*K $'#  K )&$K % K *# %*K%K#&%K %+&K'#*$ *K&)K#& K/')** &%?K+ - +0K**0*K* &.K+ +K + K )&$ %%+K 44*K ')&+ %K *K ,%#K +&K ')&,K K C ,)K 6D?K  *K )*,#+*K *,*+K+ +K+ K#&"K&K$)0&K-#&'$%+K+K+ K )+K*+K&*)-K %K+ K % K$,+%+KC ,)K5K%K ,)K8DK%K+ K%!K###KC, 1J&#K+K#?@K5349@K K$1'DK$  +KK,K+&KK&$'#+K#"K&K+44K+ - +0?K *K$)0&K#+ #K ' %&+0'K .*K &$'#$%+K 0K /')** %K K %&$ K K *(,%K %#, %K + K')&$&+)K%K+ K,##K')&+ %J& %K) &%KC, 1J&#K+K#?@K5349@KK$1'D?K &*+K %+)*+ %#0@K $)0&K -#&'$%+K .*K #*&K )*,K 0K /')** %K + K 0+&*&# K *44JK ')&+ %K %K % K '#%+*K C ,)K 5K %K  ,)K 5D?K )%*% K % & " $%& '#%+*@K &.-)@K * &.K K *# %J#+ #K C# %&DK ' %&+0'K )*$# %K + K % K $,+%+?K *K /'+@K + K 0+&*&# K *44JK ')&+ %K .*K ,%#K+&K)*,K+ K# %&K' %&+0'K&K+ K% K$,+%+KC ,)K5D?KK+ )&)K &%#,K+ +K$)0&K-#&'$%+K0&%K+ K )+K*+K)(, )K+ K')*%K&K

- 26 -  &&%& &

+44K + - +0K %K + K 0+&*&#K C*' +K + K / *+%K &K +.&K J**& +K K %10$*K %K ) &'* *@K 6K %K 7D@K . )*K ' &+&*0%+ + K *# %K -#&'$%+K )(, )K + K + - +0K &K +44K %K + K '#*+ K C#+ &, K K *&%K '#*+  #K%10$K. + K+ K*$K+ - +0@K5@K *K&,%K %K+ *K'#%+DKC#K4D?KK K

(,),1 "1   1  1   11 1 ''111 1 1! 1 1  1# 1 1 0 1 K

K %,$)K &K ) &'* *K %*K %& %K *&')%& K  &*0%+ + K %10$*K -K %K * &.%K +&K ')&,K +)%*) '+*K &K  )%+K #%+ *K %& %K *&&)$*K . + K &)K . + &,+K J+)$ %#K +)%* +K ''+ *K &)K '#*+ *K %K $ +& &%) K C#K 4D?K &K +)$ %K . + )K K * $ #)K #+)%+ -K +)%*) '+ &%K % + + &%K $ % *$K #*&K &,)*K&)K@K)' K$'#  + &%K&K K8FK%*KC8FJDK/') $%+*K.)K ')&)$K &%K  K /+)+K )&$K  )%+K + **,*K +&K ****K + K #%+ K &K & +)%*) '+*K & & C ,)K 7D?K  K ')&+&&#K ,*K )-)*K ') $)*K &'+ $ 1K &)K 8FJ KC ,)K7K%K#K4DK+&K$'# 0K%J*'  KK')&,+*K. #K),# %K &,+K+ K'&**  # +0K&K%&$ K K&%+$ %+ &%KCK + &*D?K')+ &%K&KJ $'#  K')&,+*K0K#K#+)&' &)* *K* &.K+ K')*%K&K *K&K )%+K * 1*KC ,)K7D@K*,*+ %K+ +K+ KK%K#"*KK*+) +#0K %K+)%*) '+ &%K *+)+K * +?K &.-)@K $'#  K )$%+*K &,#K K )&,'K %K +.&K $!&)K #***AK G#&%HKC ?K3?8K"K&)K#&%)DK%KG* &)+HKC ?K3?7K"K&)K* &)+)D?K K8FJK')&,+*K $'#  K)&$K* # (,*K.)K#&%K%K*(,%?K%#0* *K&K %*)+*K)-#K+ +K

##K+ KG#&%HK')&,+*K %#,K+ KC4DK&&%K%K %K%&K+ K,##J#%+ K

+44K ')&+ %?K  #K $&*+K G* &)+HK ')&,+*K &%+ %K + K C4DK &&%K . + K &)K

. + &,+KK.K%,#&+ *K,'*+)$KC,'K+&K58D@K*&$K#"KC4DK %K*&K+ 0K%K

&%#0K')&,K+ K0+&*&# K*44K')&+ %K0K,* %K+ KC5DK&&%KC ,)K7K%K  ,)K 4D?K  K * $ #)K '++)%K &K G#&%HK %K G* &)+HK +)%*) '+*K ++K %K *# %*@K)&*++K#-*@K%K#&.)*K0K8FJK/') $%+*KC ,)K7DK*,*+*K + +K&+ K+0'*K&K+)%*) '+*K)K# "#0K')&,K %K##K+ **,*?K&K-) 0K. + )K+ K

)#+ -K,%%K&K+)%*) '+*K + )K#" %K&)K%&+K+ KC4DK&&%K.*K %K * $ #)K %K  )%+K + **,*@K 8FJK ')&,+*K )&$K *# %*K .)K #&%K %K &$')K. + K+ &*K)&$K* # (,*K0K *+ &%K. + K  ?K*K* &.%K %K ,)K7@KK

  K +)+K * +K &-)#'*K + K C4DK &&%K %K + )&)K +K %K K ,*K +&K )' #0K %+ 0K#&%*K#" %K+ *K*(,%?K %K&+ K*# %*K%K* # (,*@K&,+K43=K&K+ K #&%*K&,#K%&+KK#-K0K  @K&% )$ %K+ +K+)%*) '+*K/#,* -#0K%& %K *44K)K#&.K,%%+K,+K %K++#K+K* $ #)K#-#*K %K )%+K+ **,*?K

- 27 -  &&%& &

K A   K     K

K  



  K       K

 

(&!+ * +%!% "  '

- 

                           

&)#*#&%("$*#,"*&  &!&% B      



 



!1 *,1   1 1   1  1   1 1 1  1,1./1K%K$&#K * &. %K+ K'&* + &%K&K')*,$K+)%*#+ &%K*+)+K&&%*KC4DK%KC5DKC %K&#D?K K & K * +K %K + K C4DK ) &%K *K ,%)# %?K ,$)*K % +K + K '&* + &%K )#+ -K +&K + K  )*+K %,#&+ K &K + K C4DK&&%?K K'&* + &%K&K') $)*K+44JJ4K%K5K,*K&)K8FJK /') $%+*K *K #*&K * &.%?K $'#  K 8FJK ')&,+*K CDK .)K #&%K %K *(,%K +&K +)$ %K + K '&* + &%K &K +)%*) '+ &%K % + + &%K * +*?K  K )' K )')*%+*K + K ')%+K &K +)%*) '+*K&,%K+&K*+)+K+K+ K % +K'&* + &%K %K* # (,*K*K&%K+ K%#0* *K&K478K#&%*K C',)'#K &#,$%*D?K  K '&* + &%K &K C4DK%KC5DK &&%*K %K J K %*)+ &%K * +*K &K + K % +K###*K *K#*&K* &.%?K./1)&*K#K#+)&' &)* *K&K8FJK')&,+*K *&#+K)&$K *# %*KCD@K)&*++K#-*KC D@K$+,)K* # (,*KC D@K0&,%K* # (,*KCD@K%K#&.)*KCD?K

- 28 -  &&%& &

(,*,1  ''1  " %1  1   1 1 !1  1  1   1 1 ! 1$  1  1!11%1" ,1K

K %/+K  $K +&K +)$ %K + K %+,)K &K + K *&')%& *K ) -K )&$K K ')&,K0K'#*+  #K%K0+&*&# K&)$*K&K+44?K)- &,*K)*,#+*K. + K+ K%"K ###K * &.K + +K + K '#K ' %&+0'K &K + K $,+%+K C ,)K 8DK .*K ,K +&K K )*K/')** &%K&K+ KK%@K.  K,*KK),K,$,#+ &%K&K+ K $!&)K )&,'*K &K J) -K *&')%& *K ')&,K )&$K K %K + K '#*+ @K ##K )&+%& *@K  #&)&' 0##*@K +&&' )&#*@K ' 0##&(, %&%*@K %K '#*+&(, %&%K C, 1J &#K +K #?@K 5349@K K $K 'D?K +K .*K #*&K &,%K + +K )&+%& K #-#*K %K % K *# %*K .)K * $ #)K +&K + &*K %K + K %K $,+%+*K C. + K K &$'#+K #&"K &K + K K'+ .0BK ## '*K+K#?@K533;DK,+K$, K  )K+ %K+ K$&,%+*K++K %K %K*# %*KC.  K* &.KK* $ #)K# %&K' %&+0'K,K+&KK*'  K#&"K %K + K)&+%& K'+ .0BK&" #"&K+K#?@K5348DKC, 1J&#K+K#?@K5349@KK$K5D?K K + )&)K &%#,K + +K + K # %&K ' %&+0'K &K % K *# %*K *K ,K +&K K + -K')&,+ &%K&K J) -KK+&KK&.%*+)$K *&')%& *K %K+ K '#*+ ?K

&K %+ 0K + K *&')%& K $+&# +K )(, )K &)K $)0&K -#&'$%+K + +K *K ')&,K)&$K*44J) -K@K +K.&,#KK%**)0K+&K&$')K+ K$+&# +K ')& #K &K % K %K % K $)0&*K %K + K +)%* + &%K )&$K #&,#)K +&K )+K *+K C ,)K 5K %K  ,)K 8D?K ,*K + *K *K /+)$#0K  ##% %@K .K &##&.K %K #+)%+ -K'')& K%K-#,+K. + )K+ K#-#*K&K/+)'#*+  #K *&')%& *K .)K#+)K %K+ K%"K$,+%+@K.  K *K/'+K+&K')&,K#&.)K$&,%+*K%&+K &%#0K &K '#*+ J#&# 1K +44K ,+K #*&K &K 0+&*&# K *44K %10$*?K  #K J ) -K'),)*&)*K)K,*K+&K')&,KK. K-) +0K&K *&')%& *KC ,)K4D@K&%#0K *+)&#*K %K , (, %&%K '')K +&K K )(, )K &)K ')&')K $)0&K -#&'$%+K C ) "K+K#?@K5333BK"K+K#?@K5337D?K+)&#*K)K%&+K*0%+ * 1K)&$KK,+K )&$KKC ,)K4D?KK+ )&)K/'+K+ +K), %K*44K+ - +0KC##K0+&*&# K K ')&,+ &%DK %K %"K *# %*K .&,#K %&+K ,*K K )*K *+)&#K ,$,#+ &%?K &%* *+%+#0@K + K #-#*K &K *+)&#*K C$'*+)&#@K *+ $*+)&#K %K * +&*+)&#DK.)K&,%K+&KK* $ #)K %K. #J+0'K%K%"K*# %*KC ,)K8DK

%K + K *K &K , (, %&%@K + K ')&$ %%+K &)$K %K ) &'* *K CJ

- 29 -  &&%& &

$ +& &%) K C %K ) &'* *@K 4 K %K 4BK #K 4DK )K ')*,$K +&K ')&,K K %K K &)K , (, %&%K *0%+ * *?K 4 J+ -K K $,+%+*K &%#0K* &.KK# $ +K)*K %KJ3?384D?K  *K )*,#+*K +&+ ) *,*+K + +K *44K $  +K K *&$ &.K %-&#-K %K + K ')&,+ &%K &K K &)K , (, %&%K*0%+ * *?K

A WT g11-5

!1 +,1 " 1 1 0"1  1 ! 1 1  1 # 1 !1  1  " %,1 ./K # %*K &K + K %"K $,+%+K %K + K ')%+#K

B C Sterols 8 UB-9 &#,$ K. #J+0'KCDK)&.%K&)K4K."K 1.5  7  1.5 g11-5 WT ,%)K * &)+J0K &% + &%*?K  *K 0.278

*# %*K .)K ,*K &)K + K $+&# +K

1.2   1.2

%#0**K * &.%K %K + K &))*'&% %K  

0.855 )' *?K ./K -#*K&K$!&)K*+)&#*K %KK   0.364 %K %+ -K %"K *# %*?K ./K 0.9 0.9  -#*K&K+ K, (, %&%KJ6D?K 0.3  0.3 +# K %,$)*K &-K + K )*K % +K K -#,*K C+,%+F*K +K +*+DK )#+ -K +&K K 0.0 0.0 *$'#*?

- 30 -     

 C

*'C'(*!)(C(*%%$')C)C$#!*( $#C))C)C' $%( (CC#C#C%'$*C),$C

#/."C ($$'"(1?C $$#C #C ''. #C C %!() B )') #C %%) C >)11?;C #C C ($')'C +'( $#C )'#(!)C '$"C )C $,#()'"C

>2?C $$#C #C ! #C )C %!() B)') #C %%) C >(11?:C # () !!.;C )C %'$*) $#C$C)(C),$C '#) !!.C)')C ($$'"(C" )C'!.C$#C$)C)C*(C$C !)'#) +C )'#(' %) $#C ()')C ( )(C >'(*!) #C #C )C (.#)( (C $C " (C , )C $'C , )$*)C C 5@B' $#C #$ #C )C %!() C )'#( )C %%) ?C $'C )C *(C $C !)'#) +C

)'#(!) $#C()')C( )(C>>1?C$'C>2??C #C)C!$#C)'#(' %):CC C!$' )"C $'C )C %' ) $#C $C )'#(!) $#C ()')C $$#(C #C ' $%( (C

>))%1?C

>0:627?C#C>2?C$$#(C>0:651?;C(*() #C))C$)C$*!CC*#) $#!C :C )C (C'"' !C))CC( " !'C( )*) $#C(C#C'%$')C)$C$*'C #C$)'C' $%( (C #(C #$ #C .C ($%'#$ C  $(.#)) C #/."(;C #!* #C  ;C  ;C #C :C#! C)(C$)'C#/."(;C$,+';C#$C'*##.C%%'(C)$C$*'C #C)C (C $C ' $%( (C C #/."(;C (C )C !$((C $C )11C ##$)C C '(*C .C %!()  !C 2;C B!$! /C 3C #C 4;C $'C " )$$#' !C 1:C

*')'"$';C)C") $# #C'( *C#$C.C)C>2?C$$#C #C)11C$(C#$)C %%'C)$CC$#('+C #C)C'()C$C ($$'"(C$# '"C)$C(.#)( /CC> *'C 2?;C (*() #C ))C C " )C C )C $#!.C ' $%( (C B#$ #C #C %'$* #C"$'C)#C$#C ($$'":C

*'C#!.( (C#C)$(C%'+ $*(!.C'%$')C>* /B$!C)C!:C2016;C C C =C* /B $!C )C !:C 2016;C  C   ?;C !'!.C ($,C ))C )11C ) + ).C #C )C %!() C (C # (%#(!C $'C )C %'$*) $#C $C %!()  !C ($%'#$ (C (*%%$') #C !$'$%!()C +!$%"#)C #C %$)$(.#)( (:C C !$,C !+!(C $C '$)#$ (C ))C #C  C ! #$C (! #(C >* /B$!C )C !:C 2016;C  C   ?C " )C ' +C '$"C ("!!C "$*#)(C$CC(.#)( /C'$"C B' +C%'*'($'(C.C2C>)C$)'C %!()  !C C #/."C $*#C #C ' $%( (?:C #C )C (C $C )C  C "*)#);C $,+';C )C C %),.C (C $"%!)!.C !$ C #C #C )C (C "$()C ! !.C ))C B' +C C$'C C%'*'($'(C'C)'#(%$')C)$C)C%!() C#C*(C)$C %'$*C C #C $,#()'"C %'$*)(:C !)'#) +!.;C #C ##C "%$')C $C .)$($! CC.C#$#B '#) )C%!() (C! C)$(C$*#C #C)C! #$C"*)#)(C ,$*!C" CC#C)11C>*)C#$)C?C (%#(!C)$C%'$*C'$)#$ (:C $C !'B*)C + #C (C .)C + !!;C $,+';C $C #C -#C $C !$#C %'#.!C  %$(%)(C(*C(CC),#C!!C$"%')"#)(C>  C#C #;C2003?:C #C )C $)'C #;C (11C ) + ).C #C )C .)$($!C (*%%! (C )C %'*'($'(C $'C #C

- 31 -     

*# #)  C ($%'#$ C ")$! )C ))C (C ((#) !C $'C "'.$C +!$%"#):C  #C " )$$#' !C C #C C 'C #$)C )C " #C %'*'($'(C $'C * &* #$#C  $(.#)( (;C.)$($! CC" )CC)'#(%$')C)$C" )$$#' C#C*(C$'C)C %'$*) $#C $C ) (C '(% ')$'.C ")$! ):C !$ C $C ) (C .)$($! C ($*'C ,#C (11C) + ).C (C!$()C$*!C)*!!.C-%! #C,.C"'.$C+!$%"#)C (C''()C)C )C("C')C()C #C"*)#)(C) +C #C* &* #$#C(.#)( (C> C)C!:;C2004?C #C(11C) + ).;C C  C> *'C5?C#C  C>* /B$!C)C!:;C2016;C C  ?:CC(C$"%!)C!$((C$CC) + ).C #C' $%( (C  C$*!C"*)#)(C!$ (C "'.$#( (C)C)C'! 'C!$*!'C()C>!$(C)C!:;C2010?;C )C#CC$#!*C ))C, !CB' +C ($%'#$ (C'C#C$'C)C)'#( ) $#C$C)C"'.$C'$"C !$*!'C )$C ')C ()(;C %'$'(( $#C .$#C )C ')C ()C '&* '(C * &* #$#C $'A#C C  '#)C ")$! )C %'$*C '$"C (11B(*%%! C %'*'($'(:C *(;C !!C )(C $('+) $#(C (*()C ),$C %$((  ! ) (:C  '();C (11B' +C C " )C C ' ) !C$'C)C $(.#)( (C$C* &* #$#C*' #C"'.$#( (:C$#( ' #C))CC C509C'*) $#C$CC)'#(' %)C!+!(C #C  C(! #(C$#!.C*((CC20B309C '(C #C %!()  !C ($%'#$ C $#)#)C >* /B$!C )C !:;C 2016;C  C   ?;C )C $('+C209C'*) $#C$CB8C!+!(C #C.$*#C( ! &*(C$C)C  C"*)#)C" )C #C '(*!)C '$"C %')!.C '*C (11C ) + ).C >#C #C C (*%%!.?C #C +!$% #C"'.$(C$'C((:C*(C$)'CC ($$'"(C'C!($C-%'((C #C )(C ) ((*(C )C  '#)C ()(C > C )C !:;C 2013?;C )C '" #(C *#!'C ,.C #$#C $C )"C (C !C )$C $"%!"#)C )C !$((C $C (11C ) + ).C #C #C '(*C "'.$C +!$%"#)C #C  C#C  C"*)#)(:C!)'#) +!.;C(11C" )C%'$*CC $'C#$)'C(%  C!((C$C*# #)  C")$! )(C'&* 'C$'C"'.$#( (C#;C %'%(;C, )C'$!(C #C$)'C!!(C#C) ((*(C*' #C)C%!#)C! C.!;C(C*C '$"C)C, C ()' *) $#C$C(11B#$ #C)'#(' %)(C> *'C4?:CC

( (C(.#)( / #CC(CC$"$ "';C)C%!()  !C)11C ($$'"C(C#C $*#C)$C%'$*CC*%$#C)'$ "' /) $#C, )C#$)'C%!()  !CB! C %'$) #;C ) C >#C #C  -$#;C 2008=C #C )C !:;C 2015?:C )'C )C .)$($! C (11C %'$) #C *#+ !C 'C !($C (C !)'#) +C #/."C ) + ) (C *%$#C (($ ) $#C , )C $)'C %'$) #(C '" #(C *# #$,#:C #C #.C (;C $*'C '(*!)(C (*%%$')C )C $#!*( $#C))C)C%'$*) $#C$CC'&* 'C$'C((#) !C*#) $#(C #C '#)C !!C $"%')"#)(C '! (C $#C )C ) + ).C $C )11C ($$'"(:C )'C C %'!$(C " )C C " #) #C #C )C ' $%( (C #$"C $'C +!$%"#)!C #A$'C $# ) $#B(%  C (**#) $#! /) $#:C *)*'C -%' "#)(;C #!* #C )C  B '($!*) $#C #!.( (C $C ($%'#$ C %'$ !(C #C (% ! /C ) ((*(C #C $'#(C >  C "'.$(?C'$"C, !B).%C#CB) +C"*)#)(;C($*!CC%'$+ CCC ) $#!CC

- 32 -  ""!"  " ""

$) *)J %$J *J  %"% "J (%"J %J )&  J )%%(#)J $J * (J %(()&%$ $J %-$)*(#JH( ,J&(%+*)@J+(*(J""%- $J*%J+$()*$J*J)*%+$ $J %#&". */J%J*J#$ )#)J+)J/J&"$*)J*%J&(%+J )%&($% )?J

J

"&  &  & &

""& &  &  &  "&

""J*J "   J" $)J+)J $J* )J-%(!J(J $J*J%"+# J!(%+$?J JH J $)(* %$J""")J!@J!J$J!J-(J"(/J, ""J $J*J"J C%! "!%J*J"?@J4237BJ+ 0H%"J*J"?@J4238@JJ&#& &D?J%#%0/%+)J !J#+*$*)J-(J )%"*J(%#JJ)(* $J&%&+"* %$J%J*J F77;F23J " $J )+&&" J /J *J +(%&$J ( %&) )J *%!J $*(J C**&AGG( %&) )? $%GD?J ( #()J %(J H)J $%*/& $J %J *J #+*$*)J $J )'+$ $J %J H J $)(* %$J) *)J(J $ *J $J"J3?J%$)*(+*)J$J"%$ $J* ")J(J)( J $J "J 5?J J  !J *($)$ J " $)J -(J $(*J )J )( J C+ 0H %"J*J"?@J4238@JJ&D?J)J-(J)+(H)*( " 0J$J(# $*J $J*( J  ))J- *J)%" J +() J$J!%%JC DJ# +#J- *%+*J, *# $)J%(J)+(%)?J *(J)*(*  * %$J%(J5J/)J*J6J>@J&"*)J-(J $+*J $JJ(%-*J#(J*J 44J >J $J ""+# $*J %(J 38J C"%$H/DJ %(J :J C)%(*H/DJ J /J - *J "+%()$*J - *J" *J*JJ&%*%)/$** J&%*%$J"+.J$) */J%J82JK#%"J#H4)H3?J& &

""&& &  &&

%$)*(+*)J *%J .&())J  ($*J *(+$*J *33J ,() %$)J -(J $(*J )J )( J $J"J5?J%# $$*J&(%* $)J-(J&(%+J $J " J 43J& J "")J+) $J*J ,($ *J.&())J+*% $+* %$J/)*#J3JC (!J "" &%(D?J*(J (%-*J%(J94JJ*J3:J>@J*( "J"")J-(J(%,(J/J$*( +* %$J$J&""*)J

-(J()+)&$J $J(* %$J+(JC47J# JJ&J9?4@J32J# J "4@J32J%(J32J# $J$J*(JJ( J)%$ * %$JC7J&+"))J%J42J)J*J52JDJ*J ""J"/)*J-)J$*( +J*J3;?222=J*J6J>J%(J7J# $?JJ)+&($*$*J-)J+)J %(JH@J&(%* $J'+$*  * %$@J$JJ* , */J))/)J)J)( JC "J *J"?@J4237D?JJ(* %$J# .J%$* $J32JKJ%J*%*"J&(%* $J(%#J.*(*)J)%- $J ) # "(J",")J%J(%# $$*J&(%* $J $J422JK"J%J(* %$J+(@J72JK J J$J72J K J ?J*(J $+* %$J%(J3JJ*J52J>@J*J(* %$J-)J)*%&&J/J $J

- 33 -  ""!"  " ""

:22JK"J%J#*$%"?JJ&(, %+)"/J)( J H J)/)*#JC$$#$J*J"?@J422:DJ -)J&*J*%J**J&($/"J &%)&*J&(%+*)?JJ +$J3:C4DJ&(H%"+#$JC4?2J=J 6J ##DJ $J $J $"/* "J %"+#$J C4?2J =J 372J ##@J 322J $#@J &(* "J ) 0J 5J K#DJ (%#J $%#$.J-(J+)J%(J(%#*%(& J)&(* %$J*J62J>@J+) $J$J'+ */J  J CH"))D@J %$$*J *%J $J H ( *(&J  J /( J J )/)*#J C*()DJ %&(* $J $J $* ,J "*(%)&(/J %$ 0* %$J #%J *J *J 522J >J - *J J )%+(J ,%"*J %J 6?7J !J %(J +""H)$J I J $J *J #G0J ($J 322J *%J 3522?J J $ * %$J ,%"+#J -)J 32J K ?J %#&%+$)J -(J )&(*J /J J " $(J ( $*J *-$J

)%"+* %$J J C42J # J 6 5J - *J 2?3

C*%$ *( "G4 @J 6A3J - *J 2?3

" "&  &

+""+"(J "%" 0* %$J %J *J J +) %$J &(%* $)J -)J $"/0J /J  (*J .# $* %$J %J &"$*J * ))+J )#&")J - *J $J "/#&+)J J 3222J %$%"J )(J $$ $J (%)%&?J($J"+%()$J%(()&%$ $J*%J*J+) %$J&(%* $)J-)J **J+) $J$J(%$J")(J%(J. ** %$J- *J"+J" *J*J6::J$#J$JJ722H732J $#J  "*(@J -()J J 832H922J $#J  "*(J -)J +)J %(J ** %$J %J "%(%&/""J +*%"+%()$?J "( $J %J ( %&) )J ))J $J .# $* %$J %J #(/%J ,"%&#$*"J)*)J-)J&(%(#J)J)( JC+ 0H%"J*J"?@J4238@JJ& D?& &

" "&!$%&

%(J & J #&"  * %$J %J  J 7EJ $)J C7EHDJ $"/) )@J *%*"J  J (%#J  ($*J %($)J %J - "H*/&J &"$*)J -)J )%"*J +) $J J  J &+(  * %$J ! *J C #H"( DJ$J+)J%(J ()*H)*($J J)/$*) )J- *J*J (JJ  J#&"  * %$J! *JC"%$*D?J J " */J+( #J'J J%"/#()J C $, *(%$DJ -)J +)J - *J &( #()J &(%, J $J *J ! *J $J *J *33HH3J &( #(JC"J3DJ%(J7EHJ(* %$)@J $J$J $ * "J$*+(* %$J)*&J%J4J# $J *J;61J*%J*J(%##$JJ&(%(#J*%J* ,*J*J&%"/#()@J$J$ $J *JJ"%$* %$JJ*#&(*+(JJ(%#JJ94J>J*%J8:J>?JJ&(%+*)J-(J"%$J $*%J*JJ

- 34 -  " ' '&' !'

#&%!% J -+&)J ' HJ D %-!+)& %EJ &)J ,)+ )J )*+)!+!&%J %10$J %J *(,%!% J%#0*!*J,*!% J+ J+88HH9J')!$)JD#J8EAJJ

J

?E@EJ(&3-#-J) J' .)&#. J& 0 &-EJ

,#!* J $+ &*J .)J ,*J &)J + J /+)+!&%BJ *')+!&%BJ %J (,%+!!+!&%J &J ' &+&*0%+ +!J '! $%+*J D #&)&' 0##*J %J )&+%&!*EJ D&)4 ,1H&%'!6%J +J #ABJ 977;EBJ *+)&#*J D#&*J +J #ABJ 9787EBJ %J ')%0#(,!%&%*BJ !%#,!% J ,!(,!%&%J D )+!%!*J+J#ABJ9788EAJ

J @EJ%()1& ! ' (.-J

J )J -)0J )+,#J +&J 3+%J #,*)J D%!-)*!+0J &J , 2+#BJ .!+1)#%EJ &)J + J%#0*!*J&J')%0#(,!%&%*AJ %!#J*,''&)+J)&$J AJ&*J&)4 ,1H&)%J %J$$)*J&J+ JJ)-!*J!*J )+#0J'')!+AJ !*J.&)"J.*J,%J0J )%+*J )&$J + J !%!*+)!&J J &%&$4J 0J &$'+!+!-!J DH977@H79<:<@BJ  9788H9:=?7BJ  978;H<@7@9HBJ  H9788>7:HJ %J  H 978:H78???9EBJ !%!*+)!&JJ,!6%BJ,#+,)J0J'&)+JD8;G7<8;9EBJ,)&'%J &$$!**!&%J 9797J H H9J ')& )$J D!&)& &EBJ %J %)#!++J J +#,%0J D978;H8;:;J%J978< FJ7777>EAJJ

J AEJ , ( -J

,%#JFJ /-/'#J FJ -').)J FJ#1JJ(J J JD9777EAJ$')+,)JH*%*!+!-J  !!' $,+%+J +!-J !%J 8H&/0HH/0#,#&*J H;9@AJ  && -J FJ  ,, ,J FJ & &&-J FJ  !,.J J (J ),)(.J J D8@?@EAJ *&#+!&%J %J *+),+,)#J  )+)!1+!&%J &J J J %&!% J   !!' "J :H 0)&/0H:H$+ 0# #,+)0#J &%10$JJ),+*AJ#%+J &#J!&#J<>GJ=9>H=:?AJ " (J FJ (J J (J (!J J D978AJ

- 35 -  " ' '&' !'

&)-J FJ ,()0J FJ ),.)&)..#J FJ #!& ,J FJ ,,)J FJ  ,, ,J J (J ,/#-- 'J J D9787EAJ  J   !!' "J J *0%+ *J !*&10$*J -J &-)#''!% J %J *'!!J ,%+!&%*J !%J !*&')%&!J !&*0%+ *!*BJ %J &$'#+J #&**J &J J *0%+ *J +!-!+0J ,**J )#0J -#&'$%+#J))*+AJ#%+J JA>GJ<89H<9EAJ J  !!'"'8J %J %)+*JJ%&-#J $J+ +J%&*JJ$!+& &%)!#J)%*0#H!' &*' +J*0%+ *J!*&&)$AJ J!&#J $J=B=GJ 8<:?8H8<:??AJ #-"JFJ '' ,&#(JFJ"J J(J)"' ,J J D8@@?EAJ -#&%+H)!-J !*&'%+%0#J !' &*' +J !*J + J !&*0%+ +!J '),)*&)J &J ,!(,!%&%J ')%0#J *!J !%J!%J+&&JH9J ##*AJ!& $J J>>H@:8AJ  (( '(J FJ0(J,/". (JFJ (#-JFJ')&#(-J FJ&4 %JFJ#-JFJ /&#%JJ (J. ,"'JJD977?EAJ++!&%J&J%&%*+)&#J!*&')%&!*J0J H G AJ%#J!& $J >C>GJ8?H9;AJ -# "J FJ"(!JFJ )JJ(J(!JJD9788EAJ+),+,)J%J$ %!*$J&J%J)!&'*!*J $!,$G#&% H !%H#% + J')%0#J'0)&' &*' +J*0%+ *AJ#%+J 0*!&#J<@@GJ87>@H87@7AJ #'JFJ (4()JFJ ,(( 4J FJ&)-J FJ(, JFJ/ *)(JFJ),.)&)..#JFJ !J FJ ,,)J J (J  ,, ,J J D9789EAJ  )+)!1+!&%J &J )!&'*!*J J !*&10$*J %J J %J /')**!&%J %#0*!*J ')&-!J !%*! +J !%+&J + J !&*0%+ *!*J &J !*&')%&!J '),)*&)*J !%J **AJ  &J%JBGJ;@87@AJ (! J J(J"-- '#(J JD977:EAJ%&$J&) %!1+!&%J!%J  !!'"CJJ*,)-0J&)J %*J!%-&#-J!%J!*&')%&!J%J #&)&' 0##J$+&#!*$AJ#%+J &#J!&#J@H<;8AJ (4()JFJ/-+/ .-JFJ&)-J FJ)3 ,)0J FJ"&& ,JFJ '#( %J FJ,,)J J(J ,, ,JJ D977=EAJ-)/')**!&%J&J)%*0#J!' &*' +J*0%+ *J!%J)!&'*!*J$!+& &%)!J+)! )*J #! +H'%%+J#*!&%J&)$+!&%J%J#+)*J0+&"!%!%J &$&*+*!*AJ#%+J &#J!&#JA

- 36 -  " ' '&' !'

! &JFJ ,(")&4JFJ,()0JFJ )-/."J FJ ,!/JFJ /1#!JFJ --$)"((J FJ ,-" (4)(J FJ #--# ,JJ(J"'#.JJD978H?<@AJ %J FJ -",JFJ'!/"#JFJ 1# JFJ '#3JFJ)$#,#JJ(J'( JJD977?EAJ %+!J-!%J&)J+ J)&#J&J!*&'%+%0#J!' &*' +J!*&$)**J !%J + J $-#&%+J '+ .0J%J'#%+J-#&'$%+J!%J)!&'*!*AJ#%+J##J 0*!&#J?DGJ=7;H=8=AJ %J FJ",J FJ4%#J FJ)4%#J FJ"#JFJ 1'/%#J FJ)$#,#JJ(J'( JJ D977;EAJ J"$J %J%&!% J;H 0)&/0%1&+J'�')%0#J!' &*' +J+)%*)*J!%J ,!(,!%&%J!&*0%+ *!*J!*J)(,!)J&)J$)0&J-#&'$%+J!%J  !!'"AJ#%+J &#J !&#J@@GJ<=>H<>>AJ %J FJ #.)J FJ %!1J FJ 1'/%#J J (J '#3J J D9777EAJ !-J )%0# )%0#J !' &*' +J *0%+ **J /')**J !%J !)%+J &) %*J )J #&#!1J !%+&J + )J *,##,#)J &$')+$%+*J!%J)!&'*!*AJ#%+J 0*!&#J<==GJ87;GJ9>:H9?:AJ "#&&#*-J FJ H/,#J FJ  ,-" (4)(J FJ #" ,-%3J J D977?EAJ  J   !!' "J+0'J J *&'%+%0#J!' &*' +J *&$)**J)J+) +J+&J$,#+!'#J*,##,#)J&$')+$%+*J%J -J&-)#''!% J,%+!&%*J!%J!*&')%&!J!&*0%+ *!*AJ#%+J##J=;GJ=>>H=@=AJ "#&&#*-J FJ )(J FJ ),)(.J J (J ),#!/ 4I)( *#)(J J D977?EAJ  J '#*+!!#J J '+ .0CJ,%!!J%&$%#+,)J%J)*&,)*AJ)%*J#%+J!J<>GJ=8@H=9:AJ )%"#&%)J FJ )/I),, (.J FJ /&#)J FJ ),#!/ 4I)( *#)(J J (J  (")"J J D978AJ /&#)J FJ )& )I,.#4J FJ "#&&#*-J FJ ,#!".J J (J ),#!/ 4I)( *#)(J J D978:EAJ )!&'*!*J H')&+!%J 97J#!-)*J+ J!)*+J%10$J&J+ J'#*+!!#J !*&')%&!J '+ .0J +&J ')&+!%J(,#!+0J&%+)&#AJ#%+J##J=@GJ;8?:H;8@;AJ ),#!/ 4I)( *#)(J J(J),)(.JJD978H99AJ ),7!/ 4I)( *#9(J FJ),6-JFJ ,.7( 4I,7J FJ)(45& 4JFJ"#&&#*-J FJ ,, ,JJ(J ),)(.JJD977;EAJ!*+!%+J#! +H$!+J'+ .0*J) ,#+J+ J!&*0%+ *!*J%J/ % J&J !*&')%&!J'),)*&)*J,)!% J)!&'*!*J*#!% J-#&'$%+AJ#%+J##J

- 37 -  " ' '&' !'

/** &J FJ ,)**J FJ0#-JFJ ,.#(JFJ / -- JJ(J(!,. ,JJD978:EAJ ,++!&%*J!%J     '   '  ' $J +J  #&)&'#*+J -#&'$%+J !%J   !!'"JD !!EAJ$J J&+J<;;GJ97>;H97?;AJ *#,I #,J FJ ..JFJ &/-)0JFJ&I -"/&'JFJ,3'(JFJ#)(#JJ(J3&JJD977?EAJ )&/!*&$#J #&#!1+!&%J &J )!&'*!*J !*&'%+%0#J !' &*' +J !*&$)**J *, *+*J + +J ')+J &J + J '#%+J !*&')%&!J $-#&%!J !J '+ .0J !*J &$')+$%+#!1J +&J ')&/!*&$*AJ #%+J 0*!&#J8H8;?;AJ ,()0JFJ)'(JJ(J,/#-- 'JJD978:EAJ+.&)"J%#0*!*J&J+ J J%J J'+ .0*J &)J!*&')%&!J*0%+ *!*AJ%%,J-J#%+J!&#JA?GJ==77AJ ,()0J FJ #,-"I) '((J J (J ,/#-- 'J J D9788EAJ + CJ J ,)+J +*J &J )!&'*!*J !*&')%&!J '+ .0J $&#*J %J %*J &)J !*&')%&!J %+.&)"J %#0*!*AJ #%+J  0*!&#J<@AGJ8=<EAJ #&%!% J %J ,%+!&%#J /')**!&%J &J J %&-#J )%0# )%0#J '0)&' &*' +J *0%+ *J %J )&$J  !!'"J!%J! 'AJ#%+J##J 0*!&#J>CGJ:<>H:=8AJ "/JFJ/4/%#J FJ#.)JFJ%J FJ(%J FJ%!1JFJ .-/JJ(J 1'/%#J J D8@@>EAJ)%0# )%0#J'0)&' &*' +J*0%+ *J%&J0J+ J%.#0J!*&#+J %J%J )&$J  !!'"J!*J#&#!1J!%J$!+& &%)!AJ#%+J &#J!&#J>@GJ::8H:;8AJ J J J J J

- 38 -      

,-1 ! 1 

A  1 taaaagtgaa gatcgtcatc tccaccacta acaaggccca ttccgtaaca caaccctatc

1 tgttacttcc tagcttctca ctaatggcca atccaattct ccattcataa ttttgactcc

1 actttccaaa aaaaacaaaa aaaaataaat actaatataa aaaattctca aatctaaaat

1 ttcagatttc agaaatcgcc ATGGCTTCAG TGACTCTAGG TTCATGGATT GTTGTTCACC

1 ACCACAATCA TCATCATCCA TCTTCAATCC TTACCAAATC CAGATCCAGA TCTTGTCCTA  1 TAACTCTTAC TAAACCCATC TCCTTTCGAT CAAAACGCAC CGTTTCATCA TCTTCTTCAA

1 TCGTTTCTTC TTCCGTTGTT ACAAAAGAAG ACAATCTACG CCAATCTGAA CCATCCTCTT

1 TCGATTTCAT GTCGTACATC ATCACCAAAG CCGAATTAGT CAACAAAGCT TTAGATTCAG

1 CTGTTCCTCT CCGTGAGCCA CTCAAGATCC ACGAAGCGAT GCGTTACTCT CTTCTCGCCG

1 GTGGCAAAAG AGTTAGACCA GTTCTCTGCA TCGCTGCTTG TGAACTCGTC GGAGGTGAAG

1 AATCAACCGC TATGCCAGCA GCTTGCGCCG TCGAGATGAT TCACACCATG TCGTTGATCC  1 ACGACGATCT CCCTTGTATG GATAACGACG ATCTCCGCCG TGGAAAACCG ACCAACCACA A 1 AAGTGTTTGG TGAAGACGTC GCTGTTTTAG CCGGAGACGC GCTTCTCTCT TTCGCTTTCG

1 AGCATTTAGC TTCGGCGACG AGTTCTGATG TTGTTTCTCC GGTGAGAGTG GTTCGAGCCG

1 TTGGAGAATT GGCTAAAGCG ATAGGAACAG AAGGGTTAGT GGCGGGTCAA GTCGTGGATA

1 TTAGTAGTGA AGGGTTAGAT TTAAACGACG TCGGTTTAGA GCATTTGGAG TTTATCCATT TGCATAAAAC GGCGGCGTTG CTTGAAGCTT CTGCTGTTTT GGGAGCTATT GTTGGTGGAG 1  GAAGTGATGA TGAGATTGAG AGGTTAAGAA AGTTTGCGAG ATGTATTGGT TTGTTGTTTC 1 AGGTGGTTGA TGATATCTTG GATGTGACGA AATCGTCGAA AGAGTTAGGG AAAACTGCTG 1 GGAAAGATTT GATTGCTGAT AAGTTGACGT ATCCTAAGAT TATGGGTTTG GAGAAATCGA 1  GAGAGTTTGC TGAGAAATTG AATAGAGAGG CTCGTGATCA GCTTTTAGGG TTTGATTCTG 1 ATAAGGTTGC TCCTTTGTTG GCTTTGGCTA ATTACATTGC CTATAGACAG AACTGAtttg 1 B 1 ... AAT AGA GAG GCT CGT GAT CAG CTT TTA GGG TTT GAT TCT ... WT . N R E A R D Q L L G F D S . 1 ... AAT AGA GAG GCT CGT GAT CAG CTT TTA GGC TCG TGA TCA ...  g11-3 . N R E A R D Q L L G S *  !1 &-1  1  111!  -1./1D!# % D  D$"& D # D% D  D'-,D %% D$D$ ( D D&!!#$D> D %# $D#D & ?:DD#$%DD  D>>-??D  D%D%# $% D$% !D  D#D#D D :DD$"& D   D%D!$%C%#% D !!%D$D )D D# :DD$ D C#DD  D>>.??D$D )D(%DDD#:D # $#!% D$%#%D$%$D %D*D1@CD D$"&$D#D#D(%D%# $D( $D  #D #!#$ %$D%D!# %D D%# $#!%$D$%#% D%D%D %D ! $% D >(%?D D D! %$D D%D# D# # D%D C D  $#% D  D %D &% %:D D &D  )D #$D %D C 1 $"& D  $#%D  D %D  ##$!  D%# $% :DD - 39 -      

AT1G49530_G1 ------MRPRYSLILSAMRL------I------AT2G18620_G2 ------MTTLNLSIFPSVKISSSASIPGFIKIQPFL---LRRKLSTV-----LSVT AT2G18640_G3 MEAQNIFLYLLIVFLSLHFVFTTLKGRLSPANTRRLIRLLHIPIKSPVAAAIFARKDTRE AT2G23800_G4 MEPQILFLYLSLFILSLNFFFTNLKPR------LVRLFQPSLESRVKTALLSRKEVAA AT4G36810_G11 MASVTLGSWIVVHHHNHHHPSSILTKSRSRSCPITLTKPISFRSKRTVSSSSSIVSSSVV D : :

AT1G49530_G1 ------RPSNRRLSSIASSDSEFISYMKNKAKSINKALDNSIPLCNNFVP AT2G18620_G2 ARDEGII------HNHFDFTSYMIGKANAVNEALDSAVSLRE---- AT2G18640_G3 FLDSSIKLVNEED------DFGFSFDFKPYMISKAETINRALDEAIPLIE---- AT2G23800_G4 FLDSPIVEDEEGEEREEEEEGGIVSNANFTFEFDPYMMSKAESVNKALEEAIPVGE---- AT4G36810_G11 TKEDNLRQ------SEPSSFDFMSYIITKAELVNKALDSAVPLRE---- :* *: **: :*.**:.:: : :

AT1G49530_G1 LWEPVLEVHKAMRYTLLPGGKRVRPMLCLVACELVGGQESTAMPAACAVEMIHAASLILD AT2G18620_G2 ----PIKIHEAIRYSLLARGKRVRPVLCIAACELVGGEESVALPAACAVEMIHTMSLIHD AT2G18640_G3 ----PLNIHKAMRYAILAGGKRVRPILCLAACELVGGEERLAIQAACAVEMIHTMSLIKD AT2G23800_G4 ----PLKIHEAMRYAILAAGKRVRPILCLASCELVGGQENAAMPAACAVEMIHTMSLIKD AT4G36810_G11 ----PLKIHEAMRYSLLAGGKRVRPVLCIAACELVGGEESTAMPAACAVEMIHTMSLIHD :::*:*:**::* ******:**:.:******:* *: *********: *** * FARM AT1G49530_G1 DLPCMDDDSLRRGKPTNHKVFGEKTSILASNALRSLAVKQTLAST-SLGVTSERVLRAVQ AT2G18620_G2 DLPCMDNDDLRRGKPTNHKVFGEDVAVLAGDALISFAFEHLATS---TAVSPARVVRAIG AT2G18640_G3 DLPCMDNDDLRRGKPTTHKVFGESVAILSGGALLALAFEHLTEA----DVSSKKMVRAVK AT2G23800_G4 DLPCMDNDDLRRGKPTTHKVYGEGVAILSGGALLSLAFEHMTTA----EISSERMVWAVR AT4G36810_G11 DLPCMDNDDLRRGKPTNHKVFGEDVAVLAGDALLSFAFEHLASATSSDVVSPVRVVRAVG ******:*.*******.***:** .::*:. ** ::*.:: : :: ::: *:

AT1G49530_G1 EMARAVGTEGLVAGQAADLAGERMSFKNEDDELRYLELMHVHKTAVLVEAAAVVGAIMGG AT2G18620_G2 ELAKAIGSKGLVAGQVVDLTSGGMDQN--DVGLEVLEFIHVHKTAVLLEAATVLGAIVGG AT2G18640_G3 ELAKSIGTKGLVAGQAKDLSSEGLEQN--DVGLEDLEYIHVHKTGSLLEASAVIGAVIGG AT2G23800_G4 ELARSIGTRGLVAGQAMDISSEGLDLN--EVGLEHLEFIHVHKTAVLLETAAVLGAIIGG AT4G36810_G11 ELAKAIGTEGLVAGQVVDISSEGLDLN--DVGLEHLEFIHLHKTAALLEASAVLGAIVGG *:*:::*:.******. *::. :. : : *. ** :*:***. *:*:::*:**::** SARM AT1G49530_G1 GSDEEIERLKSYARCVGLMFQVMDDVLDETKSSEELGKTAGKDLITGKLTYPKVMGVDNA AT2G18620_G2 GSDEEVEKLRRFARCIGLLFQVVDDILDVTKSSEELGKTAGKDLIADKLTYPKLMGLEKS AT2G18640_G3 GTEKEIEKVRNFARCIGLLFQVVDDILDETKSSEELGKTAGKDKVAGKLTYPKVIGVEKS AT2G23800_G4 GSDEEIESVRKFARCIGLLFQVVDDILDETKSSEELGKTAGKDQLAGKLTYPKLIGLEKS AT4G36810_G11 GSDDEIERLRKFARCIGLLFQVVDDILDVTKSSKELGKTAGKDLIADKLTYPKIMGLEKS *::.*:* :: :***:**:***:**:** ****:********* :: ******::*::::

AT1G49530_G1 REYAKRLNREAQEHLQGFDSDKVVPLLSLADYIVKRQN* D AT2G18620_G2 KDFADKLLSDAHEQLHGFDSSRVKPLLALANYIAKRQN* AT2G18640_G3 KEFVEKLKRDAREHLQGFDSDKVKPLIALTNFIANRNH* D AT2G23800_G4 KEFVKRLTKDARQHLQGFSSEKVAPLVALTTFIANRNK* AT4G36810_G11 REFAEKLNREARDQLLGFDSDKVAPLLALANYIAYRQN* D :::..:* :*:::* **.*.:* **::*: :*. *:.* D !1 '-1 !1  1 1   1  1   -1 &%!D   %D ($D D !# #D &$ D    D (%D %D &%D !#%#$D >D%%!.?   D $DD )D DD D %D !#%D!$%C%#% D!!%D$D )D D# :DD $#'D  D >#$%D$!#%%C#D %?D D D >$ D$!#%%C#D  %?D$ %&#$D%%D  #D %DD %*%D '%*D  #D *D $&$%#%D   ;D #D  )D  D #*:D D %D #$&D  #D %D  DD %;D$ ( D% DD#' %D% D%# D%D D %D D%D D!# &%;D$D %D (%DD&D#:D#&D D +*$D> % $D!# & D.,D ?D'DD D#$&D D %$D!D $% ;D(#$D%D!#$ D D$#D#$&$D>D #D?D ' '$DD!## %D!# &% D D.1D D> D%D:;D.,-1=D D%D:;D.,-2?:DD

- 40 -      

D

35S:AtG11-GFP 35S:sG11-GFP

1h

Cotyledon

3h

Leaf

Stomata

Root

!1 (-1 !!1% 11 &&0 11 &&0 1! 1  11  1   1  -1 !#$ %%'D$D# D %* $D D% %D$ $D%#D -D #D /D  &#$D D )! $&#D % D %D  D # D D !#D $;D $% %;D  D # %$D # D -,C*C D $ $D # ( D & #D  D *D  % $:D D #$%D  & D $ ($D # D & #$ D # D  ;D%D$ D$ ($D#D&% & #$ D# D # !*;D D%D%#D$ ($D D '#*:D D   D $D (#D $ D &$ D $#D $#D  D  D $%D $%% $:D %D #$D #!#$ %D-,DE:1 D

D

D

D

D

D

D

D

D

- 41 -      

D A AtG11 sG11 G11s C D

D

D

D

D

D

D D B 100 80 AtG11 D 60 40 D 20 0 100 D 80 sG11 60

D 40

20

D 0 100 D 80 G11s 60

40 D Abundance Relative 20

0 100

80 Standards D GPP FPP GGPP 60 (C10) (C15) (C20) D 40 20

0 D 4 6 8 10121416182022 Time (min) D !1 )-1   " $11 ! 1 &&1  -1./1C D D!# % D)%#%$D# D D   .-D! D$D)!#$$ D%D %D!# % $D>$D&#D.?:D %--D  D --$D D ##$! D % D %#& %D '#$ $D  D %D !#%D !$%C%#% D !!%D  D D  ##$! $D% D!%*D'% #D %# :D## ($D#D%D! $% D D%D#   %D!# % $:D ./D C D # % #$D $ ( D %D #$&%$D # D    +*D %'%*D $$*$D &$ D )%#%$DD% $D $ ( D D>?:D D D  D (#D&$D$D$&$%#%$:D%% D D!# *D !D $!%$D ($D !# #D &$ D B+D 1-4:.10D > ?;D 005:-42D > ?;D /4-:-./D > ?;D  D /-/:,2-D> ?:D% % D%D D'D$% #$D$D$ D$ ( :D D

D

D

- 42 -      

D

D Heart Torpedo Cotyledon D D D Green D seeds D

g11-3 heterozygous plants

D D White/brown D seeds D D D D !1 *-1 $  1  1 1  1 1  1 1 1 1  1!  -D %&#$D$ (D D #!#$ %%'D$D D#* $D D#D$$D# D%# +* &$D D! %$:D$D D%D D $DD & D ##$! D% D$$D# D%D$D$"&D%%D!!#D%#D# D>)!%D% D DD %#D +* &$D #D %# +* &$=D &!!#D # (?D #D (%B# ( D >)!%D % D  ##$! D % D  D +* &$D D&% %$=D (#D# (;D )D D&?:D# %D & $D ##$! D% D$"&$D %D# %D!D $% $D D%D  #$ D> D$$D%D# %D$%$D D' ! %?:D#* D 'D ! %D$%D D%D# D$D D%D$"&D$D %D D%D% !:D%D#$;D1,DE:1 D D

D

D

DD

D

D

D

D

D

D

D

D

D

- 43 -      

A B ggpps1-1 LD, 7 days LD, 10 days WT ggpps1-1 WT ggpps1-1  

...ATCAACAAAGCACTAGAC... I N K A L D D

C D Carotenoids Chlorophylls Tocopherols Prenylquinones 1.4    D   1.2   

1.0   

0.8   

0.6   

0.4    0.2

Relative metabolite levels   

0.0   

D

D

D

D !1 +-1" 11 1 $ 11 1  1!  -1./1%D #!#$ %% D D%DD>%-051/,?D D # D% DD'-,D %% :DD!# % D D   D$"& D>(D$D %# $?D$D$ ( D$DD(#D )D(%D D #D $% D  ##$!  D % D %D %  #C%#% D !!%D !#%D (%D   D D >%%! A115A,-?D &% %D $D $ D $ ( :D D )%D D  $#% D$%D>$ ( D(%D%D  D DD#$&$?D($D%# D*D$"&  D%D D #D D %#D D !% D (%D !##$D   D D %D C D  D %D  &# D  D D# :D./DD$#% D! !&% D D%D A115A,-D D($D *+D*D D % DD  %*D  '&$D %%D (#D +* &$D >?D  D   +* &$D > ?D  #D %D C D  $#%D :D$D$ (D#!#$ %%'D$D D%$D '&$D( D# ( D% %#D& #D  C*DD % $D> ?D #D3D D-,D*$:D%D#$D#!#$ %D.D:D./D '$D D C #'D$D !# $D DD D D$ $:D&$D#D$ ( D#%'D% D% $D & D D DD ! %$D  D  ##$! D % D  D  D D D 7/D  !  %D $!$:D D $%%$%*D $  %D# $D>%CD%$%;D!8,:,1?D(#DD & D%( DD D D$!$:D DD D D D

- 44 -      

D

D 1 &-1  1! 11  1#-1

Use # Name Sequence (5'-3')

1 AtG11-P5F AGAAGCTTACAAGTTGTTAAATTCG 2 AtG11-5F CAGATTTCAGAAATCGCCATGG 3 AtG11-3R ATTCCCGACAAAAGGAATCG 4 LBb1 GCGTGGACCGCTTGCTGCAACT 5 AtG1-LP-F AAACTGGACCTGACCACAGC Genotyping 6 AtG1-RP-R CCTCTGTCCCAACAGCTCTC and cloning 7 SAIL LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 8 AtG11-B1-F-1 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGTCTTCCGTTGTTACAAAAGAAG 9 AtG11-B2-R-2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCAGTTCTGTCTATAGGCAATG 10 AtG11-B1-F-3 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGTCGTACATCATCACCAAAGC 11 AtG11-B2-R-4 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCAGGACCCTAAAAGCTGATCACGAGC 12 AtG11-RACE-R1 TGCCACCGGCGAGAAGAGAGTAACGC 5' RACE 13 AtG11-RACE-R2 TCTTGAGTGGCTCACGGAGAGGAACAGC D

D

D

D 1 '-1  11 0 1  1 1!  1 1! 11  1#-1

Genetic Original seed WT allele genotyping T-DNA genotyping Gene Gene ID Allele background source ID primers1 primers1 AtGGPPS1 At1g49530 ggpps1-1 Col-0 SAIL_559_G01 5+6 6+7 g11-2 Col-0 SALK_015098 1+3 3+4 AtGGPPS11 At4g36810 g11-3 Col-0 SALK_085914 2+3 3+4 g11-5 Col-0 SALK_140601 2+3 2+4

1See Table S1 D

D

D

D 1 (-1 ! 111  -1

1 2 3 Plasmid Use Construct Template Primers Sequence Cloning method backbone Transgenic NcoI / Mung Bean 35S:sG11-GFP pSG11G - - pCAMBIA1302 plants nuclease/ T4

In vitro pET-AtG11 pSG11G 8+9 AtG11169-1116 pET32-GW Gateway

GGPPS pET-sG11 pSG11G 9+10 AtG11229-1116 pET32-GW Gateway activity assay pET-G11s pSG11G 8+11 AtG11169-1050 pET32-GW Gateway 1Plasmid pSG11G reported in Ruiz-Sola et al. (2016a), Annex 1 2See Table S1 3 Numbers refer to nucleotide positions in the protein coding sequence (positions 1-3 correspond to ATG(1), 2

231 to ATG(2), and 1114-1116 to the TGA translation stop codon) D

- 45 -      

D

D

D

- 46 - 







  

-

                    

       -

  

- (- " "- -)*--- "---" -)*- - "- - - - --- "-(--  , #-  '- - - -  - -  - )      *- -  -  - --  --#"- - - "- #- - -'- -  (--$(-%- -&-)-$,&--*- ---  "-- -- '---!-  "-  - - -  ---  - - -   - ,-   - - - -  - "--'--, - - --  -  --  - -  - "- " - ) *- #"(-  - - -  ,- - -  - "'- (--"# -  --  --  --    - - - - "- , - - "- '-  - -,!-- -   - --'- - -  ---%--"--- $-  "----- -  - --!-  (- - - - - - - -  - --  --"-)--- -  "*---(- - - -  - &--- --- - -  - "--'- -(- - - -  "- - -  -  # - -   - - - -  - - - -  ,  -  -, - - - -  '- -

-

+ -- ----- - - - --  '-

-



- 47 -   











- 48 -      

"  " "  "   "  " "   "

" """  " O

O

DO $.),$O  :EO $"/ &O :EO &$- ( O  :EO (O /$-O  :EO

$(!,()O ;EO/'3(O  

 :O

O

:D ,)",'O )!O &(.O .)&$-'O ( O .)&$O ("$( ,$("EO  (., O !),O  - ,#O $(O ",$/&./,&O  ()'$-O HIO  N NNEO '*/-O O  &&. ,,EO 9A:B

FO# O 2* ,$' (.-O$(&/ O$(O.#$-O.# -$-O#*. ,O1 , O)N -$"( O( O* ,!),' O3O .# O#O( $ . O/( ,O.# O-/* ,0$-$)(O)!O.# O#O $, .),DO# O)(.,$/.$)(O)!O.# O, -.O)!O .# O /.#),-O .)O .# O , -/&.-O -#)1(O # , O 1-O .# O !)&&)1$("FO DDEO DDO ( O D DO *,)0$ O . #($&O -/**),.O $(O -'*& O )&& .$)(O ( O +O (&3-$-GO DDO # &* O 1$.#O O )(-.,/.$)(GOD DO( O DO*,)0$ O. #($&O 0$ O( O $-/--$)(O )(O (43'.$O .$0$.3O --3-D" " !" "

-)*, ()$ -O, O$)&)"$&O')& /& -O -- (.$&O$(O&&O&$0$("O),"($-'-DO (O*,.$/&,EO *&(.-O , O .# O '$(O -)/, O )!O .# O (),')/-O -.,/./,&O ( O !/(.$)(&O 0,$ .3O .#.O #,. ,$4 -O.#$-O!'$&3O)!O)'*)/( -OH/&$ )O .O&DEO;9:;GO#)&&EO;9:>IDO# O/$& $("O &)%-O!),O.# O$)-3(.# -$-O)!O&&O$-)*, ()$ -O, O$-)* (. (3&O $*#)-*#. OH IO( O $.-O $-)' ,O $' .#3&&&3&O $*#)-*#. O H IDO # - O !$0 N,)(O H>IO /($0 ,-&O $-)*, ()$ O/($.-O, O*,) / O$(O*&(.-O3O.# O' 0&)($O$ OH IO*.#13O$(O.# O 3.)-)&O ( O .# O ' .#3& ,3.#,$.)&O *#)-*#. O H IO *.#13O $(O *&-.$ -O H$"/, O :EO ,()05O .O &DEO ;9:IDO #),.N#$(O *, (3&.,(-! ,- -OHN-IO-/- +/ (.&3O)( (- O)( O),O'), O')& /& -O)!O O.)O )( O ')& /& O )!O  O "$0$("O ,$- O .)O :9EO :>O ( O ;9O *, (3&O $*#)-*#. -O

%()1(O -O " ,(3&O $*#)-*#. O HIEO !,( -3&O $*#)-*#. O HIO ( O " ,(3&" ,(3&O $*#)-*#. OHIEO, -* .$0 &3DO# - O$(. ,' $. -O, *, - (.O.# O $'' $. O *, /,-),-O !),O )1(-., 'O *.#13-O &  $("O .)O .# O *,) /.$)(O )!O .# O

NO=BON      

'$(O ",)/*-O )!O $-)*, ()$ -O H$"/, O :IDO # O NO (43' -O .#.O *,) / O #O )!O .# - O*, /,-),-EO(' &3O-OEOO( OO-3(.#- -OH$"/, O:IEO)(.$(O.1)O #$"#&3O)(- ,0 O )'$(-O -- (.$&O!),O.# $,O.&3.$O.$0$.3O, ! ,, O.)O-O O H!$,-.O-*,.. N,$#O').$!IO( O OH- )( O-*,.. N,$#O').$!IOH$"/, O:IDO# O

.&3.$O !/(.$)(O )!O  O H2;N=EO 1# , O J2KO $-O (3O '$()O $ IO ( O  O ;C H2;IO ').$!-O * ( -O )(O .# $,O )), $(.$)(O 1$.#O " O $)(-EO , +/$, O !),O .# O $( $("O)!O.# O#)')&&3&$O-/-.,. O EO( O)( O)!O.# O&&3&$O-/-.,. -OH EO O),OIEO&&)1$("O.# (O.# O*,) /.$)(O)!O&)(" ,O*, (3&O $*#)-*#. -OH ,, ,)O .O&DEO:BB;GO,-#$-O .O&DEO:BB=GO)("O( O)/&. ,EO:BB=GO )3'O .O&DEO:BB?GO,)(O ( O#,$-.$(-)(EO;9:9IDO# O& (".#O)!O.# O!$(&O*,) /.O$-O'$(&3O, "/&. O3O.# O '$()O$ O$ (.$.3O)!O.# O#$(N& (".#O . ,'$(.$)(OH IO').$!EO&). O/*-., 'O .)O.# O OH$"/, O:IDO (O" ( ,&O. ,'-EO.# O-$4 O)!O.# O-$ O#$(O)!O.# O!$!.#O'$()O $ O  !), O .# O  O )(.,)&-O .# O (/' ,O )!O O )( (-.$)(-O 3O &$'$.$("O .# O $' (-$)(-O)!O.# O &)(".$)(O*)% .OH#(/'O .O&DEO:BB?EO:BB?GO" &O .O&DEO;9:>GO ( ,'). (O .O&DEO;99BIDO)1 0 ,EO).# ,O, -$ / -O#0 O (O ')(-.,. O.)O&-)O , "/&. O.# O*,) /.O& (".#OH,-#$-O .O&DEO:BB=GO("O( O#(/'EO:BBBGO ,(( 4O .O&DEO;999IDOO,  (.O-./ 3O*,)*)- OOL.#, N!&)),-MO') &O( O$ (.$!$ O, -$ / -O

--)$. O 1$.#O .# O *,) /.$)(O )!O ;>O " ,(3&!,( -3&O $*#)-*#. O HIEO .# O *, /,-),O)!O,, O>9O- -. ,* ( -OH("O .O&DEO;9:?IDON-O, O.3*$&&3O!)/( O$(O $!! , (.O &&O)'*,.' (.-EO)(-$-. (.O1$.#O.# O, +/$, ' (.O)!O.# $,O-* $!$O*, (3&O $*#)-*#. O *,) /.-O $(O $!! , (.O -/ &&/&,O &).$)(-O H$"/, O :IDO &.#)/"#O (O $'*),.(.O ')/(.O )!O $(!),'.$)(O $-O 0$&& O )/.O N-EO $.O $-O -.$&&O $!!$/&.O .)O *, $.O .# $,O -* $!$O *,) /.EO  &&O .," .$("EO ( O $)&)"$&O !/(.$)(O 1$.#O -)&/. O )(!$ ( O , &3$("O -)& &3O )(O - +/ ( O #)')&)"3O ,$. ,$O ( O # ( EO 2* ,$' (.&O 0$ ( O $-O (  --,3O $(O ')-.O - -O H/($&& ,O .O &DEO :BB?EO :BB@GO !! O .O &DEO ;999GO  %O .O&DEO;9:GO("O .O&DEO;9:?GO#)/O .O&DEO ;9:@IDO

,). ()$ -O , O )( O )!O .# O ')-.O -./ $ O ",)/*-O )!O *&(.O $-)*, ()$ -DO # 3O , O ", .&3O '( O -O (./,&O *$"' (.-O H,("$("O !,)'O , O .)O 3 &&)1IO ( O *,)0$ O  ( !$.-O !),O #/'(O # &.#EO O -O *, /,-),-O )!O 0$.'$(O O ( O ).# ,O , .$()$ -O H( '((EO ;9:>GO ) ,$"/ 4N)( *$)(O .O &DEO ;9:AIDO (O *&(.-EO ,). ()$ -O #0 O $!! , (.O!/(.$)(-DO (O*#).)-3(.# .$O.$--/ -O.# 3O)(.,$/. O.)O&$"#.O#,0 -.$("O( O *#).)*,). .$)(DO# 3O, O&-)O!/( ' (.&O$(O",)1.#O, "/&.$)(EO-$( O.# 3O, O.# O *, /,-),-O)!O, .,)", O-$"(&-O( O*#3.)#),')( -O-/#O-O-$-$O$ OHIO( O -.,$")&.)( -O H -ID" -O O - )( ,3O ,)& EO ,). ()$ -O *,)0$ O $-.$(.$0 O )&),-O .)O !&)1 ,-O( O!,/$.-O.)O..,.O*)&&$(.),-O( O- O $-* ,-&O($'&-OH$-,O .O&DEO;9:>GO

- 50 -      

/(O .O &DEO ;9:>IDO (O *&(.-EO .# O $)-3(.# -$-O )!O ,). ()$ -O .% -O *& O $(O *&-.$ -O H/$4N)&O( O) ,6"/ 4N)( *$8(EO;9:;GO/(O .O&DEO;9:AIO( O.# 3O $, .&3O ,$0 O !,)'OEO1#$#O$-O&-)O/- O!),O.# O$)-3(.# -$-O)!O"$ , &&$(-OH-IO( O).# ,O -- (.$&O $-)*, ()$ -O $(0)&0 O $(O *#).)-3(.# -$-EO $(&/ $("O #&),)*#3&&-EO .))*# ,)&-EO( O*#3&&)+/$()( -OH$"/, O:IDOO

Cytosol MVAMVA Plastid MEP pathway pathway CKs CKs IPP DMAPP IPP DMAPP x3 x3 FPPS x2x GGPPS GPPS x1x GGPPS FPP GGPP GPP

Sesquiterpenoids Diterpenoids Monoterpenoids Triterpenoids OtherOt isopisoprenoidsre GGPP Phytyl-PP GAs PSY Plastoquinones Chlorophylls Mitochondrion CKs Tocopherols Phytoene IPP DMAPP Phylloquinones

x3 Lycopene FPPS x2x GGPPS -Carotene -Carotene SLs FPP GGPP

Carotenoids Lutein Violaxanthin Sesquiterpenoids Diterpenoids ABA Neoxanthin Ubiquinone

" !"    " " " " "  " !" N--)$. O *.#13-O, O-#)1(O$(O&%O( O).# ,O-#),.N#$(O*, (3&O $*#)-*#. -O( O.# $,O ,$0.$0 -O$(O ",3D",). ()$ O*.#13O$-O$( $. O .1 (O0 ,.$&O,% .-DO3.)-)&$OO$-O, *, - (. O $(O*/,*& EO'$.)#)( ,$&OO$(O, EO( O*&-.$ $&OO$(O", (DO#3.) ( O-3(.#- OHIO $-O, *, - (. O$(O3 &&)1DO)&$ O( O -# O,,)1-O, *, - (.O-$("& O( O'/&.$*& O (43'.$O-. *-EO , -* .$0 &3DOO& O)!O)(. (.-O!),O, 0$.$)(-DO O

 0 ,&O O -3(.#- O HIO *,&)"-O #0 O  (O , .$( O $(O *&(.-O /,$("O 0)&/.$)(O / O.)O.# O+/$-$.$)(O)!O-* $!$O!/(.$)(-DO (3O-./ $ -O#0 O-#)1(O.#.O $!! , (.O' ' ,-O)!OOO!'$&3O*,)0$ OO!),O $!! , (.O' .)&$O,(# -O .#,)/"#OO( .1),%O.#.O$(0)&0 -O" ( O 2*, --$)(O)N, "/&.$)(O( O*,). $(N*,). $(O $(. ,.$)(-O 1$.#O )1(-., 'O $-)*, ()$ O $)-3(.# .$O (43' -O H %O .O &DEO ;9:GOO/$4N)&OO .O&DEOO;9:?EOOO" GOO/$4N)&O .O&DEOO;9:?EOOOO

N >:ON  1101  ! 1

%V )LV !(.V -V %IJV ;9:@LV ' V -V %IJV ;9:ANIV !V %%(-"('V ( V V "'-(V +(-'("V"(,2'-!,",V",V('-+(%%V2V)!2-('V,2'-!,VMNJV-!V "+,-V'32&V( V -!V )-!02V -!-V -%23,V -!V ('',-"('V ( V -0(V V &(%.%,V "'-(V =9V )!2-('V M" .+V :NIV -V !,V 'V ,!(0'V -!-V &-(%"V !''%"' V ( V V -(V +(-'(",V ",V "%"--V 2V -!V )!2,"%V "'-+-"('V ( V V 'V V )+(-"',V M."3U(%V-V%IJV;9:?JV V%4(LV& 'V-V%IJV;9:ALV' V-V%IJV;9:ANIVV

(&-(VM !1$ !NV!,V(&V('V( V-!V,-V)%'-V,2,-&,V-(V,-.2V-!V "(,2'-!,",V ( V +(-'(",V 'V "-,V + .%-"('V .V -(V -!V /+"-2V ( V .'-"(',V -!-V -!,V ",()+'(",V )%2V "'V )!(-(,2'-!-"V -",,.,V M--V )!(-()+(--"('NV .-V %,(V "'V +((-,V M--V &2(++!"3-"('NV 'V +."-,V M--1 )" &'--"('NIV +V 0V +)(+-V -!V "'-" "-"('V'V .'-"('%V!+-+"3-"('V( V-!V)%,-""%VV,-V"'V-(&-(V 'V)+(/"V%.,V-(V.'+,-'V!(0V-!V,.))%2V( V)%,-""%VV (+V-!V,2'-!,",V ( V+(-'(",V0"-!V" +'-V"(%( "%V .'-"(',V"'V)+-".%+V-",,.,V",V+ .%-V"'V -!",V)%'-V,)",IVV

4

)/4  "! V

)/(/4!!44!4!!4 4 !4&44

0(V -(&-(V ',V )+,.&%2V '("' V V '32&,V M(%2:: 9::;=91 '1 (%29= 9@BB?9NV !/V 'V )+/"(.,%2V ,+"V M&'-V -V %IJV ;99?LV +,+V -V %IJV ;99@LV -.+V -V %IJV ;9:ANIV (V "'/,-" -V -!V )(,,"%V 1",-'V ( V .+-!+V U '("' V ',V"'V-!V-(&-(V '(&JV0V.,V)+/"(.,%2V!+-+"3V&&+,V( V -!V  V VV &"%2VM."3U(%V-V%IJV;9:?JV V%4)NV,V*.+",V M%V :NIV V (.'V ,"1V ).--"/V V )+%( ,V '&V ,V  '1 M(%2:: 9::;=9NJV  (1 M(%29= 9@BB?9NJV  )1 M(%29; 9A>@99NJV  *1 M(%29; 9A>@:9NJV  +V M(%29; 9A>@;9NV 'V  ,V M(%29B 99AB;9NJV !+"'V + ++V -(V ,V 'V-(V ,IV !V ()'V +"' V +&,V ( V -!,V,"1V ',V0+V)+"-V-(V'(V)+(-"',V( VJV

%%V -!,V ).--"/V V !(&(%( ,V 0+V )+"-V -(V ('-"'V V )%,-"U-+ -"' V ))-"V 1)-V %>JV 0!"!V 0,V )+"-V -(V %(%"3V -(V &"-(!('+"V (+"' V -(V  V'V V% (+"-!&,VM&'.%,,('V-V%IJV;99@NIV!V"'-" "-"('V( V-!,V )+(-"',V ,V ).--"/V V '32&,V 0,V "'"-"%%2V ,V ('V ,*.'V (&)+",(',V M" .+V;NIV!"%V)!2%( '-"V'%2,,V,!(0VV ((V,)+-"('V-0'VV '"-,V 'V (-!+V ,JV -!V /(%.-"('+2V ",-"'-"('V -0'V V 'V V

- 52 -  1101  ! 1

,2'-!,,V0,V%,,V%+IV%:UV ))+V -(V !/V (%%(0V V "/+ '-V /(%.-"('+2V)-!V'V +(.)V,)+-V +(&V-!V%.,-+V (+&V2V-(&-(V%:UNIVV

V

V4(/4  !44 !4 4   44!!V

Predicted Protein Predicted transit Abbreviation Gene ID function length (aa) peptide (aa)

GGPPS1* SlG1 Solyc11g011240 GGPP synthase 365 43 GGPPS2* SlG2 Solyc04g079960 GGPP synthase 363 63 GGPPS3* SlG3 Solyc02g085700 GGPP synthase 360 65 GGPPS4** SlG4 Solyc02g085710 GGPP synthase 393 34 GGPPS5** SlG5 Solyc02g085720 GGPP synthase 373 56 GGPPS6/ SlG6 / Type II small Solyc09g008920 334 17 SSUII** SlSSUII subunit *GGPPS activity reported in this work **Enzymatic activity not confirmed V

!"%V-!V "+,-V "/V-(&-(V",( (+&,VM%:U>NV('-"'V-!V-0(V,,'-"%V-%2-"V&(-" ,V M V 'V  NV +*."+V (+V )+'2%-+', +,V -"/"-2JV %?V %$,V -!V  JV  "'V +,&%"' V - V M" .+V :NIV %:U>JV .-V '(-V %?V (+V - JV ,!(0V V &-!"('"'VM NV"'V-!V " -!V)(,"-"('V.),-+&V-(V-!V VM" .+V;V'V" .+V:NIV !",V,)" "V V+,".JV,!(0'V-(VV,,'-"%V (+VV)+(.-"('JV",V'(-V)+,'-V"'V V '32&,V M %V -V %IJV ;9:>LV ' V -V %IJV ;9:?NIV V -!"+V " +'V -0'V %:U>V 'V %?V ",V -!-V -!V (+&+V ('-"'V ('V 111V (&"'V M0!+V O1PV ",V '2V !2+()!("V +,".NV (+V )+(-"'U)+(-"'V "'-+-"(',V M'+&(-'V -V %IJV ;99BLV ' V'V"1('JV;99BLV!(.V-V%IJV;9:@LV' V-V%IJV;9:ANJV0!+,V-0(V( V,.!V (&"',V+V)+,'-V"'V%?V'V- V)+(-"',VM" .+V:NIV!V)!2%( '-"V'V ,*.'V'%2,,V-( -!+V,. ,-V-!V1",-'V( V "/VV)+%( ,VM%:U>NV"'V -(&-(V'V('V-2)V VVM%?NV-!-V&" !-V!-+("&+"3V0"-!V('V(+V,/+%V( V -!V-+.VV'32&,V!' "' V-!V'32&V,)" ""-2V(+V-!V-%2-"V ""'2V -(V('-+(%V-!V %.1V( V)+.+,(+,V-(V+-"'V",()+'("V)-!02,IV

- 53 -  1101  ! 1

At1g49530_AtGGAtGGDS1_At1g49530 PPS1 AxxxxDD D (GGPP+GFPP products) 10099,8% LPCM At3g20160_AtAtGGDS8_At3g20160 PPPS2 SxxxxDD D (>GGPP products) LPCM

AtGGDS6_At3g14530 100100% At3g14530_AtGFPPS1

AtGGDS7_At3g14550 100100% At3g14550_AtGFPPS2 5050% GFPPSs 81 At3g29430_AtGFAtGGDS9_At3g29430 PPS3 SxxxxDD D 81,3% LPCM 39,7%40 At3g32040_AtGFAtGGDS10_At3g32040 PPS4

AtGGDS3_At2g18640 92,3%90 At2g18640_AtGGPPS3

43,7%44 At2g23800_AtGGAtGGDS4_At2g23800 PPS4

AtGGDS2_At2g18620 81,5%82 At2g18620_AtGGPPS2 98,7%99 At4g36810_AtGGAtGGDS11_At4g36810 PPS11 GGPPSs 32,7%33 MxxxxDD D Solyc02g085700_SlG3SlG3_Solyc02g085700 LPCM 27,7%28 SlG1_Solyc11g011240 33,9%34 Solyc11g011240_SlG1 98,7%99 Solyc04g079960_SlG2SlG2_Solyc04g079960

100 Solyc02g085710_SlG4SlG4_Solyc02g085710 100% Putative GGPPSs Solyc02g085720_SlG5SlG5_Solyc02g085720 MxxxxDD D LPCM 100 AtGGDS12_At4g38460 100% 100100% At4g38460_AtSSUII Type II SSUs (no SARM) SlG6_Solyc09g008920 AxxxxDD D Solyc09g008920_SlG6/SlSSUII LPCM

AtPPPS_AT2G34630 100100% At2g34630_AtPPPS1/AtSPS3

Solyc08g023470_SlDPSSlG9_Solyc08g023470_SPS3 100100% Solyc07g061990_SlSlG7_Solyc07g061990_SPS1/2 SPS Long-Chain PTs 100100% AxxxxDDxxD AtSPS1_At1g78510 10099,8% At1g78510_AtSPS1

At1g17050_AtAtSPS2_At1g17050 SPS2

Solyc10g005810/20_SlFSlFPS2_Solyc10g005810/20 PPS2 100100% Solyc12g015860_SlFSlFPS1_Solyc12g015860 PPS1 62,8%63 FPPSs At5g47770_AtFAtFPS1_AT5G47770 PPS1 100100% YFxxxDDxxD At4g17190_AtFAtFPS2_AT4G17190 PPS2

1.01.0

" 4)/4 &!4 ! 44    41!244!!41 24  &!     /4 '+((-V " !(+U ("'"' V-+V(',-+.-V0"-!V+"(),",V'V-(&-(VV)+(-"'V,*.',VM%V:NIV !V)+'- V( V-+,V"'V0!"!V-!V,,("-V,*.',V%.,-+V-( -!+V",V"'"-V"'V!V +'!IV!V,%V+V+)+,'-,V-!V&'V'.&+V( V,.,-"-.-"(',V )+V ,"-IV !V !"'U%' -!V -+&"'-"('VM NV+ "('VM--1-!V V'V-!V)+/"(.,V "/V+,".,NV",V"'"-V (+V!V '32&V%"' IV,".,V-+&"'"' V-!V)+(.-V%' -!V+V,!(0'V"'V%.VM)(,"-"(',VU=V'T(+V U>V-(V-!V NV'V,)+--V+,".,V+V,!(0'V"'V%$LVO1PV+)+,'-V '2V &"'(V "IV V %V:V (+V+/"-"(',I

V

)/)/44 !4!!4 4   4'4!4 !44 !! V

(V 1)+"&'-%%2V -+&"'V -!V ,.%%.%+V %(%"3-"('V ( V %:U>V '32&,JV 0V .,V-!V("' V,*.'V( VV-(V-!V

- 54 -  1101  ! 1

'V1)+,,V-!V+,.%-"' V(',-+.-,V.'+V-!V('-+(%V( V-!V V)+ V)+(&(-+IV (%%(0"' V  +("' "%-+-"('V ( V  1  V %/,JV -!V +'V %.(+,'V &"--V2V!V!"&+"V)+(-"'V0,V'%23V2V(' (%V&"+(,()2V-VUV .,"('V)+(-"'V0,V--V,VV).'-.-V)--+'V -2)"%V( V&"-(!('+"%V)+(-"',VM$V-V%IJV;9:

V GFP Chlorophyll Merge V

V SlG1-GFP V 10 μm V

V

SlG2-GFP V

10 μm V

V

SlG3-GFP V V 10 μm V

V SlG4-GFP V

10 μm V

V

SlG5-GFP V

10 μm V

" 4 */4 "" 4 '!4 4 !4 !!4  4 ! 4" 4!4 /4 )+,'--"/V (' (%V &"+(,()2V "& ,V ( V  1  1 % V %%,V -+',"'-%2V 1)+,,"' V-(&-(VUV .,"('V)+(-"',IV(+V!V(',-+.-JV +'V %.(+,'V +(&VV M "+,-V (%.&'NJV +V .-( %.(+,'V +(&V !%(+()!2%%V M,('V (%.&'NV'V&+ V!''%,V M-!"+V(%.&'NV+V,!(0'IV!"-V++(0,V"'"-V-!V)+,'V( V,-+(&.%,V'V0!"-V+,V +)+,'-V:9VY&I

- 55 -  1101  ! 1

!V,.%%.%+V(&)+-&'-%"3-"('V( V-!V-,-V)+(-"',V",V"'V +&'-V0"-!V1 V )+"-"(',V 0"-!V -!V ('%2V 1)-"('V ( V %=UJV 0!"!V ,!(0V V &#(+V 2-(,(%"V %(%"3-"('V ,)"-V !/"' V V )+"-V )%,-"U-+ -"' V ," '%IV "'V -!V "(,2'-!,",V ( V +(-'(",V ",V 1%.,"/%2V )%,-""%V "'V !" !+V )%'-,JV V .'-"('%V V '32&V "'/(%/V "'V -!",V )-!02V ",V 1)-V -(V V &"'%2V -+ -V -(V )%,-",IV (+V -!",V +,('JV 0V (.,V (.+V +,+!V ('V -!V !+-+"3-"('V ( V -!V )%,-""%V",( (+&,V%:U

)/*/4 (04 )44 *4 4"!4 3 "4'& /4

!V'32&-"V-"/"-2V( V,/+%VV'"-,V!,V'V,,2V"'V 1 V,-+"',V!+(+"' V-+"%V ',V (+V+(-'("V"(,2'-!,",V.-V%$"' VV -"/"-2VM!.V-V%IJV:BB@JV:BB@LV' V'V"1('JV;99BLV$V-V%IJV;9:LV ' V -V %IJV ;9:?NIV (V "'/,-" -V 0!-!+V %:JV %;V 'V %NIV,V)(,"-"/V'V' -"/V('-+(%,V( V-!V-"/"-2V,,2,JV 0V.,V(',-+.-,V!+(+"' V,"&"%+V/+,"(',V( V-::V'V-!V"'-"/V (+&V::,V M."3U(%V-V%IJV;9:?JV V%V)NIV!(%U%%V)+(-"'V1-+-,V +(&1-1V   V %%,V -+', (+&V 0"-!V "'"/".%V (',-+.-,V 'V "'.V -(V )+(.V -!V (++,)('"' V +(&"''-V )+(-"',JV 0+V "+-%2V .,V (+V -"/"-2V ,,2,V "'V -!V )+,'V( V V'V IV U V'%2,",V( V-!V+-"('V)+(.-,V,!(0V-!-V %:JV%;JV%

V

- 56 -  1101  ! 1

A B 14.05 120 449.186 100 SlG1 80 60

% Activity 40 14.04 20 449.187 SlG1SlG1 0   pH   SlG2 120 6 6.5 7 7.5 8 8.5 100 14.01 449.187 80 60

SlG3 % Activity 40  20 SlG2 14.05 SlG2 0 449.186 6 6.5 7 7.5 8 8.5 Ab      120

ve pH ti 100 la AtG11 80 Relative AbundanceRelative Re 60

% Activity 40 20 SlG3 G11s 0 6 6.5  7  7.5  8 8.5   IPP FPP GGPP  pH 1.58 10.94 13.87  244.999 381.124 449.187 

% Activity   Standard AtG11AtG11  6  6 6.56.5 7 7 7.5 7.5pH 8 8 8.5 8.5 Time (min) pH

" 4+/4    4!#!&4 & /4124 U V!+(&-( +&,IV-+"%V1-+-,V +(&V-"%- - -1 1   1%%,V(/+)+(."' V-!V"'"-V+(&"''-V)+(-"',VM%$"' V-!V)+"-V)%,-"U -+ -"' V))-"V'V .,V-(V'VU-+&"'%V?1U",V- N40+V"'.-V0"-!V V'V V 'V -!V )+(.-,V 0+V '%23V 2V U IV -::,UV 'V -::U)+(."' V %%V 1-+-,V 0+V .,V ,V ' -"/V 'V )(,"-"/V ('-+(%,JV +,)-"/%2IV !+V "')''-V 1)+"&'-,V 0+V )+ (+&IV+'2%V")!(,)!-,V0+V--V.,"' V&,,U-(U!+ VM&T3NV+-"(,KV;==IBBAVM NJV <::AI;>=V MNIV -'-"('V -"&V ( V /"%%V ,-'+,V",V%,(V,!(0'I4124)-"&%V)V-+&"'-"('V (+V-!V-"/"-2V( V!VV,,2IV .+" "V +(&"''-V )+(-"',V M?1U",UNV 0+V "'.-V 0"-!V V 'V  V .'+V " +'-V)V('"-"(',IV-"/"-2V/%.,V+V+)+,'-V,V-!V)+'- V( V-"/"-2V+%-"/V-(V -!V &1"&.&V -"/"-2V (-"'IV -V (++,)('V -(V -!V &'V 'V ,-'+V /"-"('V MNV ( V -!+V"')''-V+)%"-,VM'E

V

'V(++V-(V'%23V-!V$"'-"V)+()+-",V( V-!V"'-" "V-(&-(VV",( (+&,JV 0V-!'V).+" "V-!V+(&"''-V)+(-"',V-$"' V/'- V( V-!"+V?1U!",-""'V- JV .,"' V "'V-::V,V)(,"-"/V('-+(%VM" .+V

- 57 -  1101  ! 1

,!(0VV,"&"%+V()-"&%V)VM+(.'V@I>NV (+V%%V-!VV)+(-"',V-,-VM" .+V =NIV !",V +,.%-V  +,V 0"-!V -!V ('%.,"('V -!-V )%,-""%V V -"/"-2V &"'%2V (.+,V"'V-!V,-+(&V( V)%,-",JV0!+V-!V)V",V+(.'V@IAUAJV.'%"$V-!V.,.%V""V )V( V-!V-!2%$("V%.&'VM8!'+V-V%IJV;9:?NIV(',",-'-%2JV)+(-(&"V))+(!,V M (2+V-V%IJV;99BNV'V(' (%V&"+(,()2VM$V-V%IJV;9:

(+V V )+V !+-+"3-"('V ( V -!,V '32&,JV -!"+V $"'-"V )+&-+,V M &V 'V &1NV0+V-!'V%.%-V (+V-!"+V>V",()+'2%V")!(,)!-V)+.+,(+,VM V'V  NVM%V;NIV -V",V'(-0(+-!2V-!-V-!V))+'-V "'"-2V (+V-!V,.,-+-,VM &NV 'V&1V/%.,V+V/+2V,"&"%+V&(' V-!V-!+V-(&-(V'32&,IV!2V+V%,(V ,"&"%+V-(V-!(,V(-"'V (+V-::V!+VM%V;NV'V%,0!+VM' V'V"1('JV ;99BLV& 'V-V%IJV;9:ANIV%%V-!",V"' (+&-"('V-( -!+V"'"-,V-!-V-(&-(V%:U

V

4)/4!4 ! 44 !4 4'& /V%.,V(++,)('V-(V-!V&'VDVV ( V-!+V"')''-V1)+"&'-%V+)%"-,VM'E

Km Vmax Km Vmax (μM) (nmol•min-1•mg-1) (μM) (nmol•min-1•mg-1) SlG1 31.82 ± 2.92 47.47 ± 1.40 74.18 ± 7.55 59.87 ± 2.73 SlG2 49.55 ± 5.31 38.87 ± 1.53 79.75 ± 8.33 36.73 ± 1.73 SlG3 45.75 ± 6.81 26.13 ± 1.40 45.92 ± 4.86 29.13 ± 1.13 AtG11 32.86 ± 4.86 21.53 ± 1.07 38.49 ± 4.94 24.13 ± 1.07 V V )/+/4 "3 443%  4!$  4 " !4"!4 '!4 4!!4 4'& 4

-V !,V 'V &(',-+-V -!-V ',V %(' "' V -(V -!V ,&V &(%.%+V )+(,,V (+V &-(%"V )-!02V +V ( -'V !" !%2V (U1)+,,V +(,,V " +'-V ,)-"(U-&)(+%V /%()&'-%V,- ,JV (+&"' V,-+(' V .'-"('%V(U1)+,,"('V&(.%,VM!('V-V %IJV ;99>LV "V -V %IJV ;99?LV 2'+"$1V 'V ')(%JV ;9:;LV +'(/4V -V %IJV ;9:;LV

- 58 -  1101  ! 1

."3U(%V-V%IJV;9:?JV V%4(NIV'V(U1)+,,"('V'-0(+$VMNV'%2,,V+V V)(0+ .%V-((%V-(V"' +V"(%( "%V .'-"(',V-(V'('U!+-+"3V ',V2V))%2"' V -!V,"&)%V(')-V( VQ ."%-U2U,,("-"('RJV0!"!V&',V-!-VV 'V," '" "'-%2V ,,("-V 0"-!V V &(%.%+V )-!02V -V -+',+")-"('%V %/%V &2V ,!+V ,"&"%+V .'-"(',V M%"/+JV ;999NIV (V "'V .+-!+V "'," !-V "'-(V -!V )!2,"(%( "%V .'-"('V ( V %:JV%;V'V%.V0!+V ,V+)+,'-VV)(,"-"/V," '" "'-V(U1)+,,"('V0"-!V.),-+&V 'V (0',-+&V )-!02,V ( V V '32&-"V ,-)V M," '" "'-V (U1)+,,"('V +%-"(',!"),V+V%",-V"'V%V

!VV'%2,",V( V/ --"/V-",,.V,!(0V-!-V 'V",V!+%2V(U1)+,,V0"-!V '2V( V-!V*.+2V",()+'("V"(,2'-!-"V ',JV)(,,"%2V"'"-"' V-!V,'V( VV )+"&+2V+(%V( V-!V%:V",( (+&V"'V-!V)+(.-"('V( VV (+V)%,-""%V",()+'("V "(,2'-!,",V "'V )!(-(,2'-!-"V -",,.,IV 2V ('-+,-JV (1 '1 )V ,!(0V &.!V &(+V (''-"/"-2JV "' V (V -!V )+%( V 0"-!V -!V !" !,-V %/%V ( V (U1)+,,"('V M" .+V >NIV (V ))+V -(V V ," '" "'-%2V (U1)+,,V 0"-!V &'2V ',V +(&V %&(,-V%%V,%-V",()+'("V)-!02,JV,. ,-"' VV'-+%V+(%V( V-!",V",( (+&V"'V !%(+()%,-,JV 0!+V "-V &" !-V V )+(."' V V (+V -!V ,2'-!,",V ( V &(,-V )!(-(,2'-!,",U+%-V",()+'(",IV 'V)+-".%+JV (V0,V(U1)+,,V0"-!V&(,-V ',V( V-!V+(-'("V)-!02JV,!(0"' VV,-+(' V(++%-"('V0"-!V (1M" .+V>JV %V 

- 59 -  1101  ! 1

"(,2'-!-"V ',IV 0V ," '" "'-V (''-"(',V 0+V (.'V -0'V (V 'V V "(,2'-!-"V ',V 0!+,V '(V (''-"('V 0,V (,+/V 0"-!V -!V  V )-!02IV 'V -!,V)!(-(,2'-!-"V-",,.,JV-!V )V 'V0,V&"'%2V(U1)+,,V0"-!V+(-'("V 'V !%(+()!2%%V "(,2'-!-"V )-!02,V .-V -V %(0+V %/%V -!'V (IV '-+,-"' %2JV )V))+V-(VV&(+V(''-V-(V 'V-!'V-(V (1M" .+V>JV%V

!'V'%23"' V-!V +."-V+")'"' VV0V(,+/V&.!V%,,V(''-"(',VM" .+V >NIV!V,+"-2V( V'(,V(,+/V (+V 'V'V (V,. ,-,VV&"'(+V+(%V (+V-!,V U)+(."' V",( (+&,V"'V-!V +."-IVV!" !+V +V( V(''-"/"-2V0,V--V (+V )JV/'V-!(. !V"-V0,V&.!V%(0+V-!'V-!-V (.'V"'V/ --"/V-",,.,IV!V (U1)+,,"('V ( V )V 0"-!V 'V (,+/V "'V -!V V '%2,",V ( V )!(-(,2'-!-"V -",,.,V0,V'(-V--V"'V +."-IV '-+,-"' %2JV-!V )V 'V0,V(U1)+,,V0"-!V -!V-0(V-(&-(V ',V'("' VVMNV)+(-"',VM  'V'V  (NV.+"' V +."-V +")'"' IV V )+(-"',V +V !)+(',V -!-V )+(&(-V V ,-"%"-2V 'V !+(&()%,-V" +'-"-"('V"'V+(-'("U)+(."' V-",,.,VM!(.V-V%IJV;9:>LV+$V -V %IJV ;9:?LV !2.-V -V %IJV ;9:@LV P'+V -V %IJV ;9:ALV %,!V -V %IJV ;9:ANIV $'V -( -!+JV-!VV'%2,,V)+ (+&V"'V-!",V,-.2V,. ,-V-!-V%:V&" !- '(-V!/V V +%/'-V +(%V (+V )%,-""%V V ,2'-!,",V "'V / --"/V -",,.,V (+V +."-,JV %;V &" !-V V -!V &"'V ",(32&V )+(."' V )%,-""%V V (+V )!(-(,2'-!,",U+%-V ",()+'(",JV 'V %

V

V

V

V" 4 ,/4 4 3%  4 !$  4 1 24 4 !!4  4 4  !4  4 '& 44#!!#41244 "!4124! " /4',V+V+)+,'-V,V'(,V'V," '" "'-V V )(,"-"/V (U1)+,,"('V +%-"(',!"),V MρG9I>>NV ,V  ,IV (&-(V ',V '("' V )%,-"U-+ -V VV",( (+&,V+V)"-V,V'-+%V +'V'(,V'V+V+ ++V!+V-(V,V 'JV (V'V )IV.++(.'"' V,&%%+V'(,V+)+,'-V-!V ',V'("' V'32&,V +(&V,/+%V",()+'("V V)-!02,V %(-V .),-+&V 'V (0',-+&V ( V V ,-)V "'V )%,-",IV JV +'V 'V %$V  ,V"'"-V-!V ',V)(,"-"/%2V(U1)+,,V0"-!V '.1 (1 '1 )V ',JV+,)-"/%2IV ').-V 'V +/"-"(',V +V %",-V "'V4 )4 'V )(,"-"/V (U+%-"('V ρ /%.,V+V,!(0'V"'V V4 */ V

V

- 60 -  1101  ! 1

A VegetativeVegetative tissue GCNGCN

 !

!  ! ! 

  !   !

! !

SlG1  SlG2  SlG3   !

   !

 !

! !

B Fruit GGCNCN  !

!  ! ! 

  !   !

! !

SlG1  SlG2  SlG3   !

   !

 !

! V - 61 -  1101  ! 1

)/,/4 4 %  4 &  4  4 4   3 4  !4 $!4  !" 4 #!4    4 ##4 4 !#!4 4  !4  &!  /4

+(-'(",V"'V-(&-(V('-+".-V-(V&2(++!"3%V,,("-"(',JV)!(-()+(--"('JV'V +."-V)" &'--"('V'JV!'JV-!V%/%,V( V-!,VU+"/V)%,-""%V",()+'("V &-(%"-,V "'+,V .+"' V +((-V &2(++!"3-"('JV ,%"' V -"(%-"('JV 'V +."-V +")'"' IV 'V +&'-V0"-!V-!V+-U-+&"'"' V+(%V( VV (+V+(-'("V,2'-!,",V M+,+V-V%IJV;99;NJV-!V1)+,,"('V( VU'("' V ',V%,(V"'+,V.+"' V,.!V /%()&'-%V )+(,,,IV (0/+JV '(-V %%V -!+V ',V '("' V -(&-(V V ",( (+&,V+V.)U+ .%-V"'V/+2V-",,.V0!+V+(-'("V"(,2'-!,",V",V((,-JV .-V ,!(0V V %+V -",,.U,)" "V 1)+,,"('V )--+'IV 'V ",V &"'%2V 1)+,,V "'V -(&-(V +."-V 'V "-,V 1)+,,"('V ",V ((,-V .+"' V +")'"' V -(V )+(.V +(-'(",V "'/(%/V"'V-!V)" &'--"('V( V-!",V(+ 'VM+-%2V-V%IJV:BB;LV+2V'V+"+,('JV :BBLV -.+V -V %IJV ;9:ANIV V 1)+"&'-%%2V (' "+&V-!,V+,.%-,V2V+%U-"&V*.'-"--"/VVM*NV'%2,",V.,"' V(.+V(0'V -(&-(V ,&)%,V M" .+V ?NIV .+-!+&(+JV 0V (.'V -!-V -!V (V 'V 0,V &(+V .)+ .%-V -!'V 'V .+"' V -(&-(V ,%"' V -"(%-"('V M" .+V ?NJV (',",-'-V 0"-!V-!V)+()(,V&#(+V+(%V( V;V",( (+&V"'V-!V)+(.-"('V( V+(-'(",V (+V )!(-()+(--"('V( V)!(-(,2'-!-"V-",,.,IVV'1-V.,V-!V,&V,&)%,V-(V-,-V-!V 1)+,,"('V)--+'V( V-!V"'-" "V '0)V ',V'V(&)+V"-V0"-!V-!-V( V '0)1 ',IV(+"' V-(V).%"V-,,JV 'V",V&(,-%2V1)+,,V"'V+((-,V'V%/,V 0!"%V (V 'V )V +V &"'%2V 1)+,,V "'V %/,V 'V +."-,V M" .+V =NIV .+"' V +((-V &2(++!"3-"('JV 0!+V -!V ,2'-!,",V ( V +(-'(",V ",V "'.V -(V )+(.V  ,V 'V)(+(-'("V&(%.%,V,,'-"%V (+V-!V,-%",!&'-V( V+((-V,2&"(,",VM,-+V -V%IJV;99;JV;99>LV,%&V-V%IJV;9:

- 62 -  1101  ! 1

+(-'(",V!' ,V-!V +."-V(%(+V +(&V +'V-(V(+' V'V "'%%2V+VM %V'V "(/''('"JV;9::LV.'V-V%IJV;9:>NJV-!V)$V( V 'V1)+,,"('V0,V(,+/V-V-!V (+' V,- JV0!'V+(-'(",V+V)+(.V&(+V-"/%2VM" .+V?NIV 'V-!V,V ( V U'("' V ',JV (1 0,V &(,-V ,-+(' %2V "'.V -V -!V +$+V ,- V M+%"+V -!'V -!-V (,+/V (+V 'NV 0!+,V )1 )$V "'V (+' V +."-,V 0"-!V V 0$+V"'.-"('VM" .+V?NIV( -!+JV-!V*U,V-+',+")-"('%V'%2,,V+V !" !%2V (',",-'-V 0"-!V -!V V +,.%-,JV +/%"' V V -",,.T)+(,,U,)" "V +(%V (+V !V "'"/".%V V ",( (+&V 'V V ,-+(' V (++%-"('V 0"-!V )+-".%+V V ",( (+&,IV !.,JV %:V 'V 

V A B C Root mycorrhization Seedling de-etiolation Fruit ripening 15 8 80 60 6 40 10 20 4 4 5 3 2 2 1 Relative expression 0 0 0 - + - + - + 0624 L 0624 L06 24 L MG BO R MG BO RMG B O R PSY1 PSY2 PSY3 PSY1 PSY2 PSY3 PSY1 PSY2 PSY3

15 8 10 8 6 10 6 4 4 5 2 2 Relative expresion Relative Relative expression 0 0 0 - + - + - + 0624 L 0624 L06 24 L MG BO R MG BO RMG B O R SlG1 SlG2 SlG3 SlG1 SlG2 SlG3 SlG1 SlG2 SlG3

" 4-/4%  4  44 44!!4 44 4   4 " 4  !4  !4  &!!4    /4 12V +',+")-V %/%,V "'V '('U&2(++!"3V MUNV 'V &2(++!"3V+((-,VV MCNV-V ,"1V 0$,V)(,-U"'(.%-"('IV12V +',+")-V%/%,V"'V@U2U(%V-"(%-V M+$U +(0'NV,%"' ,V-V9JV?V'V;=V!V -+V1)(,.+V-(V%" !-V'V"'V('-+(%,V('-"'.(.,%2V +(0'V"'V-!V%" !-VM NIV12V+',+")-V%/%,V-V" +'-V +."-V+")'"' V,- ,KV JV&-.+V +'LV V JV+$+LVJV(+' LV'VJV+V+")IV /%,V0+V'(+&%"3V.,"' V-!V-(&-(V ',V VMJVNV (+V  *VMNV'V+V,!(0'V+%-"/V-(V-!(,V"'V-!V('"-"('V0"-!V%(0,-V+(-'("V%/%,JV--V .'-+-VMNJV'('U%"V !-U1)(,VMNV(+V VMNIV1)+,,"('V/%.,V+)+,'-V-!V&'VDVV( V -!+V"')''-V"(%( "%V+)%"-,VM'E

- 63 -  1101  ! 1

)/-/44 "!44 4!   !4# 4   4&!4""!44 4 !!4 "! /4

'V (++V -(V -+&"'V -!V "&)%"-"('V ( V -!V -0(V -(&-(V +")'"' U"'.V  1 ',V "'V +."-V +(-'("V "(,2'-!,",JV 0V '1-V '+-V -(&-(V M/IV "+((&NV ,-%V -+', '"V %"',V !+(+"' V (',-+.-,V -(V (',-"-.-"/%2V "'+,V -!V %/%,V ( V %;V(+V%

'%2,,V( V-!V.&.%-"('V( V+(-'(",V"'V+V+")V +."-,V( V:V-+', '"V'V V)%'-,V,!(0V-!-V-!V%(0+V.&.%-"('V( V )V-+',+")-,V(++%-V0"-!V +.V)!2-('V%/%,V"'V-(&-(,V +(&V)+ / (V'V)+ / )V%"',VM" .+V@NIV !2-('V",V"+-%2V)+(.V +(&VV2VVM" .+V:NV'JV-!+ (+JV"-,V%/%,V 'V --+V + %-V V /"%"%"-2V (&)+V -(V (0',-+&V +(-'(",IV 'JV %2()'JV-U+(-'V'V%.-"'V!+%2V!' V"'V%%V-+', '"V +."-,V(&)+V -(V -!V V M" .+V ANIV !+-+"3-"('V ( V +(-'("V %/%,V "'V +."-,V +(&V ;V !(&(32 (.,V %"',V (' "+&V -!,V +,.%-,V M" .+V >NIV V ," '" "'-V +.-"('V ( V )!2-('V %/%,V 0,V (,+/V "'V (+' V 'V +V +."-,V +(&V (-!V )+ / (V 'V )+ / )V %"',V (&)+V -(V V 'V )+ / V ('-+(%,JV 0!+,V '(V ," '" "'-V !' ,V0+V(,+/V (+V(0',-+&V+(-'(",IV.'-" "-"('V( V(-!+VU +"/V)%,-""%V",()+'(",V,.!V,V!%(+()!2%%,JV-(()!+(%,V'V)!2%%(*."'('V %,(V ,!(0V '(V " +',V -0'V +."-,V +(&V -!V " +'-V %"',V -V '2V ( V -!V /%()&'-%V ,- ,V -,-V M" .+V ?NIV V -!+ (+V ('%.V -!-V (0'+ .%-"('V( V%

4

4

4

- 64 -  1101  ! 1

4 35S:pGFP 35S:SlG2 35S:SlG3 A WT

5 SlG2 ** 1.5 SlG3 4 1.0 3 * * * 2 0.5 ** ** 1 () Relative expression 0 0.0

WT #4.1 #5.1 #3.1 #2.1 #3.1 WT #4.1 #5.1 #3.1 #2.1 #3.1 #11.1 #11.1 B Phytoene Lycopene 1.5 1.5

1.0 1.0

** ** 0.5 ** 0.5 ** () 0.0 0.0 T T

-Carotene Lutein 1.5 2.0

1.5

Relative carotenoid levels carotenoid Relative 1.0 1.0 0.5 0.5 () 0.0 0.0

WT WT #4.1 #5.1 #3.1 #2.1 #3.1 #4.1 #5.1 #3.1 #2.1 #3.1 #11.1 #11.1

" 4./4   !44 !4# 44 4 "! 44(4!  4 /4")V +."-,V +(&V .'-+', (+&V MNV 'V :V -+', '"V -(&-(V %"',V ++2"' V -!V "'"-V (',-+.-,V 0+V (%%-V'V.,V (+V12V*V'%2,",V( V-+',+")-V%/%,VM'(+&%"3V-(V *NV'V12V V '%2,",V( V-!V%/%,V( V-!V&#(+V+(-'(",V"'V+")V +."-,IV%.,V+)+,'-V-!V&'VDVV( V-V %,-V -!+V "')''-V "(%( "%V +)%"-,V M'HJVSS)F9I9:NIV

- 65 - (('((

!# #

$D &"$*)D + 0C%"D *D ";D+ 0C%"D*D";D%+D*D";D*+(D*D ";D $D *D ";D!D*D";D!D*D";D "D*D";D+ 0C%"D*D";D+ 0C%"D*D";D$D*D";D$D*D";D%+D*D";D$D*D";

(%#D *D ) .D *%#*%D D %#%"%)D $ * ""/D $*  D ( D$D*D";

- 66 - (('((

%$*(%"D D "+.D *%-()D *D ('+ (D #*%" D ($)D $D ),("D )& )D%+D *D ";D $D *D ";

*D*D&(%* $D)'+$D","D!D*D";D+ 0C%"D*D";D%+D*D";D $D *D ";D  "" &)D *D ";D & (C (D *D ";

D&()$D%D*D")*D*(DD )%%(#)D $D*%#*%D&")* )D#/DD+)D/D *D'+ ) * %$D%D)&  D(%")D+( $D,%"+* %$D *(D*(%+DD ($* "D)&* %C *#&%("D$D.&()) %$

- 67 - (('((

$ $D %D &+" D *%#*%D $D .&()) %$D *))D ? (  (  D $D !@D  *(D *D ";

$D *D )D %D #D + 0C%"D*D";

- 68 - (('((

 (*D C( ,D &(+()%()D $*%D *D &(%+* %$D %D )&  D )*)D %D (%*$% )D ? +(D9@;DDD

MEP pathway

IPP + DMAPP

SlG1 SlG2 SlG3

  # !#  #  #  #   #  # " GGPP GGPP GGPP  #   #  #  #  #  #  #   # #    # PSY3 PSY2 PSY1  # #  # #  !#  ($*D &")*  "D D $0/#)D (D *($)( &* %$""/D%C(+"*D- *D)&  DD phytoene phytoene phytoene )%%(#)D $D *%#*%D $D # *D $*(*D &/) ""/D*%D&(%, DD%(D*D)/$*) )D%D &(* +"(D (%+&)D %D (%*$% );D +)

D

D (%")D %D "3D $D "4D ")%D )#D *%D D $*(%$$*D +( $D (+ *D ( &$ $D ? +(D9@;D $D*D(+ *

- 69 - (('((

" $)D- *D (D #D+*D"%-(D $D*($)( &*D",")D? +(D8

&(*D (%#D *($)( &* %$"D (+"* %$D#(D + $)D*D";D()(D*D";D+ 0C%"D*D";D%+D*D ";D#$D*D";D$D*D";

- 70 - #&$9 989 &$ %9!9 &"%9

)/3  3 33

)/&/3 3  3 3!3Q

(&-(Q I" !' 9 +"#$%' 9 /+59 "+((&JQ )%'-,Q 0+Q .,Q (+Q &(,-Q 1)+"&'-,EQ,Q0+Q,.+ O,-+"%"3Q2QQ7;Q&"'Q"'.-"('Q0"-!Q:6@Q%!Q I'Q 8Q +(),Q ( Q -0'O86Q /+2Q ;6Q & Q ( Q ,(%.-"('JQ 'Q -!+Q (',.-"/Q 86Q &"'O 0,!,Q 0"-!Q ,-+"%"3Q &"%%"OQ 0-+EQ -+"%O,,Q 0+Q -!'Q ,(0'Q "'Q (+'"' MQ +(.'Q )%-,Q IQ 1Q Q 7;6Q &&Q 1Q 8;Q &&FQ +$JQ 0"-!Q ,(%"Q .+,!" Q 'Q $(( Q &".&Q 0"-!(.-Q /"-&"',Q (+Q ,.+(,FQ .-Q "' Q $'&2"'Q I766Q S N& JQ 0!'Q +*."+Q-(Q,%-Q-+', '"Q)%'-,EQ -+Q,-+-" "-"('Q (+Q9Q2,Q-Q:QDQ"'Q-!Q+$FQ )%-,Q 0+Q "'.-Q "'Q Q %"&-O('-+(%%Q +(0-!Q !&+Q -Q 8:Q DQ 'Q "%%.&"'-Q (+Q 7:Q !Q 0"-!Q %.(+,'-Q 0!"-Q %" !-Q -Q Q )!(-(,2'-!-"Q )!(-('Q %.1Q ',"-2Q ( Q 7:6Q S&(%Q &O8Q,O7EQ =O76Q 2Q ,%"' ,Q 0+Q -!'Q -+', ++Q -(Q ,("%Q 'Q +(0'Q.'+Q,-'+Q +'!(.,Q('"-"(',QI7:Q!Q%" !-Q-Q8=QAQ7QDQ'Q76Q!Q+$Q-Q 88QAQ7QDJEQQ

+."-,Q,&)%,Q0+Q(%%-Q-Q:Q+")'"' Q,- ,Q(+"' Q-(Q-!Q2,Q)(,-O'-!,",Q IJGQ &-.+Q +'Q I FQ C96Q JFQ +$+Q IFQ C9;Q JFQ (+' Q IFQ C9>O:6Q JQ'Q+QIFQC:;O;6QJEQ!Q)+"+)Q0,Q,)+-Q +(&Q-!Q+,-Q( Q-!Q +."-Q 'Q "&&"-%2Q +(3'Q "'Q %"*."Q '"-+( 'Q 'Q +3O+"Q .+"' Q 9Q 2,Q "'Q Q %(+-(+2Q +3O+2+QI Q8O:Q Q)%.,FQ JEQ+3O+"Q,&)%,Q0+Q ,-(+Q-QO>6QDQ.'-"%Q .+-!+Q'%2,",EQ(+Q-"(%-"('Q1)+"&'-,FQ-(&-(Q,-+"%"3Q ,,Q 0+Q ,(0'Q ('Q ,-+"%Q 0-+O,($Q (--('Q "'Q -+',)+'-Q )%,-"Q ('-"'+,EQ  -+Q,-+-" "-"('FQ,,Q0+Q1)(,Q-(Q %.(+,'-Q0!"-Q%" !-Q (+Q8O:Q!(.+,Q-Q88Q DQ-(Q"'.Q +&"'-"('EQ!Q('-"'+,Q0+Q-!'Q(/+Q0"-!QQ(.%Q%2+Q( Q %.&"'.&Q ("%Q 'Q $)-Q "'Q +$',,Q -Q 88Q DEQ ('-+(%Q ,&)%,Q 0+Q % -Q .'+Q ('-"'.(.,Q %" !-Q ('"-"(',EQ  -+Q ('Q 0$FQ -"(%-Q ,%"' ,Q 0+Q 1)(,Q -(Q %" !-Q 'Q ,&)%,Q 0+Q !+/,-Q -Q 6FQ 6QDEQ-Q %,-Q-!+Q"')''-Q"(%( "%Q+)%"-,QI('-"'+,JQ0+Q(%%-Q (+Q!Q-"&Q )("'-EQ !Q "(%( "%Q +)%"-Q 0,Q Q )((%Q ( Q -'Q -(&-(Q ,%"' ,EQ "&!9 !& !Q)%'-,Q.,Q (+Q-+',"'-Q1)+,,"('Q,,2,Q0+Q +(0'Q.'+Q,-'+Q +'!(.,Q('"-"(',QI7:Q!Q%" !-Q-Q8







- 71 - #&$9 989 &$ %9!9 &"%9

)/'/3 33

.%%O%' -!Q,Q'("' Q%7O;QI%Q7JQ0+Q&)%" "Q +(&Q-(&-(QQ'Q %('Q"'-(Q)86=Q'-+2Q)%,&"Q.,"' Q-02QIJQ-!'(%( 2QI '/"-+( 'FQ %" (+'"FQJEQ.%%Q%' -!Q,*.',Q0+Q-!'Q,.O%('Q"'-(Q):6;Q)%,&"Q I$ 0Q -Q %EFQ 866=JQ 'Q .,Q (+Q -+',"'-Q 1)+,,"('Q "'Q 59 !& !9 %/,9 'Q,-%Q-+', (+&-"('Q( Q-(&-(Q)%'-,QI "+((&JEQ(',-+.-,Q"'Q-!Q):6;Q /-(+Q!+(+Q-!QQ,*.'Q"'Q +&Q-Q-!Q9KQ'Q( Q!Q%&'-Q%('Q'Q-!Q 1)+,,"('Q &(.%Q ",Q ('-+(%%Q 2Q -!Q  Q 9;Q )+(&(-+EQ ):6;L)Q (',-+.-Q I026#JQ 0,Q '+-Q 2Q O-+&"'%Q .,"('Q ( Q -!Q )%,-"O-+ -"' Q ,*.'Q( Q-!Q+"(),",QQ 'QI,Q-Q%EFQ866?JQ-(QQ'Q"-Q0,Q.,Q,Q'Q (/+1)+,,"('Q )%,-""%Q ('-+(%EQ (+Q )+(-"'Q 1)+,,"('Q "'Q 59 " FQ %7O9Q /+,"(',Q %$"' Q -!Q )+"-Q -+',"-Q ))-"Q 0+Q &)%" "Q +(&Q ):6;Q (',-+.-,FQ %('Q "'-(Q -!Q )86=Q )%,&"Q 'Q -!'Q ,.%('Q "'-(Q )98OQ )%,&"Q .,"' QQ<1O",-""'Q- Q-Q-!QO-+&"'%Q'Q( Q-!Q%('Q + &'-,EQ)98OQ (',-+.-,Q('-"'"' Q,"&"%+Q+"(),",Q-77Q/+,"(',Q+Q,+"Q"'QI."3O(%Q -Q %EFQ 867<FQ %Q "3 'JEQ (',-+.-,Q 0+Q (' "+&Q 2Q +,-+"-"('Q &))"' Q 'Q Q ,*.'Q '%2,",EQ ' (+&-"('Q (.-Q )+"&+,Q .,Q 'Q %('"' Q -"%,Q +Q ,+"Q"'Q.))%&'-+2Q%,Q:Q'Q;Q+,)-"/%2EQ

Q

)/(/3#3  #Q

+"(),",QQI$Q-Q%EFQ8679HQ."3O(%Q-Q%EFQ867<FQ%Q"3'JQ'Q(-!+Q Q )+(-"'Q ,*.',Q 0+Q +-+"/Q +(&Q 9 $"#%%9 !"$ &"!9 %"'$Q I!--),GNN000E+"(),",E(+ NJQ 'Q .,Q ,Q *.+",Q -(Q ,+!Q (+Q ).--"/Q -(&-(Q !(&(%( ,Q.,"' Q Q "',-Q-(&-(Q '(&Q('Q-!Q" !9!" %9 &)"$Q I!--)GNN,(% '(&",E'-NJQ'Q-!Q &"! 9!&$9"$9"&!" "+9 !"$ &"!Q0,"-,Q I000E'"E'%&E'"!E (/NJEQ !Q ,,"('Q '.&+,Q ( Q -!Q "'-" "Q !(&(%( ,Q +Q %",-Q"'Q%Q7EQ!Q)+,'Q( Q-+',"-Q))-",Q0,Q)+"-Q.,"' Q "$"Q'Q $&Q% (+"-!&,Q,Q,+"Q"'QI&'.%,,('Q-Q%EFQ866=JEQ+(-"'Q%" '&'-,Q( Q +"(),",Q'Q-(&-(QQ,*.',Q%$"' Q-!Q)+"-Q-+',"-Q))-",QI" .+Q 7JFQ0+Q)+ (+&Q.,"' Q '%& 9 QI!--),GNN000E"EE.$N((%,N&,N%.,-%(NJQ 0"-!Q  .%-Q ,--"' ,Q I"/+,Q -Q %EFQ 8677HQ "/+,Q 'Q " "',FQ 867:JEQ 'Q .'+((-Q -+Q 0,Q -!'Q (',-+.-Q .,"' Q 3Q I%%FQ 8679HQ &.+Q -Q %EFQ 8679JEQ /(%.-"('+2Q (''-"(',Q &(' Q ,Q 0+Q )+"-Q 2Q -!Q " !(+O ("'"' Q &-!(Q,Q('Q-!Q(",,('Q&(%FQ0!+Q)"+0",Q%-"('Q0,Q,%-Q (+Q )Q %-"(',EQ((-,-+))"' Q0,Q)+ (+&Q('Q7F666Q),.(+)%"-,EQQQ

- 72 - #&$9 989 &$ %9!9 &"%9

)/)/3   3 $ 3  #33

.%%.%+Q %(%"3-"('Q ,,2,Q 0+Q )+ (+&Q 2Q $"&$' 9 &' !%O &"-Q -+',"'-Q 1)+,,"('Q "'Q 59 !& !Q %/,Q I)+$,Q -Q %EFQ 866Q DQ (+Q9Q2,EQQ,"' %QO(' "+&Q(%('2Q)+Q(',-+.-Q0,Q"'(.%-Q"'Q;Q& Q '-""(-"O(&)%&'-Q Q &"Q 'Q "'.-Q (/+'" !-Q -Q 8>Q DQ "'Q 966Q +)&Q ('-"'.(.,Q "--"('EQ;66QS Q( Q-!Q +(0'Q.%-.+Q0+Q-!'Q"'(.%-Q"'Q86Q& Q( Q

Q&"Q'Q"'.-Q(/+'" !-Q-Q8>QDQ"'Q966Q+)&Q('-"'.(.,Q "--"('EQ<66Q( Q !Q %"*."Q .%-.+Q 0,Q ,)-+()!(-(&-+"%%2Q &,.+Q 'Q  -+Q -!-FQ .%-.+,Q 0+Q '-+" . Q -Q :666Q +)&Q (+Q 76Q &"'EQ -+"%Q )%%-,Q 0+Q +,.,)'Q "'Q

"' "%-+-"('Q. +QI76Q& Q Q);E;O

+!Q Q "'%Q <66Q ( Q 6E;EQ (Q )+/'-Q ,"%'"' FQ %/,Q 0+Q (O"' "%-+-Q 0"-!Q 'Q  +(-+".&Q ,-+"'Q -+', (+&Q 0"-!Q Q /-(+Q 1)+,,"' Q -!Q O+(Q ,"%'"' Q ,.))+,,(+QI(2-"Q-Q%EFQ866

Q

)/*/3 3#Q

.%%.%+Q %(%"3-"('Q ( Q Q .,"('Q )+(-"',Q 0,Q -+&"'Q 2Q '%23"' Q  +("' "%-+-Q % Q ,&)%,Q 0"-!Q 'Q %2&).,Q Q 7666Q (' (%Q %,+O,''"' Q &"+(,()EQ Q ," '%Q 'Q !%(+()!2%%Q .-( %.(+,'Q 0+Q --Q .,"' Q 'Q + ('Q%,+Q (+Q1"--"('QI-Q:>>Q'&JQ'QQ;66P;76Q'&Q "%-+Q (+Q--"('Q( QQ %.(+,'Q 'Q Q <76P=66Q '&Q "%-+Q (+Q --"('Q ( Q !%(+()!2%%Q %.(+,'EQ %%Q "& ,Q0+Q*."+Q.,"' Q-!Q,&Q(' (%Q)+&-+,EQ

Q

)/+/3  3  33 3 Q

-+"'Q 9767Q ( Q 59 &' !%Q 0,Q .,Q -(Q ,-%2Q -+', (+&Q -(&-(Q "+((&Q (-2%(',Q 0"-!Q ):6;L%8FQ %9Q (+Q )Q ,Q ,+"Q "'Q +''3Q -Q %Q I866?JEQ !9 (&$"Q + '+-Q 7Q -(&-(Q -+', '"Q %"',Q 0+Q "'-" "Q ,Q ('Q $'&2"'Q +,",-'Q I766Q S N& JQ 'Q '(-2)"' Q FQ .,"' Q  1Q I(%26: 677;66JQ ,Q 'Q "'-+'%Q ('-+(%EQ (&(32 (.,Q -(&-(Q %"',Q ('-"'"' Q Q ,"' %Q OQ "',+-"('Q 0+Q ,%-Q ,Q ('Q Q O*Q '(-2)"' Q &-!(Q

- 73 - #&$9 989 &$ %9!9 &"%9

()-"&"3Q "'Q (.+Q %Q I%Q "3 )1FQ .,"' Q -(&-(Q 2/Q I(%276 66=8=6JQ ,Q 'Q '( '(.,Q + +'Q 'EQ '(-2)"' Q Q 'Q *Q )+"&+,Q +Q %",-Q "'Q .))%&'-+2Q%Q:EQ-Q%,-FQ-0(Q"')''-Q%"',Q( Q!Q(',-+.-Q0+Q.,Q (+Q .+-!+Q1)+"&'-,EQQ

9

)/,/3 3  #3  #3 3 3 3

(',-+.-,Q-(Q1)+,,Q" +'-Q-+.'-QQ)+(-"'Q/+,"(',Q0+Q '+-Q"'Q )98OQ /-(+Q ,Q )+/"(.,%2Q ,+"Q I%Q ;JEQ (&)-'-Q 59 " 9 "%&&Q8Q I9JQ %%,Q I(/ 'FQ +$Q FQ +&,--FQ +&'2JQ 0+Q ,)+-%2Q -+', (+&Q 0"-!Q !Q (',-+.-Q -(Q )+(.Q -!Q +(&"''-Q )+(-"',EQ "' %Q (%('",Q( Q!Q"'"/".%Q-+', (+&'-Q0+Q"'(.%-Q"'Q;Q& Q( Q Q&".&Q0"-!Q ))+()+"-Q'-""(-",Q'Q +(0'Q(/+'" !-Q-Q9=QDEQ8;6QS Q( Q!Q)+O.%-.+Q0,Q "%.-Q"'Q8;Q& Q81Q&".&Q0"-!Q-!Q+*."+Q'-""(-",Q'Q"'.-Q-Q9=QDQ

'Q8;6Q+)&Q.'-"%Q'Q<66Q -0'Q6E;Q'Q6E>Q0,Q+!EQ!'FQ7Q& Q( Q Q 0,Q Q -(Q "'.Q -!Q )+(.-"('Q ( Q -!Q +(&"''-Q )+(-"',Q 'Q -!Q .%-.+,Q 0+Q "'.-Q (/+'" !-Q -Q 7>Q DQ 'Q 8;6Q +)&EQ -+"%Q %%,Q 0+Q !+/,-Q 2Q '-+" . -"('Q-Q9:66Q+)&Q (+Q7;Q&"'Q'Q)%%-,Q0+Q+,.,)'Q"'Q7Q& Q( Q,,2Q

. +QI7;Q& Q FQ78E;@Q/N/Q %2+(%FQ7Q& Q,(+"Q"FQ)Q=E6FQ7Q& Q %8FQ 8Q& QJEQ(.-Q6E8Q Q( Q3"+('".&N,"%"Q,Q6E7Q&&QI"()Q+(.-,JQ0+Q Q'Q-+"%Q%2,",Q0,Q++"Q(.-Q2Q-0(Q+(.',Q( Q,!$"' Q (+Q76Q,(',Q-Q ,)Q

'Q;6QS Q Q"'Q,,2Q. +Q,.))%&'-Q0"-!Q;Q& Q9:EQ!Q+-"('Q &"1Q0,Q"'.-Q (+Q8Q!Q-Q96QDQ"'Q&"%Q "--"('Q'Q,-())Q2Q"' Q>66QS Q( Q 766@Q &-!'(%Q NQ 6E;@Q (+&"Q "EQ  -+Q /(+-1"' FQ ,&)%,Q 0+Q ,('"-Q (+Q 7;Q &"'Q 'Q '-+" . Q -Q &1"&.&Q ,)Q (+Q 76Q &"'EQ .)+'-'-,Q 0+Q -!'Q /)(+-Q "'Q Q )Q (''-+-(+Q I))'(+ Q (''-+-(+Q )%.,JQ .+"' Q :Q !Q 'Q>6QS Q( Q766@Q&-!'(%QNQ6E<;@Q (+&"Q"Q0+QQ-(Q-!Q+&''-Q,&)%EQ  -+Q '-+" . -"('Q -Q &1"&.&Q ,)Q (+Q 7;Q &"'FQ -!Q ,.)+'-'-,Q 0+Q -+', ++Q %,,Q/"%,EQ!Q--"('Q( Q)+'2%Q")!(,)!-Q)+(.-,Q2Q O Q0,Q ++"Q(.-Q,Q,+"Q"'Q."3O(%Q-Q%QI867<FQ,Q"3'JEQ-Q*.","-"('Q'Q /",.%"3-"('Q0,Q)+ (+&Q.,"' Q '$ Q,( -0+QI!+&(",!+Q"'-" " JEQ Q 'Q  Q ,.,-+-,Q 'Q Q 'Q Q ,-'+,Q 0+Q (-"'Q +(&Q !%('Q"(,"',Q 'EQQ

- 74 - #&$9 989 &$ %9!9 &"%9

)/-/33  #3

'32&Q ,,2,Q (+Q -!Q -+&"'-"('Q ( Q -!Q -(&-(Q ,Q $"'-"Q )+()+-",Q I()-"&%Q)Q'Q &Q'Q&1JQ0+Q/%()Q,Q-"%Q"'Q+#Q-Q%EQ867?QI%Q "Q (JQ .,"' Q 9Q S Q ( Q ).+" "Q %7FQ %8FQ %9Q 'Q -77Q '32&,EQ )98Q (',-+.-,Q0+Q.,Q-(Q)+(.Q<1O",O- Q+(&"''-Q'32&,QI%Q;JQ'Q )+(-"'Q ).+" "-"('Q +(&Q 59 " 9 "%&&Q %%,Q 0,Q ++"Q (.-Q .,"' Q '"$%O '"-+"%(-+"-"Q"QI"OJQ +(,QI" 'JQ,Q,+"Q"'Q+#Q-Q%EFQ867?QI%Q "3 (JEQ +(-"'Q (''-+-"('Q 0,Q -+&"'Q (+"' Q -(Q + (+Q &-!(Q I+ (+FQ7?=

Q

)/./332"3!3013  #3

'Q(O1)+,,"('Q'%2,",Q0,Q)+ (+&Q,Q)+/"(.,%2Q,+"QI!+3&Q-Q%EFQ 867>JEQ +" %2FQ 'Q 9 "Q %",-Q ( Q -(&-(Q Q ',Q 0,Q (&)"%Q 'Q .,Q -(Q +-+"/Q %%Q -!Q 1)+,,"('Q -Q /"%%Q (+Q " +'-Q -(&-(Q .%-"/+,N-",,.N-+-&'-Q "'Q -!Q " *#$%%Q -,Q I 3Q -Q %EFQ 8679JEQ .,*.'-%2FQ )"+0",Q +,('Q (++%-"(',Q -0'Q !Q Q 'Q 'Q !Q ,%-Q",()+'("Q"(,2'-!-"Q"').-Q 'QI%Q8JQ0,Q(&).-Q (+Q/ --"/Q 'Q +."-Q -",,.,FQ 'Q ",!+K,Q O-+', (+&-"('Q 0,Q .,Q -(Q -,-Q -!Q ,--",-"%Q ," '" "'Q( Q)"+0",Q(++%-"(',EQ"'%%2FQ)(,"-"/Q(++%-"(',QIρB6E;;JQ0+Q.,Q -(Q+0Q 'Q(O1)+,,"('Q'-0(+$,QI%Q9JEQ



)/&%/33"3  #3 #3 2 3

(-%QQ0,Q",(%-Q +(&Q +3O+"Q-",,.QI-(&-(Q +."-Q)+"+)Q(+Q,%"' ,JQ .,"' Q -!Q *) 79 9  !&9  9 &Q 0"-!Q -!Q *) 79 9 !%&$' !&%Q I+(& JQ (%%(0"' Q-!Q&'. -.++K,Q"',-+.-"(',FQ*.'-" "Q.,"' QQ !"$"# 9 4---9 %#&$"#"&" &$Q I!+&(",!+Q "'-" " JQ 'Q !$Q (+Q "'- +"-2Q 2Q  +(,Q %Q%-+()!(+,",EQ!Q$!%$#&"$9$%&9&$!9 9+!&%%9 &QI(!JQ 0,Q.,FQ(',"+"' Q-!Q)+(/"Q+(&&'-"(',FQ-(Q+/+,Q-+',+"Q6E;QS Q( Q 1-+-QQ"'-(Q86QS Q( QFQ,.,*.'-%2Q"%.-Q-'O (%Q'Q,-(+Q-QO86Q DQ (+Q .+-!+Q'%2,",EQ

%-"/Q &Q .''Q 0,Q /%.-Q /"Q %O"&Q .'-"--"/Q (%2&+,Q !"'Q -"('Q IO*JQ "'Q Q +-"('Q /(%.&Q ( Q 86Q S Q ('-"'"' Q 76Q S Q ( Q -!Q " !-2%+Q:>6QQ+'Q Q ,-+Q "1QI(!JFQ6E9QS Q( Q!Q,)" "Q (+0+Q 'Q+/+,Q)+"&+,Q'Q;QS Q( Q)+)+QEQ!QO*Q0,Q++"Q(.-Q('QQ

- 75 - #&$9 989 &$ %9!9 &"%9

&+ $9 14-9  8 9 9 +%& Q I(!JEQ !+Q "')''-Q "(%( "%Q +)%"-,Q ( Q !Q ('"-"('Q 'Q -Q %,-Q -0(Q -!'"%Q +)%"-,Q ( Q !Q "(%( "%Q +)%"-Q 0+Q )+ (+&FQ 'Q -!Q &'Q /%.,Q 0+Q .,Q (+Q .+-!+Q %.%-"(',EQ (+&%"3Q-+',+")-Q.'',Q0+Q%.%-Q,Q,+"Q)+/"(.,%2QI"&('FQ 8669JQ.,"' Q-(&-(Q1QI(%26: 677;66JQ(+QQI(%26= 68;9?6JQ,Q'( '(.,Q + +'Q ',EQ+"&+Q ""'",Q0+Q%.%-Q.,"' Q,+"%Q"%.-"(',Q( Q '(&"Q (+Q)%,&""QEQ+"&+,Q.,Q'Q ""'",Q+Q%",-Q"'Q%Q:EQ

!+Q "(%( "%Q +)%"-,Q ( Q Q ,&)%,Q +(&Q +((-,Q ( Q '('O&2(++!"3Q 'Q &2(++!"3Q-(&-(Q)%'-,Q0+Q$"'%2Q)+(/"Q2Q+EQ .'Q'-('"(Q 5)3O43EQ " !' 9 +"#$%' Q I/EQ "&%&,Q !.&,JQ )%'-,Q 0+Q "'(.%-Q 0"-!Q -!Q +.,.%+Q &2(++!"3%Q I JQ .' .,Q ,"#'%9 $$' $%9 IQ ;>Q ,-+"'JQ 'Q .%-"/-Q (+Q

Q

)/&&/3" 3 3  #332 3 3

+(-'(",FQ !%(+()!2%%,FQ -(()!+(%,Q 'Q )!2%%(*."'('Q 0+Q 1-+-Q "'Q 8Q & Q ))'(+ Q -.,Q +(&Q 7;Q & Q ( Q +3O+"Q -(&-(Q )+"+)Q -",,.FQ .,"' Q 7Q &%Q ( Q !1'N-('N&-!'(%Q 8G7G7Q ,Q 1-+-"('Q ,(%/'-Q 'Q 7;Q S Q ( Q '-!1'-!"'Q I" &JQ,Q"'-+'%Q('-+(%EQ -+Q/(+-1"' Q (+Q76Q,,Q'Q%2,"' Q-!Q-",,.Q0"-!Q:Q &&Q %,,Q ,Q (+Q 7Q &"'Q -Q 96Q 3Q "'Q Q %%' +%$9 Q I JFQ 766Q S Q ( Q 0-+Q 0+Q EQ !'FQ 7Q &"'Q ( Q ",,. 2,+Q 0,Q ++"Q (.-Q  "'Q 'Q ,&)%,Q 0+Q '-+" . Q (+Q 9Q &"'Q -Q 9F666Q +)&Q 'Q :Q DEQ + '"Q )!,Q I.))+JQ 0,Q $)-Q "'Q Q '0Q-.Q'Q-!Q+,-Q0,Q+O1-+-Q0"-!Q7Q& Q!1'N-('N&-!'(%Q8G7G7FQ7Q &"'Q( Q",,. 2,+Q'Q'-+" . "' Q (+Q;Q&"'Q-Q&1"&.&Q,)Q'Q:QDEQ!Q'0Q (+ '"Q)!,Q0,Q&"1Q0"-!Q-!-Q)+/"(.,%2Q1-+-Q'Q/)(+-Q (+Q7Q!Q.,"' Q Q #9 %+%& Q I))'(+ Q (''-+-(+Q )%.,JEQ 1-+-Q &-(%"-,Q 0+Q -!'Q (&)%-%2Q +O",,(%/Q "'Q 7;6Q S Q ( Q -('Q 'Q "%-+Q 0"-!Q 6E8Q S&Q "%-+,Q "'-(Q &+O(%(+Q8Q& Q %,,Q/"%,EQ)+-"('Q'Q--"('Q( Q",(%-Q(&)(.',Q0,Q )+ (+&Q +(&Q99QS Q( Q)+)+Q,&)%,Q.,"' Q'Q !&9./--9%$%9 9%+%& Q I "%'-Q !'(%( ",JQ ,Q ,+"Q )+/"(.,%2Q I+,+Q -Q %EFQ 8666JEQ !Q  Q *.")&'-Q0,Q(.)%Q-(QQ!(-(&-+"Q"(Q++2QIJQ--(+FQ%%(0"' Q-!Q --"('Q( Q-!Q .%%Q./O/","%Q,(+)-"('Q,)-+Q( Q+(-'(",Q'Q!%(+()!2%%,EQQ

- 76 -  " ++*+  !+

''( *'$+L&L( 1$$')-!&'&L/*L!&,!!L-+!& LL$-'*+&L,,'*L,L;;8L &L <:8L &%DL *+(,!.$1CL  *'%,' *%L .!+-$!2,!'&L &L ,L &$1+!+L /*L (*'*%L-+!& L, L"+""L+',/*CL

L

EJP&)*1' " ( ).-L

L*L.*1L *,-$L,'L -&L&,'&!'L 7(2J32LG+,!7&L0(*!%&,$L$L!5&J  HL'*L, L L+%($+L'L,'%,'L%1'** !2L*'',+CL &!$L+-(('*,L*'%L CL '+L '*5 -2J'*&L &L %%*+L 'L , L L *.!+L !+L *,$1L ((*!,CL  !+L /'*#L /+L -&L 1L *&,+L  :89J:89ALGJ :89=J8=;;HL &L , L &*$!,,L L ,$-&1L L *' *%L ,'L L !+L $+'L #&'/$ CL L&L L/*L+-(('*,L1L L$$'/+ !(+L9=:DL*+(,!.$1CL

P

FJP ! , ) -P

,*)P P ) P #,$-.$)-*)P L G:898HCL *!&-$*L %,$L $-+,*+L !&L ,$1+!+L 1L ,*(&'!L +1&, ++CL-*L(($CL %CLHBEL9=@=K9=A?CL #,4 (P KP ,") *:P KP $*, P KP "/ *P KP /%5)P KP /$*O *,"P KP ,,*P KP ,/%*O ) , PKP *4O'0, 4PKP$, ..*PP) P;( 4O;( 4P PG:89@HCL*&+*!(,'%L&$1+!+L !&L ,!++-L +,'*+L /!, L '&,*+,!& L *'!&+L -%-$,!'&L (*'.!+L &'.$L !&+! ,+L !&,'L ('*',&'!L!'+1&, +!+L&L* -$,!'&L-*!& L *'%'($+,L!' &+!+CL!L(CLHEL:@<;CL ( ).P KP)P#$ PKP*/1( -. ,P KP,$)"P P) P#//,$)&PLG:88>HCL &-,!'&L'L L $L +(!!L *&1$ *&1$L (1*'( '+( ,L +1&, +L &L %!++!'&L 'L GDHJKACL

- 77 -  " ++*+  !+

-'(P KP-. )PKP,8O'4*'P P) P*$* # PLG:89;HCL,!.&++L'L*-+-$*L %1'** !2$L-& !LG HL'*L!&-!& L, L-%-$,!'&L'L%"'*L*',&'!+DL  $'*'( 1$$+L &L,''( *'$L!&L *&L&L*L$L$,,-+CL(($CL !*'!'$CL!', &'$CLIGEL;99AK;9:@CL  &PKP*()PKP ,, )PKP/$4O*'P KP* ,8"/ 4O*) +$;)P KP ,/$-- (P P ) P ,)*05PLG:89;HCL *,*!2,!'&L'L, LL+1&, +L &L%!$1L!&L  !!+"CL $&,L '$CL!'$CLHBEL;A;K<9>CL $&P P) P )" P LG:88;HCL ,'$!L*'++L,$#L,/&L1,'+'$!L&L($+,!!$L(, /1+L'L !+'(*&'!L !'+1&, +!+EL &!!*,!'&$L ,*&+('*,L 'L !&,*%!,+L *'++L , L  $'*'($+,L &.$'(L%%*&CL* CL!' %CL!'( 1+CLDAEEL9<>K9=HCLL*(!L&L+&+!,!.L%, 'L'*L, L)-&,!,,!'&L'L%!*' *%L)-&,!,!+L 'L(*',!&L-,!$!2!& L, L(*!&!($L'L(*',!&J1L!&!& CL&$CL!' %CLGBEL:<@K=C:89@CL (,P L G9AA;HCL $&,L ( 1,'&L +1&, +L '%($0EL '%('&&,L &21%+DL %%-&'$' 1L &L !' &+!+CL , '+L&21%'$CLBADEL;=:K;>=CL #3/.PKP/)PKP#'$PKP $,PKPN,PKL4/,$PKP# )"PKP 4*/, &P KP +-. $)PKP#*/P KP*,.)*3PKP 1$)-*#)PKP#!! ,PKP .4$,PKP $PKP '-#PKP $P KP/," ,P P) P  (*,PPLG:89?HCL!+,!&,L% &!+%+L'L, L L(*',!&L!&L'&,*'$$!& L*',&'!L$-0CL $&,L 1+!'$CLAGCEL;?>K;@ACL # )P KP )P P ) P )"P L G:89=HCL ,*'%*!L *&1$G *&1$HL !( '+( ,L +1&, +L !+L !&.'$.L!&L%'&',*(&L!'+1&, +!+L!&L*!'(+!+L$'/*+CL '$CL$&,LHEL9<;HCL  !!+"L '&,!&+L,/'L!*&,!$$1L0(*++L*&+1$J!( '+( ,L+1&, +L &+CL CL!'$CL %CLBGAEL ???@CL *"*P P ) P (,P L G9A@?HCL -*!!,!'&L 'L !+'(&,&1$L (1*'( '+( ,L !+'%*+L &L *&1$ *&1$L (1*'( '+( ,L +1&, +L *'%L (+!-%L  *'%'($+,+L 1L !&!,1L  *'%,' *( 1CL!' !%CL!'( 1+CL,LGHI !(!+L !(!L ,CLIB@EL9<8K9<@CL ()/ '--*)P KP ,/)&P KP 0*)P  $%) P P ) P $ '- )P L G:88?HCL ',!& L (*',!&+L !&L , L $$L -+!& L* ,DL! &$L&L*$,L,''$+CL ,CL*','CLBELA=;KA?9CL  ,)) 4P KP$,*)PKP'#" *1P KP ,$($P KP *) -P KP(- '' (PKP$, PKP4 , )$&P KP)" ) ).PKP,$ ,-*)PKP 3PKP 3(*/,PKP-# PKP ($, O#(' 3P KP*.#)PP ) P$'-*)PPPG:88AHCL$0!$L,''$+L'*L &L0(*++!'&L&L+!$&!& L!&L,'%,'CL$&,L 1+!'$CL AEAEL9?:AK9?<8CL  ,)) 4P  KP ''*""P P ) P */'. ,P L G:888HCL *&+1$L !( '+( ,L +1&, +CL $,*!& L , L,$1,!L+!,L,'L+$,L'*L *&1$L!( '+( ,L,!.!,1CL!' %!+,*1LCIEL9=;9>K9=;:9CL

- 78 -  " ++*+  !+

 -. ,PKP#($ .PKP *#- PKP'. ,P KP$/'$)*PKP,(' 3P KP,- ,PKP/- PP) P .,&PLG:88:HCL,!%-$,!'&L'L*',&'!L%,'$!+%L!&L*-+-$*L%1'** !2$L*'',+CL$&,L BAFEL9<@K9=CL ,- ,PKP)!$--$P KP'& .P KP,/ - ' P KP/PKP ,,$-#PP) P,(' 3P LG:88?HCL &!(-$,!'&L 'L ( 1,'&L $.$+L !&L ,'%,'L *-!,EL ,+L '&L !+'(*&'!+DL ($+,!+DL &L !&,*%!*1L%,'$!+%CL$&,L$$LAIEL;9A@?K>A@CL ,- ,PKP*( ,PKP#$+.*)PKP $''-PKP $)*P KP $-1PKP,& PKP#/#PP) P ,(' 3P LG:88:HCL.$-,!'&L'L,*&+ &!L,'%,'L($&,+L0(*++!& L&L!,!'&$L( 1,'&L +1&, +L!&LL*-!,J+(!!L%&&*CL*'CL ,$CLCL!CLCLCLCLIIEL98A:K?CL ,- ,P KP #/#P P ) P ,(' 3P  L G:888HCL  1,'&L +1&, +L *'%L ,'%,'L G &  !+ !#"#HL $'*'($+,+JJ(*,!$L(-*!!,!'&L&L!' %!$L(*'(*,!+CL$&,LBAAEL;>9K;>ACL ,3P P ) P ,$ ,-*)P L G9AA;HCL &,!!,!'&L &L &,!L &$1+!+L 'L &'*%$L &L %-,&,L ( 1,'&L +1&, +L &+L 'L ,'%,'L 1L +)-&!& DL '%($%&,,!'&L &L 'J+-((*++!'&CL $&,L '$CL!'$CLBBEL=@AK>8:CL #*)P  KP )"'*$-O /,$)) P KP  ),3P P ) P $) , ))P L G:88=HCL *&+*!(,!'&$L 'J * -$,!'&L 'L +'&*1L %,'$!+%L &21%+L !&L *!'(+!+EL -&,!'&$L&L.'$-,!'&*1L !%($!,!'&+CL$&,L '$CL!'$CLEHEL::AK:<=CL  3P  KP ,$ 4 )P KP )P P 'P  KP /)"P KP *03P KP $-- ,PP) P# (P L G:89:HCL &-L ('!&,L %-,,!'&+L !&L , L &"+ !&"!+ 'L &L -+L !*&+L !&L *',&'!L'&,&,L-*!& L,'%,'L*-!,L*!(&!& CL '$CL*CLBIEL@89K@9:CL !! P KP,/P KP/-- P KP$ 'PKP.($..$O ,.P KP, P P) P''/-$PLG:888HCL  'DLL ,'%,'L*&+1$L(1*'( '+( ,L &L ! $1L0(*++L-*!& L*$1L*-!,L.$'(%&,CL$&,L  1+!'$CLABCEL9;=9K9;>:CL -PKP'*, -O7, 4PKP/, .O> .*PP) P* ,8"/ 4O*) +$;)P LG:88AHCL-&,!& L'*L($&,L &!,*!L '0!L +1&, +L (*'.!+L &/L .!&L 'L L &,*$L *'$L '*L ($+,!+L !&L &!,*!L '0!L %,'$!+%CL$&,L$$LBAEL9@J:;CL $*,$*PKP.$"'$)$P P) PM(,*-$*PLG:88@HCL 1,'&L+1&, +L &+L!&L,'%,'LG#+ &  !#+ )HL JL /L ,L '&L , L +,*-,-*+DL , L -L %!&'L !L +)-&+L &L , L 0(*++!'&L(,,*&+CLL CLBGEEL=:?K=;=CL *3.$PKP ,)5) 4O'0*P KP ,.8) 4O,8PKP ;+ 4O ''PP) P ;+ 4O *3P LG:88>HCL *'-,!'&L 'L ($-%L ('0L .!*-+L J*'L -&,!'&$$1L ,!.L '*L ( !L,*&+%!++!'&L!&LL ,*&+!&,J0(*++!'&L+1+,%CL L&L!*'$CLHGEL;<9;K:;CLLL ''PLG:89;HCL-!$!& L( 1$' &,!L,*+L*'%L%'$-$*L,L/!, L CL '$CL!'$CL.'$CLC@EL 9::AK9:;=CL  3) ,$&2P P) P) +* ' P LG:89:HCL1+,%,!L!&,!!,!'&L'L-&,!'&$L($&,L%'-$+L , *'- L, L!&, *,!'&L'L'%($%&,*1L,L+'-*+CL$&,L 1+!'$CLAEIEL@@

- 79 -  " ++*+  !+

$,**&P KP 4/($P KP )P KP &41P KP /&/-&$P P ) P *3-#$P L G:88=HCL -&,!'&$L &$1+!+L 'L ,/'L +'$&+1$L !( '+( ,L +1&, ++L *'%L   !!+ "CL !'+!L !', &'$L !' %CLFIEL=A:J>89CL <#) ,P KP */&$'P KP /)4P P ) P  ) (P L G:89>HCL *','&L *!&,+L &L (*','&J (&&,L,*&+('*,L(*'+++L!&L, L $'*'($+,CL*'&,CL$&,L!CLGEL9K?CL *) -P KP  , 4O*)-P KP * ,.-*)P KP ,(' 3P  P ) P ,- ,P L G:89;HCL -&,!'&$L  *,*!2,!'&L 'L $'& J !&L (*&1$L !( '+( ,L +1&, ++L *'%L ,'%,'CL !' %CL CL DDIEL ?:AK?<8CL *3, P KP  ,,*P KP -- '*)P KP  $") /,$)O ,)3P KP '0$P KP ,$)P P) P*'') PL G:88AHCL  $'*'($+,L (*','%!+L &L , L '%(*,%&,,!'&L 'L ($+,!!$L !+'(*&'!L !'+1&, ,!L (, /1+CL '$CL$&,LBEL99=CL ' P  P ) P $*0))*)$P L G:899HCL &,!+L &L '&,*'$L 'L ,'%,'L *-!,L *!(&!& L &L )-$!,1L ,,*!-,+CL&&-CL.CL&,CLDEEL<9K=ACL *$& O& -#$.PKP *3(PKP.PP) P"/,P PG9AA=HCL '$-$*L$'&!& L&L&-$',!L +)-&+L'L, L &+L'*L,/'L++&,!$L(*',!&+L'&+,!,-,!& LL &'.$L &21%L +1+,%L '*L (,(*&1$L!( '+( ,L+1&, +!+CL CL!'$CL %CLBG@EL9@;A>K9@<88CL *3(PKP%$(P KP)*PKP*$PKP *$& O& -#$.PKP.PKP $-#$)*PP) P"/,P L G9AA>HCL &,!!,!'&L 'L +! &!!&,L *+!-+L !&L , L +-+,*,L!&!& L+!,L'L#!+ !" "  #!L*&+1$L!( '+( ,L+1&, +CL!' %!+,*1LCEELA=;;K@CL '*, ). P KP ,.$) 4O,$P KP .)" P P ) P * ,$"/ 4O*) +$*)P L G:89?HCL $$-%!&,!& L '$'*+EL* -$,!'&L'L*',&'!L!'+1&, +!+L&L-%-$,!'&L1L$! ,CL-**CL(!&CL$&,L!'$CL CGEL:CL 4PKP,-- PKP )$)PKP*/43 )P P) P*/$) P PG:89;HCL '%(*!+'&L 'L &'*%$!2,!'&L %, '+L'*L!*&,!$L &L0(*++!'&L&$1+!+L!&L J)L0(*!%&,+CL'%%-&L &, *L !'$CLFEL:=@

- 80 -  " ++*+  !+

!&*1L .,'*+EL ! J(*'*%&L.,'*+L'*L*,!'&L'L-+!'&L '&+,*-,+L !&L ,*&+ &!L &$1+!+L'L($&,+CL!'+!CL!', &'$CL!' %CLGAEL:8A=K988CL $-,PKP $P KP /PKP #$)PP) P*"-*)P LG:89=HCL*',&'!L%,'$!+%L!&L($&,+CL '$CL$&,L HEL>@K@:CL #)/(P KP $,**&P KP  (($P KP -#$ P KP #.*P P ) P $-#$)*P L G9AA>HCL '&.*+!'&L 'L (*'-,L +(!!!,1L 'L * ,*!$L *&1$ *&1$J!( '+( ,L +1&, +CL &,!!,!'&L 'L ++&,!$L%!&'L!L*+!-+L'*L !&L$& , L,*%!&,!'&L'L(*&1$,*&+*+L*,!'&CL CL !'$CL %CLBGAEL9@@;9K?CL #)/(P KP,$.P KP&41PKP -#$ PKP& /#$PKP#.*PP) P$-#$)*PLG9AA>HCLL *'$L'L, L%!&'L!L*+!-L$',L'&L, L!, L('+!,!'&L'*L, L!*+,L+(*,,J*! L%',!L 'L *&+1$L !( '+( ,L +1&, +L '&L ,*%!&,!'&L 'L , L !&$L (*'-,CL CL !'$CL  %CL BGAEL ;8?<@K;8?=CL '$0 ,PLG:888HCL-!$,J1J++'!,!'&L '+L $'$CL ,-*LD@CEL>89K;CL )&,.*0P KP /$))PKP#1,.4P KP,PKP $PKP 1$)-*#)PKP($,PKP$*0))*)$P P) P $,-# ,"P L G:89>HCL *-!,L *',&'!J!!&,L %-,&,+L !&L ,'%,'L *.$L L -&,!'&L 'L , L ($+,!!$L!+'(&,&1$L!( '+( ,L!+'%*+LG  9HL!&L*',&'!L!'+1&, +!+CL$&,L CLHHEL@:K AHCL*& L(*',!&L +LL*'$L!&L( 1,'&L+1&, +L+,!$!2,!'&L!&L+/,(',,'CL!CL(CLFEL ;;=>;CL  , ''*P KP '(-P KP /,'.P KP ,.$4O'$ P KP #$''$+-P KP /'$ *P P ) P * ,$"/ 4O *) +$*)P L G:89>HCL !*&,!$L +-($+,!!$L $'$!2,!'&L &L ,-*&'.*L 'L &21%+L !&.'$.L!&L!+'(*&'!L!'+1&, +!+L!&L $'*'($+,+CL 'L&LAAEL89=8=;ACL #$''$+-P KP N/,$P KP  ,-# )4*)P KP $# ,-&3P L G:88@HCL  L   !!+ "L,1(L L +'(&,&1$L!( '+( ,L +'%*++L*L,* ,L,'L%-$,!($L+-$$-$*L'%(*,%&,+L&L .L'.*$((!& L-&,!'&+L!&L!+'(*&'!L!'+1&, +!+CL$&,L$$LB@LL>??J>A>CL /'$ *P KP  , ''*P P ) P * ,$"/ 4O*) +$*)P L G:89:HCL /L !&+! ,+L !&,'L ($&,L !+'(*&'!L %,'$!+%CL '$L$&,LELLA>?CL $#. ,PKP#!!PKP#)"PKP $+&PKP$)PKP <'') ,PKP#) PKP, $?PKP ,($-#PKP ) ,PKP*') PKP ,-# )4*)P KP/&' ,PP) P " )#, .P LG:89>HCL *,*!2,!'&L'L !'+1&, ,!L(, /1+L'*L, L(*'-,!'&L'L, L.'$,!$L '%',*(&+L L&L L!&L +&!CL$&,L$$LBHEL:>=9K:>>=CL * ,$"/ 4O*) +$*)P KP0'*-P KP*) .P KP*,*).PKP*( 4O*( 4P KP*,) ,*O ) 4P KP $(*)P KP '7) 4O ,.8) 4P KP'( $''O'*)-*PKP'*/PKP$*.P KP* ,$"*P KP ,$-P KP #/P P G:89@HCL L $'$L (*+(,!.L '&L *',&'!+EL ,'$!+%DL !', &'$' 1DL &L&!,+L'*L&-,*!,!'&L&L $, CL*' CL !(!L+CLG@EL>:KA;CL * ,$"/ 4O*) +$*)P P) P*,*).PLG:89=HCL*#!& L&/L *'-&L!&L, L* -$,!'&L'L, L *$1L+,(+L'L($&,L!+'(*&'!L!'+1&, +!+CL-**L(!&L$&,L!'$LBELL9?J::CL

- 81 -  " ++*+  !+

* ,$"/ 4O$'''*)PKP-PP) P* ,$"/ 4O*) +$*)P LG:88AHCL 1,'&L+1&, +L,!.!,1L '&,*'$+L, L!'+1&, +!+L'L*',&'!+L&L, L+-(($1L'L, !*L%,'$!L(*-*+'*+L!&L*#J *'/&L*!'(+!+L+$!& +CL$&,L CLF@EL<:HCL *-+-$*L %1'** !2$L +1%!'+!+L !&-+L+,*! '$,'&L!'+1&, +!+L-&*L*'- ,L&L!%(*'.+L*'- ,L,'$*&L!&L$,,-L &L,'%,'CL$&,DL$$L&.!*'&CLCIEL<<9K<=:CL /$4O*'P KP*()PKP &PKP,%P KP*'$)-P KP,!PKP '-#P KP /.$())P KP /#'())P KP $"' ,P KP ,/$-- (P KP * ,$"/ 4O*) +$*)P P ) P ,)*0P L G:89>HCL *!'(+!+L    L L L99L!+LL -L!+'21%L*)-!*L '*L, L(*'-,!'&L'L%'+,L( ','+1&, +!+J*$,L!+'(*&'!+CL /L 1,'$LB@ILL:=:J:>HCL L +!& $L *!'(+!+L &L &'+L ,/'L !*&,!$$1L ,* ,L *&1$ *&1$L!( '+( ,L+1&, +L!+''*%+CL$&,L 1+!'$CLAGBEL9;A;K9<8:C+L)) 2PBCL /$4O*'P P) P* ,$"/ 4O*) +$*)P LG:89:HCL*',&'!L!'+1&, +!+L!&L*!'(+!+ELL '$'*-$L(, /1CL*CLCLA@EL89=@CL ) ())P L G:89=HCL *',&'!+L 'L !', &'$' !$L !%('*,&CL .CL !' %CL & CL IL !', &'$CLADHEL<?CL +$,O $,P KP ..PKP '/-*0PKP'O -#/'(PKP,3 ()PKP$ *)$PP) P3'PLG:88@HCL *'0!+'%$L $'$!2,!'&L 'L *!'(+!+L !+'(&,&1$L !( '+( ,L !+'%*++L +- +,+L , ,L (*,L 'L , L ($&,L !+'(*&'!L %.$'&!L !L (, /1L !+L '%(*,%&,$!2L ,'L (*'0!+'%+CL $&,L 1+!'$LADHLL9:9AJ9::@CL $ 0 ,-PP) P$""$)-PLG:89CL $ 0 ,-PKP$'(PKP$) )PKP$-*)P KP ,+'/-P KP $PKP *+ 4PKP $''$(PKP (( ,.P KP< $)"P KP#*(+-*)P P) P$""$)-PLG:899HCL+,DL+$$L &*,!'&L'L ! J)-$!,1L (*',!&L%-$,!($L+)-&L$! &%&,+L-+!& L$-+,$L% CL '$CL1+,CL!'$CLGEL9K>CL $(*)PLG:88;HCLJ&EL*'++!& L)-&,!,,!.L*$J,!%LJL,CL!'!&'*%,!+LAIEL9<;AK 9<<8CL *)"P P) P*/'. ,PLG9AAHCL(!DL,*&+!&,L0(*++!'&L'L$-'*+&,L -+!'&L(*',!&+L!&L,''L($&,+L&L &*,!'&L'L+,$1L,*&+'*%L($&,+CL ,CL*','CLAEL :89AK:=CL ./ ,PKP '-#PKP(")P KP *#' )PKP'& PKP$--$ ,PP) P '. ,P L G:89@HCL ,*! '$,'&L$.$+L!&L!',L*'',+L*L,*%!&L1L&L&+,*$L+1%!'+!+J* -$,L$L'L , L   + L &L%!$1CL*'&,CL$&,L!CLIEL9K9@CL /)PKP/)PKP*PKP4 )$P KP (*,PP) P $P LG:89@HCL*',&'!L%,'$!+%L!&L($&,+EL  L*'$L'L($+,!+CL '$CL$&,LAAEL=@K?EL '$-$*L .'$-,!'&*1L &,!+L&$1+!+L.*+!'&L>C8CL '$CL!'$CL.'$CLC@EL:?:=K:?:ACL

- 82 -  " ++*+  !+

,-#$-P KP # ..$)$P KP )P P ) P */'. ,P L G9AAJ4L*+'$-,!'&CL!' %!+,*1LCCEL98@?9K98@??CL #*''P L G:89=HCL !'+1&, +!+L &L !'$' !$L -&,!'&+L 'L ,*(&'!+L !&L ($&,+CL &L .&+L !&L !' %!$L& !&*!& I!', &'$' 1DL((CL>;K98>CL ) ,(*. )P KP /,/" P P ) P /--*)P L G:88AHCL /L !&+! ,+L !&,'L + '*,J !&L (*&1$,*&+*++EL +,*-,-*$L ,-*+DL .'$-,!'&*1L !+,'*1L &L (',&,!$L '*L +$,!.L !& !!,!'&CL$$CL '$CL !L!CLFFEL;>@=K;>A=CL ,)*0PKP*()PP) P,/$-- (PLG:89;HCL ,/'*#L&$1+!+L'L, L L&L L(, /1+L '*L!+'(*&'!L+1&, +!+CL&&-L.L$&,L!'$LFDLL>>=J?88CL ,)*0P KP *()P P ) P ,/$-- (P L G:89:HCL ,*-,-*L &L 1&%!+L 'L , L !+'(*&'!L (, /1L&,/'*#CL '$CL$&,LEEL;9@K;;;CL '. ,P KP ./ ,P P ) P $--$ ,P L G:89=HCL .'$-,!'&L 'L *'',J+(!!L *',&'!L (*-*+'*L (, /1+L'*L('*',&'!L+! &$L!' &+!+CL$&,L!CLBCCEL9K98CL )"PKP# )PKP)PKP $P KP)"PP) P#)"PLG:89>HCL,*-,-*$L&$1++L'L+ '*,J !&L (*&1$,*&+*++L !&,!1L &L .'$-,!'&*!$1L'&+*.LL$L !&L  !!L($&,+CL '$L$&,LILL9A=J:8A9K99?88CL  $P KP  ,--*)P KP #.P KP ,$)$0--$)" ) ,P KP # )P KP " P KP *( ,0$'' P P ) P *,$) PLG:88>HCL*&+*!(,!'&$L''*!&,!'&L'L, L%,'$!L&,/'*#L!&L*!'(+!+CL$&,L  1+!'$CLADBEL?>:K??:CL /)P KP #)"P KP " -1,)P P ) P $P L G:89=HCL *',&'!L %,'$!+%L &L * -$,!'&L !&L '*,!-$,-*$L*'(+CL'*,!CL+CLBCL #)"P KP/PKP#*/P KP)"P KP#*P KP $/P KP*)"PKP/PKP/)"P P) P*PL G:89=HCL &,!!,!'&L 'L *&1$ *&1$L !( '+( ,L +1&, +L &+L *'%L   " &#+ % CL$&,L$$L(CLCDEL:9?AK@@CP #*/PKP)"PKP/. )-*#)P KP $)"P KP#)"PKP#)"PKP/ , 0PP) P /PLG:89?HCLL **-!,!& L (*',!&L 'L *&1$ *&1$L !( '+( ,L +1&, +L '&,*'$+L %,'$!L $-0L ,'/*L  $'*'( 1$$L!'+1&, +!+L!&L*!CL*'CL ,$CLCL!CLCLCLCLAADEL>@>>K>@?9CL

- 83 -  " ++*+  !+

#*/PKP '-#PKP)"PKP'0, 4PKP$ $" ,P KP/)PKP$-#PKP $/P KP#))#/- ,PP) P $P LG:89=HCL*!'(+!+LL(*',!&+L*L, L%"'*L('+,,*&+*!(,!'&$L* -$,'*+L'L( 1,'&L +1&, +L!&L'&,*'$$!& L*',&'!L!'+1&, +!+CL*'CL ,$CLCL!CLCLCLCLAABEL;==@K>;CL #/PKP/4/&$P KP$.*PKP& P KP)&P KP&"1PKP .-/ PP) P 1(/&$P JL G9AA?HCL*&1$ *&1$L(1*'( '+( ,L+1&, +L&'L1L, L&/$1L!+'$,L &L (L *'%L  !!+"L!+L$'$!2L!&L%!,' '&*!CL$&,L '$CL!'$CLCEEL;;9K;<9CL #/PKP/4/&$P KP& P KP)&P KP&"1PKP 1(/&$P P) P .-/ P LG9AA?HCL $'&!& L &L -&,!'&$L 0(*++!'&L 'L L &'.$L *&1$ *&1$L (1*'( '+( ,L +1&, +L &L *'%L  !!+"L!&L! +CL$&,L$$L 1+!'$CLCHEL;=?K>9CL */$) P KP 4P KP %,$P KP /0 ,)$ ,P KP ,-- P KP (*/)$P KP $,, ''*P P ) P */43 )P L G:89?HCL'%0(*++DLL-&!!L,'%,'L J)L($,'*%L'*L.!+-$!2,!'&L'L0(*++!'&L,DL $-+,*!& L&L'**$,!'&L&,/'*#+CL$&,L CLIBEL?:?K?;=CL P

P

P

P

P

P

P

L

- 84 -  --,-  -

./4 "!4 !

4

AtFPPS1 42 ------METDL------KSTFLNV------YSVLKSDLLHDPSFEF------AtFPPS2 1 ------MADL------KSTFLDV------YSVLKSDLLQDPSFEF------SlFPPS1 1 ------MADL------KKKFLDV------YSVLKSDLLEDTAFEF------SlFPPS2 115 ------AtSSUII 34 ------SSSSSAPGSLNFDL------SlG6/SlSSUII 18 ------SRMVM------QKAIQCSSSVSTASESVKFDL------AtGGPPS1 30 ------SEF------AtPPPS2 41 ------TSAASYDFKF------SlG4 35 -LSTRGTPNRSRSAGT--KLLLSSEETAEVIFRPKARAFCNSTGFSKNESEVINHEDILGEAGKT-TSVFDF------SlG5 57 ------KNESKVIKHENICRESGKTTRSVFDL------AtGGPPS3 23 TLKGRLSPANTRRLIRLLHIPIKSPVAAAIFARKDTREFLDSSIKLVNEE------DDFGFSFDF------AtGGPPS4 25 ------KPRLVRLFQPSLESRVKTALLSRKEVAAFLDSPIVEDEEG-EEREEEEEGGIVSNANFTFEF------SlG1 44 ------ASDVAN------SFQTF------QVKERDVSSKAEKFILPEFEF------AtGFPPS1 40 ------SA------LTSQ------DAGHMIQPEGKSNDNNSAFDF------AtGFPPS2 40 ------SA------LTSQ------GGRDMIPPEGKCNDHNSAFDF------AtGFPPS3 38 ------C------ALSS------QGGDMIPPEGKSNDRNSAFDF------AtGFPPS4 73 ------SlG2 64 ------VMEKEEFNF------SlG3 66 ------AMEF------AtGGPPS2 40 ------SVTARDE---GIIHNHFDF------AtGGPPS11 57 ------SSVVTKEDNLRQSEPSSFDF------SlSPS 45 ------CRQEFG------RIST-KASLTGL----APVLD-LNKSEKPI AtSPS1 72 ------FDLKQESKQPI AtSPS2 61 ------AVP------AKSKENSLVNGIGQDQTVMLNLRQESRKPI AtPPPS1/AtSPS3 89 ------SlDPS 56 ------LSGIGQQIHQQ-----STAVAE

CxxxC

AtFPPS1 ------TNESRLWVDRMLDYNVR------GG-KLNRGLSVVDSFKLLKQG------AtFPPS2 ------THESRQWLERMLDYNVR------GG-KLNRGLSVVDSYKLLKQG------SlFPPS1 ------TDDSRKWVDKMLDYNVP------GG-KLNRGLSVIDSLSLLKDG------SlFPPS2 ------SVIDSYSLLKEG------AtSSUII -----RTYWTTLITEINQKLDEAIP------VKHP-AGIYEAMRYSVLPQGPKRAPPVMCVAACELFGGD------SlG6/SlSSUII -----KTYWTTLISDINQKLDEAVP------VKYP-NQIYEAMRYSVLAKGAKRSPPIMCVAACELFGGN------AtGGPPS1 -----ISYMKNKAKSINKALDNSIPLCNNFVPLWEPVLEVHKAMRYTLLPGG-KRVRPMLCLVACELVGGQ------AtPPPS2 -----MSYMVNKAKSVNKALEEAV------PLREPELKIREAMRYTLLSDG-KRVRPMLCLAACELVGGQ------SlG4 -----KSYMVQKIKSINQALDAAVP------ISEP-IKFHEAMRYSLLSEG-KRICPVLCIAACELVGGQ------SlG5 -----KSYMLQKVKSVNQALDAAVP------IKEP-IKFHEAMRYSLLSEG-KRVCPVLCIAACELVGGQ------AtGGPPS3 -----KPYMISKAETINRALDEAIP------LIEP-LNIHKAMRYAILAGG-KRVRPILCLAACELVGGE------AtGGPPS4 -----DPYMMSKAESVNKALEEAIP------VGEP-LKIHEAMRYAILAAG-KRVRPILCLASCELVGGQ------SlG1 -----QEYMVTKAIKVNKALDEAIP------MQEP-IKVHEAMRYSLLAGG-KRVRPILCMASCEVVGGD------AtGFPPS1 -----KLYMIRKAESVNAALDVSVP------LLKP-LTIQEAVRYSLLAGG-KRVRPLLCIAACELVGGD------AtGFPPS2 -----KLYMIRKAESVNAALDVSVP------LREP-LTVQEAVRYSLLAGG-KRVRPLLCIAVCELVGGD------AtGFPPS3 -----KSYMIRKAESVSAALNVSVP------LQEP-LTIQEAVRYSLLAGG-KRVRPLLCIAACELVGGD------AtGFPPS4 ------KAESVSMALNVSVP------PQDP-LAIQEAVRYSLLAGG-KRVRPLLCIAACELVGGD------SlG2 -----KVYVAEKAICVNKALDEAIM------VKDP-PKIHEAMRYSLLAGG-KRVRPMLCLAACELVGGN------SlG3 -----KEYVLEKAVSVNKALESAVS------IKEP-VMIHESMRYSLLAGG-KRIRPMLCIAACELVGGV------AtGGPPS2 -----TSYMIGKANAVNEALDSAVS------LREP-IKIHEAIRYSLLARG-KRVRPVLCIAACELVGGE------AtGGPPS11 -----MSYIITKAELVNKALDSAVP------LREP-LKIHEAMRYSLLAGG-KRVRPVLCIAACELVGGE------SlSPS SLTNVFEVVADDLLTLNKNLHNIVG------AENPVLMSAAEQIFGA--GG-KRVRPALVFLVSRATAEM------AtSPS1 SLVTLFELVAVDLQTLNDNLLSIVG------AENPVLISAAEQIFGA--GG-KRMRPGLVFLVSHATAEL------AtSPS2 SLETLFEVVADDLQRLNDNLLSIVG------AENPVLISAAEQIFSA--GG-KRMRPGLVFLVSRATAEL------AtPPPS1/AtSPS3 ------ADELSLLSNKLREMVL------AEVPKLASAAEYFFKRGVQG-KQFRSTILLLMATALNVRVPEALIGES SlDPS EQVDPFSLVADELSLLTNRLRSMVV------AEVPKLASAAEYFFKLGVEG-KRFRPTVLLLMATALNVQIPRSAPQVD .

I

- 85 -  --,-  -

CLD FARMF

AtFPPS1 -----NDLTEQEVFLSCALGWCIEWLQAYFLVLDDI--MDNSVTRRGQPCWFRVPQVGMVAINDGILLRNHIHRILKKH- AtFPPS2 -----QDLTEKETFLSCALGWCIEWLQAYFLVLDDI--MDNSVTRRGQPCWFRKPKVGMIAINDGILLRNHIHRILKKH- SlFPPS1 -----KELTADEIFKASALGWCIEWLQAYFLVLDDI--MDGSHTRRGQPCWYNLEKVGMIAINDGILLRNHITRILKKY- SlFPPS2 -----KELTSEEIFQTSSLGWCIEWLQAYFLVLDDM--MDGSHTRRGQKCWFRLPKVGMIAANDGILLRNHIPRILKKH- AtSSUII ------R--L----AAFPTACALEMVHAASLIHDDLPCMDDDPVRRGKPSNHTVYGSGMAILAGDALFPLAFQHIVSHTP SlG6/SlSSUII ------R--L----AAFPTACALEMVHAASLIHDDLPCMDDDTTRRGLPANHTVFGVDMAILAGDALFPLGFQHIVSHTP AtGGPPS1 ------E--S----TAMPAACAVEMIHAASLILDDLPCMDDDSLRRGKPTNHKVFGEKTSILASNALRSLAVKQTLAST- AtPPPS2 ------E--S----TAMSAACAIEMLHASSLILDDLPCMDNDSLRRGKPTNHIVFGESIAILASQALIALAVQKTTSST- SlG4 ------E--S----TAMPAACGMEMIHAMCMMHDDLPCMDNDDLRRGKLSHHKVYGENVTVLAGYSLVALAFQHMTTAT- SlG5 ------E--S----TVMPAACGMEMIISMCLMHDDLPCMDNGDLRRGKLSNHKVFGENVTVLAGYSLVALAFEHMATTT- AtGGPPS3 ------E--R----LAIQAACAVEMIHTMSLIKDDLPCMDNDDLRRGKPTTHKVFGESVAILSGGALLALAFEHLTEA-- AtGGPPS4 ------E--N----AAMPAACAVEMIHTMSLIKDDLPCMDNDDLRRGKPTTHKVYGEGVAILSGGALLSLAFEHMTTA-- SlG1 ------E--S----LAIPAACAVEMIHTMSLVHDDLPCMDNDDLRRGKPTNHKVFGENTAVLAGDALLSLAFEHVATKT- AtGFPPS1 ------E--A----TAMSAACAVEMIHTSSLIHDDLPCMDNADLRRGKPTNHKVYGEDMAVLAGDALLALAFEHMTVV-S AtGFPPS2 ------E--A----TAMSAACAVEMIHTSSLIHDDLPCMDNADLRRGKPTNHKVYGEDMAVLAGDALLALAFEHMTFV-S AtGFPPS3 ------E--A----TAMSAACAVEMIHTSSLIHDDLPCMDDADLRRGKPTNHKEFGEDMAVLAGDALLALAFEHMTFV-S AtGFPPS4 ------E--A----TAMSAACAVEMIHTSSLIHDDLPCMDDADLRRGKPTNHKVFGEHMAVLAGDALLALAFEHMTVV-S SlG2 ------Q--G----NAMAAACAVEMIHTMSLIHDDLPCMDDDDLRRGKPTNHKVYGEDVAVLAGDALLAFAFEYLATAT- SlG3 ------E--S----TAMPAACAVEMIHTMSLIHDDLPCMDNDDLRRGKPTNHKIYGEDVAVLAGDALLALAFEHIATHT- AtGGPPS2 ------E--S----VALPAACAVEMIHTMSLIHDDLPCMDNDDLRRGKPTNHKVFGEDVAVLAGDALISFAFEHLATS-- AtGGPPS11 ------E--S----TAMPAACAVEMIHTMSLIHDDLPCMDNDDLRRGKPTNHKVFGEDVAVLAGDALLSFAFEHLASATS SlSPS --SGLKELTT----NHRRLAEIIEMIHTASLIHDDV--LDESDTRRGKETIHQLYGTRVAVLAGDFMFAQSSWYLANLEN AtSPS1 --AGLKELTT----EHRRLAEIIEMIHTASLIHDDV--LDESDMRRGKETVHELFGTRVAVLAGDFMFAQASWYLANLEN AtSPS2 --AGLKELTV----EHRRLGEIIEMIHTASLIHDDV--LDESDMRRGRETVHELFGTRVAVLAGDFMFAQASWYLANLEN AtPPPS1/AtSPS3 TDIVTSELRV----RQRGIAEITEMIHVASLLHDDV--LDDADTRRGVGSLNVVMGNKMSVLAGDFLLSRACGALAALKN SlDPS VDSFSGDLRT----RQQCIAEITEMIHVASLLHDDV--LDDADTRRGIGSLNFVMGNKLAVLAGDFLLSRACVALASLKN . * : :: **: :* *** . :

II III

CxxxC

AtFPPS1 F--RDKPYYVDLVDLFNEV--ELQTACGQMIDLITTFEGEKDLAKYSLSIHRRIVQYKTAYYSFYLPVACALLMAGENLE AtFPPS2 F--REMPYYVDLVDLFNEV--EFQTACGQMIDLITTFDGEKDLSKYSLQIHRRIVEYKTAYYSFYLPVACALLMAGENLE SlFPPS1 F--RPESYYVDLLDLFNEV--EFQTASGQMIDLITTLVGEKDLSKYSLSIHRRIVQYKTAYYSFYLPVACALLMVGENLD SlFPPS2 F--RGKPYYVDLLELFNEV--EFQTASGQMIDLITTHSGEKDLSKYSLPIHRRIVQYKTAYYSFYLPVSMM------AtSSUII PDLVPRATILRLITEIARTVGSTGMAAGQYVDLEGGPF------PLSFVQEKKFGAMGE-CSAVCGGLLGGATED SlG6/SlSSUII SDLVPEDRVLRVITEIARAVGSTGMAAGQFLDLEGGPN------AVDFVQEKKYGEMGE-CSAVCGALLAGASDE AtGGPPS1 SLGVTSERVLRAVQEMARAVGTEGLVAGQAADLAGERMSF-KNEDDELRYLELMHVHKTAVLVE-AAAVVGAIMGGGSDE AtPPPS2 FADVPPERILKTVQEMVKA--VEGLVAGQQADLAGEGMRF-DS-DTGLEHLEFIHIHKTAALLE-AAAVMGAIMGGGSDE SlG4 -KGVHPKTMARAVGELARLIGPEGAAAGQVLDLLCGGN-----SDTGLEELEYIHRHKTADFAE-AAAVVGAMIGGASEK SlG5 -KGVHPKTMVRAVGEVARLIGPEGAVAGQVVDMLCGDK-----CDTGLEELKYIHSHKTADFTE-AAAIVGALLGGASEE AtGGPPS3 --DVSSKKMVRAVKELAKSIGTKGLVAGQAKDLSSEGLEQ---NDVGLEDLEYIHVHKTGSLLE-ASAVIGAVIGGGTEK AtGGPPS4 --EISSERMVWAVRELARSIGTRGLVAGQAMDISSEGLDL---NEVGLEHLEFIHVHKTAVLLE-TAAVLGAIIGGGSDE SlG1 -QNVPPQRVVQAIGELGSAVGSEGLVAGQIVDLASEGK------QVSLTELEYIHHHKTAKLLE-AAVVCGAIMGGGNEV AtGFPPS1 SGLVAPEKMIRAVVELARAIGTTGLVAGQMIDLASERLNP---DKVGLEHLEFIHLHKTAALLE-AAAVLGVIMGGGTEQ AtGFPPS2 SGLVAPERMIRAVVELARAIGTTGLVAGQMIDLASERLNP---DKVGLEHLEFIHLHKTAALLE-AAAVLGVIMGGGTEE AtGFPPS3 NGLVAPERMIRAVMELAKAIGTKGLVAGQVTDLCSQGLNP---DDVGLERLEFIHLHKTAALLE-AAAVLGAIMGGGTEE AtGFPPS4 SGLVAPERMIRSVTELAKAIGTKGLVAGQVSDLCSQGLNP---YDVGLERLEFIHLHKTAALLE-AAAVLGAIIGGGTEE SlG2 -TGVSPSRILVAVAELAKSVGTEGLVAGQVADLACTGN-----PNVGLEMLEFIHIHKTAALLE-ASVVIGAILGGGADE SlG3 -KGVSSDRIVRVIGELAKCIGAEGLVAGQVVDIISEGI-----SDVDLKHLEFIHLHKTAALLE-GSVVLGAILGGAPDE AtGGPPS2 -TAVSPARVVRAIGELAKAIGSKGLVAGQVVDLTSGGMDQ---NDVGLEVLEFIHVHKTAVLLE-AATVLGAIVGGGSDE AtGGPPS11 SDVVSPVRVVRAVGELAKAIGTEGLVAGQVVDISSEGLDL---NDVGLEHLEFIHLHKTAALLE-ASAVLGAIVGGGSDD SlSPS L------EV---IKLISQV--IKDFASGEIKQASNLFD-----CDVGLDEYLLKSYYKTASLIA-ASTKGAAIFSEVGSD AtSPS1 L------EV---IKLISQV--IKDFASGEIKQASSLFD-----CDTKLDEYLLKSFYKTASLVA-ASTKGAAIFSRVEPD AtSPS2 L------EV---IKLISQV--IKDFASGEIKQASSLFD-----CDVKLDDYMLKSYYKTASLVA-ASTKGAAIFSKVESK AtPPPS1/AtSPS3 T------EV---VALLATA--VEHLVTGETMEITSSTE-----QRYSMDYYMQKTYYKTASLIS-NSCKAVAVLTGQTAE SlDPS T------EV---VCLLATV--VEHLVTGETMQMTTSSD-----ERCSMEYYMQKTYYKTASLIS-NSCKAIALLAGHSAE : . . *: : * .

IV V

- 86 -  --,-  -

SARM

AtFPPS1 NHIDVKNVLVDMGIYFQVQDDYLDCFADPETLGKI-GTDIEDFKCSWLVVKALERCSEEQTKILYENYGKPDP----SNV AtFPPS2 NHTDVKTVLVDMGIYFQVQDDYLDCFADPETLGKI-GTDIEDFKCSWLVVKALERCSEEQTKILYENYGKAEP----SNV SlFPPS1 KHVDVKKILIDMGIYFQVQDDYLDCFADPEVLGKI-GTDIQDFKCSWLVVKALELCNEEQKKILFENYGKDNA----ACI SlFPPS2 ------FLPNMGIYFQVQDDYLDCFADPEVLGKI-GTDIQDFKCSWLVVKALEHCNDEQKKLLHENYGKDDP----ACV AtSSUII ELQSLRRYGRAVGMLYQVVDDITEDKKKSYDGG--AEK-----G------MMEMAEELKEKAKKELQ------SlG6/SlSSUII EIQHMRKYGRAVGVLYRVVDDILEAKKTENKTEGKKKK-----GKSYVSVYGIEKAVKVAEDLRAQAKRELD------AtGGPPS1 EIERLKSYARCVGLMFQVMDDVLDETKSSEELGKTAGKDLITGKLTYPKVMGVDNAREYAKRLNREAQEHLQ------AtPPPS2 EIERLRSYARCIGLMFQVVDDVLDVTKSSEELGKTAGKDLIAGKLTYPRLMGVEKSKEYAERLNIEAREHLL------SlG4 EINRLEKFSKCLGLLFQVVDDILDVTKSSEQLGKTAGKDLLANKLTYPKMIGIDKSKEYAQKLNKEAKEQLV------SlG5 EINRVRKFSQCFGLMYQVVDDILDVTKSSEQLGKTAGNDLLANKLTYPKMIGIDKSKEYAQKLSKEAKEQLV------AtGGPPS3 EIEKVRNFARCIGLLFQVVDDILDETKSSEELGKTAGKDKVAGKLTYPKVIGVEKSKEFVEKLKRDAREHLQ------AtGGPPS4 EIESVRKFARCIGLLFQVVDDILDETKSSEELGKTAGKDQLAGKLTYPKLIGLEKSKEFVKRLTKDARQHLQ------SlG1 DVERMRSYARCIGLLFQVVDDILDVTKSSDELGKTAGKDLITDKATYPKLMGLEKARQYAGELMAKAMNELS------AtGFPPS1 EIEKLRKYARCIGLLFQVVDDILDVTKSTEELGKTAGKDVMAGKLTYPRLIGLEGSREVAEKLRREAEEQLL------AtGFPPS2 EIEKLRKYARCIGLLFQVVDDILDVTKSTEELGKTAGKDVMAGKLTYPRLIGLERSKEVAEKLRREAEEQLL------AtGFPPS3 EIEKLRKYARCIGLLFQVVDDILDVTESTKELGKTAGKDVMAGKLTYPRLIGLERSREVAEKLRREAAEQLL------AtGFPPS4 EIQKLRKYGRCIGLLFQVVDDIIDVTESTEELGKTAGKDVMARKLTYPRLIGLERSREVAEKLRREAAEQLL------SlG2 EVDKLRRFAQCIGLLFQVVDDILDVTKSSSELGKTAGKDLAVDKTTYPKLLGLEKAKEFAAELNGEAKQQLA------SlG3 DVEKLRKFARCIGLLFQVVDDILDVTKSSQQLGKTAGKDLVADKVTYPKLIGIEKSREFAEELNKEAKAQLV------AtGGPPS2 EVEKLRRFARCIGLLFQVVDDILDVTKSSEELGKTAGKDLIADKLTYPKLMGLEKSKDFADKLLSDAHEQLH------AtGGPPS11 EIERLRKFARCIGLLFQVVDDILDVTKSSKELGKTAGKDLIADKLTYPKIMGLEKSREFAEKLNREARDQLL------SlSPS ISEQMFQYGRNLGLSFQIVDDILDFTQSAAQLGKPAGSDLAKGNLTAPVLFALEKEPNLRNIIESEFHDAGSLEEAINLV AtSPS1 VTEQMYEFGKNLGLSFQIVDDILDFTQSTEQLGKPAGSDLAKGNLTAPVIFALEREPRLREIIESEFCEAGSLEEAIEAV AtSPS2 VAEQMYQFGKNLGLSFQVVDDILDFTQSTEQLGKPAANDLAKGNITAPVIFALENEPRLREIIESEFCEPGSLEEAIEIV AtPPPS1/AtSPS3 VAVLAFEYGRNLGLAFQLIDDILDFTGTSASLGKGSLSDIRHGVITAPILFAMEEFPQLREVVDQVEKDPRNVDIALEYL SlDPS VSVLAFDYGKNLGLAFQLIDDVLDFTGTSATLGKGSLSDIRHGIVTAPILYAMEEFPQLRTLVDRGFDDPVNVEIALDYL .*: ::: ** : . :

VI

AtFPPS1 AKVKDLYKELDLEGVFMEYESKSYEKLTGAIEGHQSKAI---QAVLKSFLAKIYKRQK------384 AtFPPS2 AKVKALYKELDLEGAFMEYEKESYEKLTKLIEAHQSKAI---QAVLKSFLAKIYKRQK------342 SlFPPS1 AKIKALYNDLKLEEVFLEYEKTSYEKLTTSIAAHPSKAV---QAVLLSFLGKIYKRQK------342 SlFPPS2 AKVKALYNDLKLEDVYLEYERSTYEKLINSIEAQPSKAV---QAVLKSFLAKIYKRQK------389 AtSSUII ------V----FDNKYGGGDT-----LVPLYTFVDYAAHRHFLLPL-- 326 SlG6/SlSSUII ------GLEKYGDK-----VMPLYSFLDYAADRGFSIDGQV 334 AtGGPPS1 ------G----FDS-----DK-----VVPLLSLADYIVKRQN------336 AtPPPS2 ------G----FDI-----DK-----VAPLVSLADYIVNRQN------344 SlG4 ------G----FDP-----EK-----SAPLLAMADFVLHRQK------393 SlG5 ------G----FAP-----EK-----AAPLLAMTDFLLHRQK------373 AtGGPPS3 ------G----FDS-----DK-----VKPLIALTNFIANRNH------372 AtGGPPS4 ------G----FSS-----EK-----VAPLVALTTFIANRNK------376 SlG1 ------Y----FDY-----AK-----AAPLYHIASYIANRQN------365 AtGFPPS1 ------G----FDP-----SK-----AAPLVALASYIACRHN------360 AtGFPPS2 ------G----FDP-----SK-----AAPLVALASYIACRHN------360 AtGFPPS3 ------G----FDS-----DK-----AAPLVALASYIACRHN------357 AtGFPPS4 ------G----FDS-----NK-----VAPLVALASYIACRHN------360 SlG2 ------A----FDS-----HK-----AAPLIALADYIANRQN------363 SlG3 ------G----FDQ-----EK-----AAPLFALANYIAYREN------360 AtGGPPS2 ------G----FDS-----SR-----VKPLLALANYIAKRQN------347 AtGGPPS11 ------G----FDS-----DK-----VAPLLALANYIAYRQN------371 SlSPS KSCGGIQRAQDLAKEKADLAMQN----LKCLPSSPFQAA------LEEIVKYNLERIE------398 AtSPS1 TKGGGIKRAQELAREKADDAIKN----LQCLPRSGFRSA------LEDMVLYNLERID------406 AtSPS2 RNRGGIKKAQELAKEKAELALKN----LNCLPRSGFRSA------LEDMVMFNLERID------417 AtPPPS1/AtSPS3 GKSKGIQRARELAMEHANLAAAA----IGSLPETDNEDVKRSRRALIDLTHRVITRNK------422 SlDPS GKSRGIQRTRELARKHASLASAA----IDSLPESDDEEVQRSRRALVELTHRVITRTK------415 * : *

VII

" 4 (/4 "4 !4 4    4 4 !!4 4  ! /4 ) ($ J '%)"J  "!"(J+'J&&J#)(J)'"J  - -B(($'@GG+++>>>) G## 'G!'G )'( #GCJ+(J ) (J '(("'/4 J $&(J (&("J $$('J +&J &!#*J #&J (J $&#("J  "!"(>J )!&'J(J(J"""J#JJ'%)"J"(J(J&'(J!"#JJ ">J )!&'J(J(J "J #J J '%)"J "(J $&#("J "(>J #"'J &$&'"(J (J '$'>J J '*"J #!"'J  -J #"'&*J "J 'J &J )"& ">J J "(&(#"J ,,,J B,J :J "-J -&#$#J &')CJ !#('J&J (J"J$" >JJ( -(J!#('J JB&'(J'$&((H&J!#(CJ"J J B'#"H'$&((J&J!#(CJ&J#,J"J  >J )((J J'"()&'J&J"(J"J&>J J  J B"H "(J (&!"(#"CJ &#"J 'J !& J "J  )?J  ("J (J &')'J (J $#'(#"'JI3J"JG#&JH4J& (*J(#J(J J+J*J"J'#+"J(#JJ&( J#&J(J" J "(J #J (J '-"('.J $&#)(>J J ".-!'J *J J !(#""J B CJ "J ((J $#'(#"J B#,J"J )C>JJ J

- 87 -  --,-  -

4 GFP Chlorophyll Merge A 4

4

4 50 μm 4

4

4

20 μm 4

4 B

4

4 50 μm 4

4

4

4 20 μm

" 4 )/4 "4 "" 4 '!4 4 !4 +3 4 " 4  !/4 #"# J !&#'#$-J !'J#J *- - J 'J(&"'"( -J,$&''"J(J 3J'##&!J)'J(#JJ&J'#+">J J &'(J # )!"J '#+'J &"J  )#&'"J &#!J ?J (J '#"J '#+'J &J )(# )#&'"J &#!J  #&#$- J "J (J (&J &$&'"('J (J #*& -J #J (J (+#J "" '>J (#"J 12J'#+'J(J!#'(J #!!#" -J#'&*J # .(#"J#J(J 3HJ$&#("JB"J(J-(#'# C?J+&'J'(#"J124'#+'J $ '( J # .(#"J#J(J$&#("J"J'#!J '>J(J&'J"(J(J!"(#"J#J(J!'>J 4

4

4

4

4

4

4

4

4

4

4

- 88 -  --,-  -

4 A 100 aa KDa 4 40.3 4 AtG11

4 SlG1 41.3

4 SlG2 38.2

4 SlG3 38.2

4 6xHis-tag 4 B 4 Lys FT Washes SlG1 Lys FT Washes SlG2

4

4

4

4

4

4

4 Lys FT Washes SlG3 Lys FT Washes AtG11

4

4

4

4

" 4 */4 " !4 4 !4 -% 3!4  4  ! /4 124 !(J &$&'"((#"J #J (J $)&J J ".-!J *&'#"'J B  "J (J$&(J$ '(H(&("J $$(J "J )'J (#J J 5,'H(J "J (J H(&!" J "C>J 124 ##!''H )J '(""J  'J '#+"J (J $)&(#"J #J (J "(J (&)"(J $&#("'>J J".-!'J+&J$)&J'J '&J B&J (J  >?J 1/07?J J %4 *CJ&#!J'# ) J -'('JB -'CJ#J*- -  -  '- #*&$&#)"J(J&#!""(J$&#(">J -'('J+&J'$&( -J")(J+(J H J'J "J(J'(""J#J(J #+H(&#)JBCJ'#+'J((J(J&#!""(J$&#("J+'J&("J"J(J H J # )!">J (&J '*& J +''J +(J 1/J ! J !.# J (#J &!#*J "#"H'$J $&#("'J ((J (#J (J # )!"?J 'H(J ".-!'J +&J  )(J )'"J 04/J ! J !.# >J )&J $&#("'J+&J("J' (?J%)"(J"J'(#&J+(J -&# J3/8J(J;JH1/J#> 4

4

4

- 89 -  --,-  -

100

Root 50

0

G1 G2 G3 100

Leaf 50 Relative expression Relative (Tomato eFP Browser) (Tomato 0 G1 G2 G3 100

50 Ripe fruit Ripe

0

PSY1Y1 PSY2Y2 PSY3 SlG1G1 SlG2G2 SlG3

" 4 +/4    !4 # 4 4 4 4  !4 4 4 4 4  !4!!4 ! " /4 J ,$&''#"J (J +&J &(&*J &#!J (J  -  - !J ('J B(($@GG&>)(#&#"(#>G$E(#!(#GH"G$>C>J &$'J '#+J (J (&"'&$(J * 'J #J %,'J"J %,'--&##('?J *'J"J&J&$J&)('>J') ('J&J&$&'"(J'J(J$&"(J #J,$&''#"J#JJ"J$&J('')>J)'?J0//8J#J(J,$&''#"J#JJ"J&$&'"('J(J ')!J#J(J,$&''#"J"JJ' (J('')>J %J"?J#&J,!$ ?J'J#" -J,$&''J"J&)('J B0//8J#J,$&''#"CJ+ J&#)"J(J648J#J &J,$&''#"J'J((J"J&)('J"J(J148J"J *'>J J J0J#&J''#"'>J

4

4

4

4

4

4

4

4

- 90 -  --,-  -

Phytoene Lycopene

* * ** ** * ** *** *** LycopeneLyycocoppeennee

-Carotene Lutein

Beta-caroteneBeBetaa-cacarootetenene Relative carotenoid levels carotenoid Relative

Violaxanthin Neoxanthin WT #10.2 35S:pGFP #19.1 #3.8 #3.9 35S:SlG2 #11.1 #6.1 35S:SlG3 #23.1

MG O R MG O R

" 4 ,/4 !4# 44 "! 4 4)4!  4 /4 * 'J#J"*) J&#("#'J +&J!')&J"J!()&J&"JB C?J#&"JB CJ"J&JBCJ&)(J $&&$J '!$ 'J #J ?J ') + ?J') + &J"J') + 'J "'>J(J '(J(+#J"$""(J(&"'"J "'J$&J#"'(&)(J +&J )'J #&J (J  J " -''>4 J &$'J &$&'"(J (J !"J 9J J #J (&J "$""(J # # J &$ ('J B":2C>J  )'J &$&'"(J $&"(J & (*J (#J (#( J &#("#J #"("('J #J J J&)('>J'(&' 'J"(J'""(J&"'J!#"J!"'J& (*J(#JJ'!$ 'J"J J &$""J '(J B#"H+-J  J +(J )""((D'J !) ($ J #!$&'#"'J ('(?J F$;/>/4?J FF$;/>/0C> 4

4

4

4

4

4

4

- 91 -  --,-  -

4

Total Chlorophylls Total Tocopherols

MG O R MG O R

4 Phylloquinone WT 4

Relative metabolic levels metabolic Relative #10.2 35S:pGFP #19.1 #3.8 #3.9 35S:SlG2 #11.1 #6.1 35S:SlG3 #23.1 MG O R 4

4" 4 -/4  &04 ! 4 4 &"4 # 4 4  "! 4  4 )4 !  4  / * 'J #J (#( J  #&#$- '?J (#( J (##$&# 'J "J $- #%)"#"J+&J" -.J"J(J$&&$J#J 4!()&J&"JB C?J#&"JB CJ"J&J&)('J#J?J') + ?J') + &J"J') + 'J "'>JJ'! '!$ 'J'J(#'J)'J#&J&#("#J" -''J"J)&J4J+&J)'>4J&$'J&$&'"(J(J!"J9 4 J #J (&J "$""(J # # J &$ ('J B":2C>J  )'J &$&'"(J$&"(J#J(#( J#"("(' 4& (*J(#JJ * 'J"J J&)('>J #J'""(J&"'J!#"J!"'J& (*J(#JJ'!$ ' "JJ&$""J'(J+&J#)"JB#"H+-J J+(J)""((D'J!) ($ J#!$&'#"'J('(C>

4

4

4

4

4

4

4

4

4

4

- 92 -  --,-  -

4

4 (/4  !4 4    4 1!24 4 !!4 1 24  &!    4 " 4  4 "4  &!4 &  /4 &*(#"'@J J B$&"- (&"'&'CAJ BC?J &"'- J $#'$( B'-"('CAJ BC?J&"- &"- J$#'$(JB'-"('CAJ BC?J&"- &"'- J$#'$(J B'-"('CAJAJ'# "'- J$#'$(J'-"('AJ?J$# -$&"- J $#'$(J '-"('AJ ?J $&"- J $#'$(J '-"('AJ ?J '! J '))"(AJ ?J -(#'# AJ ?J "#$ '!J &() )!AJ ?J !(##"&AJ?J$ '(J

Protein Predicted Subcellular PT Gene ID Reference length (aa) TP (aa) localization FPP synthases AtFPPS1 At5g47770 384 41 M+C Cunillera et al., 1996; 1997 AtFPPS2 At4g17190 342 - C Cunillera et al., 1996; Keim et al., 2012 SlFPPS1 Solyc12g015860 342 - C** Gaffe et al., 2000 SlFPPS2 Solyc10g005810/20 389 114 M** Gaffe et al., 2000 GGPP synthases Beck et al., 2013; Nagel et al., 2015; AtGGPPS1 At1g49530 336 29 M Wang et al., 2016 Beck et al., 2013; Nagel et al., 2015; AtGGPPS2 At2g18620 347 39 P Wang et al., 2016 AtGGPPS3 At2g18640 372 22 C-ER Beck et al., 2013; Wang et al., 2016 AtGGPPS4 At2g23800 376 24 C-ER Beck et al., 2013; Wang et al., 2016 Beck et al., 2013; Nagel et al., 2015; AtGGPPS11 At4g36810 371 56 P+C Ruiz-Sola et al. 2016b (Annex 2) SlG1* Solyc11g011240 365 43 P Ament et al., 2006; This study SlG2* Solyc04g079960 363 63 P Ament et al., 2006; This study SlG3* Solyc02g085700 360 65 P This study SlG4** Solyc02g085710 393 34 C-ER** This study SlG5** Solyc02g085720 373 56 M** This study GFPP synthases Beck et al., 2013; Nagel et al., 2015; AtGFPPS1 At3g14530 360 39 P Wang et al. 2016 Beck et al., 2013; Nagel et al., 2015; AtGFPPS2 At3g14550 360 39 P Wang et al. 2016 Beck et al., 2013; Nagel et al., 2015; AtGFPPS3 At3g29430 357 37 P Wang et al. 2016 Beck et al., 2013; Nagel et al., 2015; AtGFPPS4 At3g32040 360 72 P Wang et al. 2016 Long-chain PTs AtSPS1 At1g78510 406 71 C-ER Jun et al., 2004; Hirooka et al., 2005 AtSPS2 At1g17050 417 60 P Jun et al., 2004; Hirooka et al., 2005 AtPPPS1/AtSPS3 At2g34630 422 88 P Ducluzeau et al., 2012 AtPPPS2 At3g20160 344 40 P Beck et al., 2013; Wang et al., 2016 SlSPS Solyc07g061990 398 44 P Jones et al., 2013 SlDPS Solyc08g023470 415 55 M Jones et al., 2013 Type II SSUs AtSSUII At4g38460 326 33 P Wang and Dixon, 2009; Chen et al., 2015 SlG6 / SlSSUII** Solyc09g008920 334 17 P** This study *Activity reported in this work **Prediction. Needs experimental confirmation 4 4

- 93 -  --,-  -

44 )/4  !4 4  !4   3 !4  4 " 4  4 !4 !!4  4  4 &  /4 &#$''J4 "'J +&J )'J 'J %)&'J (#J '&J #&J (#!(#J #!# #'J "J J (*$- B(($'@GG#"#&!('>$'>)"(>G$ .G*&'#"'G$ .E*3E#('GCJ "J " #- B4(($'@GG$-(#.#!>>#>#*G$.G$#&( >(! =C>J"'J&J#&".J-J$(+-'>J

Input gene Gene ID Description

MEP pathway DXS1 Solyc01g067890 1-deoxy-D-xylulose-5-phosphate (DXP) synthase 1 DXS2 Solyc11g010850 1-deoxy-D-xylulose-5-phosphate (DXP) synthase 2 DXS3a Solyc01g028900 1-deoxy-D-xylulose-5-phosphate (DXP) synthase 3a DXS3b Solyc08g066950 1-deoxy-D-xylulose-5-phosphate (DXP) synthase 3b DXR1 Solyc03g114340 DXP reductoisomerase 1 DXR2 Solyc06g060860 DXP reductoisomerase 2 MCT Solyc01g102820 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase CMK Solyc01g009010 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase MDS Solyc08g081570 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase HDS Solyc11g069380 4-hydroxy-3-methylbut-2-enyl diphosphate synthase HDR Solyc01g109300 4-hydroxy-3-methylbut-2-enyl diphosphate reductase IDI1 Solyc08g075390 Isopentenyl diphosphate 1 IDI2 Solyc05g055760 Isopentenyl diphosphate isomerase 2 IDI3 Solyc04g056390 Isopentenyl diphosphate isomerase 3 GGPP biosynthesis G1 (SlG1*) Solyc11g011240 GGPP synthase 1 G2 (SlG2*) Solyc04g079960 GGPP synthase 2 G3 (SlG3*) Solyc02g085700 GGPP synthase 3 G4 (SlG4**) Solyc02g085710 Putative GGPP synthase 4 G5 (SlG5**) Solyc02g085720 Putative GGPP synthase 5 Carotenoid biosynthesis PSY1 Solyc03g031860 Phytoene synthase 1 PSY2 Solyc02g081330 Phytoene synthase 2 PSY3 Solyc01g005940 Phytoene synthase 3 PDS Solyc03g123760 Phytoene desaturase ZDS Solyc01g097810 Zeta-carotene desaturase Z-ISO Solyc12g098710 15-cis-zeta-carotene isomerase CRTISO1 Solyc10g081650 Carotenoid isomerase 1 CRTISO2 Solyc05g010180 Carotenoid isomerase 2 LCY-B1 Solyc04g040190 Lycopene beta-cyclase 1 LCY-B2 Solyc10g079480 Lycopene beta-cyclase 2 LCY-E Solyc12g008980 Lycopene epsilon-cyclase BCH1 Solyc06g036260 Carotene beta-hydroxylase 1 BCH2 Solyc03g007960 Carotene beta-hydroxylase 2 CYP97A3 Solyc04g051190 Carotene hydroxylase (cytochrome P450) CYP97B3 Solyc05g016330 Carotene hydroxylase (cytochrome P450) CYP97C1 Solyc10g083790 Carotene hydroxylase (cytochrome P450) ZEP1 Solyc06g060880 Zeaxanthin epoxidase 1 ZEP2 Solyc02g090890 Zeaxanthin epoxidase 2 VDE Solyc04g050930 Violaxanthin de-epoxidase NSY1 Solyc02g089050 Neoxanthin synthase 1 NSY2/ABA4 Solyc02g063170 Neoxanthin synthase 2 NSY3 Solyc03g034240 Neoxanthin synthase 3 Gibberellin (GA) biosynthesis CPS1 Solyc06g084240 Ent-copalyl diphosphate synthase 1 CPS2 Solyc08g005710 Ent-copalyl diphosphate synthase 2 CPS3 Solyc09g065230 Ent-copalyl diphosphate synthase 3 KS1a Solyc07g066670 Ent-kaurene synthase 1a KS1b Solyc08g005720 Ent-kaurene synthase 1b GA3 Solyc04g083160 Ent-kaurene oxidase

- 94 -  --,-  -

KAO1 Solyc01g080900 Ent-kaurenoate oxidase 1 KAO2 Solyc08g007050 Ent-kaurenoate oxidase 2 KAO3 Solyc12g006460 Ent-kaurenoate oxidase 3 KAO4 Solyc10g007860 Ent-kaurenoate oxidase 4 GA20ox1 Solyc03g006880 Gibberellin 20-oxidase 1 GA20ox2 Solyc09g009110 Gibberellin 20-oxidase 2 GA20ox3 Solyc11g072310 Gibberellin 20-oxidase 3 GA20ox4 Solyc06g035530 Gibberellin 20-oxidase 4 GA20ox5 Solyc01g093980 Gibberellin 20-oxidase 5 GA20ox6 Solyc06g050110 Gibberellin 20-oxidase 6 GA20ox7 Solyc11g013360 Gibberellin 20-oxidase 7 GA3ox1 Solyc06g066820 Gibberellin 3-oxidase 1 GA3ox2 Solyc03g119910 Gibberellin 3-oxidase 2 GA3ox3 Solyc00g007180 Gibberellin 3-oxidase 3 GA3ox4 Solyc01g058250 Gibberellin 3-oxidase 4 GA3ox5 Solyc05g052740 Gibberellin 3-oxidase 5

Orange proteins Or1 Solyc03g093830 Orange 1 Or2 Solyc09g010110 Orange 2 Strigolactone (SL) biosynthesis MAX3 (CCD7) Solyc01g090660 More axillary branches 3 (carotenoid cleavage dioxygenase 7) MAX4 (CCD8) Solyc08g066650 More axillary branches 4 (carotenoid cleavage dioxygenase 8) MAX1 Solyc08g062950 More axillary branches 1 Abscisic acid (ABA) biosynthesis ABA1/ZEP Solyc02g090890 Zeaxanthin epoxidase 2 ABA4/NSY2 Solyc02g063170 Neoxanthin synthase 2 NSY4 Solyc02g086050 Neoxanthin synthase 4 NSY3 Solyc03g034240 Neoxanthin synthase 3 NSY5 Solyc06g074240 Neoxanthin synthase 5 NCED2 Solyc08g016720 9-cis-epoxycarotenoid dioxygenase 2 NCED3 Solyc07g056570 9-cis-epoxycarotenoid dioxygenase 3 NCED6 Solyc05g053530 9-cis-epoxycarotenoid dioxygenase 6 ABA2a Solyc04g071940 Xanthoxin dehydrogenase ABA2b Solyc04g071960 Xanthoxin dehydrogenase ABA2c Solyc10g085380 Xanthoxin dehydrogenase ABA2d Solyc11g018600 Xanthoxin dehydrogenase AAO3a Solyc11g065920 Abscisic aldehyde oxidase 3a AAO3b Solyc11g065930 Abscisic aldehyde oxidase 3b ABA3 Solyc07g066480 Molybdenum sulfurare CYP707A1 Solyc04g078900 ABA 8’-hydorxylase (ABA8ox) CYP707A2 Solyc08g075320 ABA 8’-hydorxylase (ABA8ox) CYP707A3a Solyc01g108210 ABA 8’-hydorxylase (ABA8ox) CYP707A3b Solyc08g005610 ABA 8’-hydorxylase (ABA8ox) CYP707A3c Solyc04g071150 ABA 8’-hydorxylase (ABA8ox) CYP707A3d Solyc04g080650 ABA 8’-hydorxylase (ABA8ox) Carotenoid degradation CCD1A Solyc01g087250 Carotenoid cleavage dioxygenase 1A CCD1B Solyc01g087260 Carotenoid cleavage dioxygenase 1B CCD4A Solyc08g075480 Carotenoid cleavage dioxygenase 4A CCD4B Solyc08g075490 Carotenoid cleavage dioxygenase 4B MAX3 (CCD7) Solyc01g090660 More axillary branches 3 (carotenoid cleavage dioxygenase 7) MAX4 (CCD8) Solyc08g066650 More axillary branches 4 (carotenoid cleavage dioxygenase 8) NCDE2 Solyc08g016720 9-cis-epoxycarotenoid dioxygenase 2 NCDE3 Solyc07g056570 9-cis-epoxycarotenoid dioxygenase 3 NCDE6 Solyc05g053530 9-cis-epoxycarotenoid dioxygenase 6 CCDX Solyc08g066720 Carotenoid cleavage dioxygenase Chlorophyll biosynthesis HEMA1 Solyc04g076870 Glutamyl tRNA reductase 1

- 95 -  --,-  -

HEMA2 Solyc01g106390 Glutamyl tRNA reductase 2 HEMA3 Solyc01g089840 Glutamyl tRNA reductase 3 GSA Solyc04g009200 Glutamate-1-semialdehyde 2, 1 aminomutase HEMB Solyc08g069030 5-aminolevulinate HEMC Solyc07g066470 Porphobilinogen deaminase HEMD Solyc04g079320 Uroporphyrinogen III synthase HEME1 Solyc10g007320 Uroporphyrinogen III decarboxylase 1 HEME2 Solyc06g048730 Uroporphyrinogen III decarboxylase 2 HEMF Solyc10g005110 Coproporphyrinogen III oxidase HEMG1 Solyc01g079090 Protoporphyrinogen IX oxidase 1 HEMG2 Solyc03g005080 Protoporphyrinogen IX oxidase 2 CHLH Solyc04g015750 Mg chelatase H subunit CHLI Solyc10g008740 Mg chelatase I subunit CHLD Solyc04g015490 Mg chelatase D subunit CHLM Solyc03g118240 Mg protoporphyrin IX methyltransferase CHL27-CRD Solyc10g077040 Mg protoporphyrin IX monomethylester cyclase DVR Solyc01g067290 Divinyl reductase PORA Solyc12g013710 Protochlorophyllide reductase A PORB Solyc07g054210 Protochlorophyllide reductase B PORC Solyc10g006900 Protochlorophyllide reductase C CHLG1 Solyc05g024190 Chlorophyll synthase 1 CHLG2 Solyc09g014760 Chlorophyll synthase 2 CAO1 Solyc06g060310 Chlorophyll a oxigenase 1 CAO2 Solyc11g012850 Chlorophyll a oxigenase 2 GGDR1 Solyc01g088310 Geranylgeranyl reductase 1 GGDR2 Solyc03g115980 Geranylgeranyl reductase 2 Chlorophyll degradation CHL1 Solyc09g065620 Chlorophyllase 1 CHL2a Solyc06g053980 Chlorophyllase 2a CHL2b Solyc09g082600 Chlorophyllase 2b CHL2c Solyc12g005300 Chlorophyllase 2c CLD1 Solyc02g070490 Chlorophyll dephytyllase SGR1 Solyc08g080090 Stay-green 1, Non-yellowing 1 SGR2 Solyc12g056480 Stay-green 2, Non-yellowing 2 SGR3 Solyc04g063240 Stay-green 3, Non-yellowing 3 PPH Solyc01g088090 Pheophytine pheophorbide PAO1 Solyc11g066440 Pheophorbide a oxygenase 1 PAO2 Solyc04g040160 Pheophorbide a oxygenase 2 PAO3 Solyc12g096550 Pheophorbide a oxygenase 3 RCCR Solyc03g044470 Red chlorophyll catabolite reductase PK1 Solyc03g071720 Phytol kinase 1 PK2 Solyc09g018510 Phytol kinase 2 NYC1 Solyc07g024000 Chlorophyll b reductase CBR/NOL Solyc05g032660 Chlorophyll b reductase HCAR Solyc09g091100 Chlorophyll a reductase Tocopherol biosynthesis GGDR1 Solyc01g088310 Geranylgeranyl reductase 1 GGDR2 Solyc03g115980 Geranylgeranyl reductase 2 HPPD1/PDS1a Solyc05g041200 4-hydroxyphenyl pyruvate dioxygenase 1 HPPD2/PDS1b Solyc07g045050 4-hydroxyphenyl pyruvate dioxygenase 2 VTE2 Solyc07g017770 Homogentisate phytyltransferase VTE3a Solyc03g005230 MPBQ/MSBQ methyltransferase VTE3b Solyc09g065730 MPBQ/MSBQ methyltransferase VTE1 Solyc08g068570 Tocopherol cyclase VTE4a Solyc08g076360 Delta/gamma-tocopherol methyltransferase VTE4b Solyc04g063230 Delta/gamma-tocopherol methyltransferase VTE4c Solyc08g077240 Delta/gamma-tocopherol methyltransferase VTE4d Solyc03g116150 Delta/gamma-tocopherol methyltransferase Phylloquinone biosynthesis ICS1/MENF Solyc06g071030 Isochorismate synthase 1

- 96 -  --,-  -

2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase PHYLLO/MEND1 Solyc04g005190 1 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase PHYLLO/MEND2 Solyc04g005200 2 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase PHYLLO/MEND3 Solyc04g005180 3 AAE14 Solyc02g069920 O-succinylbenzoyl-CoA ligase DHNS/MENB Solyc05g005180 1,4-dihydroxy-2-naphthoyl-CoA synthase DHNAT1 Solyc02g078410 1,4-dihydroxy-2-naphthoyl-CoA thioesterase 1 DHNAT2 Solyc03g006440 1,4-dihydroxy-2-naphthoyl-CoA thioesterase 2 DHNAT3 Solyc03g006450 1,4-dihydroxy-2-naphthoyl-CoA thioesterase 3 ABC4 Solyc01g105460 DHNA phytyl MENG Solyc12g019010 2-phytyl-1,4-naphthoquinone methyltransferase Plastoquinone biosynthesis HPPD1/PDS1a Solyc05g041200 4-hydroxyphenyl pyruvate dioxygenase 1 HPPD2/PDS1b Solyc07g045050 4-hydroxyphenyl pyruvate dioxygenase 2 SPS1 Solyc07g061990 Solanesyl diphosphate synthase 1 PDS2/HST Solyc03g051810 Homogentisate solanesyl transferase VTE3a Solyc03g005230 MSBQ/MPBQ methyltransferase VTE3b Solyc09g065730 MSBQ/MPBQ methyltransferase *Activity reported in this work  **Prediction. Needs experimental confirmation 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

- 97 -  --,-  -

4 */4 #"4  4 4  !4  4   4 1"4  24  !#&4 3%  4 $!4   3 !4  4 1 " &4  24 4  !4 !!4 ! " /4 ""(J $&+'J &'#"J BρCJ #&& (#"'J Bρ44CJ (+"J )J "J %)&-J "'J &J '#+">J J  J 1J #&J "J '&$(#">J 4

Pearson Pearson Guide gene Query gene Gene ID Guide gene Query gene Gene ID (ρ (ρ

Vegetative tissue GCN Vegetative tissue GCN G1 (SlG1) ABA2c Solyc10g085380 0.64 SGR1 Solyc08g080090 0.96 CHLM Solyc03g118240 0.67  CCD4B Solyc08g075490 0.96  PAO3 Solyc12g096550 0.96 G2 (SlG2) HEMF Solyc10g005110 0.60  PAO1 Solyc11g066440 0.96 GA3 Solyc04g083160 0.60  CLD1 Solyc02g070490 0.97  CHLH Solyc04g015750 0.60  Or1 Solyc03g093830 0.97  BCH2 Solyc03g007960 0.60  CYP97A3 Solyc04g051190 0.97  CHLD Solyc04g015490 0.65  SPS1 Solyc07g061990 0.97  GA3ox1 Solyc06g066820 0.65  NYC1 Solyc07g024000 0.97  HEMB Solyc08g069030 0.66  LCY-E Solyc12g008980 0.98  NSY1 Solyc02g089050 0.68  DXS3b Solyc08g066950 0.98  PDS2/HST Solyc03g051810 0.69  CYP97C1 Solyc10g083790 0.98  SGR3 Solyc04g063240 0.69  CYP97B3 Solyc05g016330 0.98  DXR1 Solyc03g114340 0.69  Z-ISO Solyc12g098710 0.98  CMK Solyc01g009010 0.70  PSY2 Solyc02g081330 0.98  ABA1/ZEP Solyc02g090890 0.71  HCAR Solyc09g091100 0.98  AAO3b Solyc11g065930 0.72  CRTISO2 Solyc05g010180 0.99  KS1b Solyc08g005720 0.74    CHLI Solyc10g008740 0.74 G3 (SlG3) RCCR Solyc03g044470 0.60  VTE4d Solyc03g116150 0.75  DHNS/MENB Solyc05g005180 0.60  CYP707A3b Solyc08g005610 0.75  HEME2 Solyc06g048730 0.60  MDS Solyc08g081570 0.75  TPS27 Solyc02g079910 0.60  PHYLLO/MEND1 Solyc04g005190 0.75  GGDS8 Solyc07g064660 0.60  PK1 Solyc03g071720 0.76  PSY1 Solyc03g031860 0.60  CHLG1 Solyc05g024190 0.76  NSY3 Solyc02g086050 0.61  FDS2 Solyc12g015860 0.77  CYP97C1 Solyc10g083790 0.64  HEMA1 Solyc04g076870 0.77  CRTISO1 Solyc10g081650 0.65  PSY1 Solyc03g031860 0.79  VTE4a Solyc08g076360 0.66  GA20ox4 Solyc06g035530 0.80  GSA Solyc04g009200 0.67  CHL27-CRD Solyc10g077040 0.81  HEME1 Solyc10g007320 0.67  CPS2 Solyc08g005710 0.82  MDS Solyc08g081570 0.70  CAOa Solyc06g060310 0.82  CMK Solyc01g009010 0.73  FDS3 Solyc10g005810 0.84  CHLG1 Solyc05g024190 0.75  PHYLLO/MEND3 Solyc04g005180 0.84  VDE Solyc04g050930 0.76  NSY5 Solyc06g074240 0.85  PK1 Solyc03g071720 0.77  CYP707A1 Solyc04g078900 0.86  ACS12 Solyc03g007070 0.77  CHL1 Solyc09g065620 0.86  CHLD Solyc04g015490 0.79  DHNAT3 Solyc03g006450 0.87  Or2 Solyc09g010110 0.81  HPPD1/PDS1a Solyc05g041200 0.88  CHLM Solyc03g118240 0.84  IDI1 Solyc08g075390 0.88  GA20ox1 Solyc03g006880 0.87  HEMD Solyc04g079320 0.89  MAX3 (CCD7) Solyc01g090660 0.88  PORA Solyc12g013710 0.89  CHLI Solyc10g008740 0.88 ZEP1 Solyc06g060880 0.89 HEMF Solyc10g005110 0.89  LCY-B1 Solyc04g040190 0.90  CBR/NOL Solyc05g032660 0.97  NSY4 Solyc03g034240 0.91      DXS2 Solyc11g010850 0.92 Fruit GCN  AAO3a Solyc11g065920 0.92 G1 (SlG1) AAO3b Solyc11g065930 0.59  PPH Solyc01g088090 0.92      CHL2c Solyc12g005300 0.92 G2 (SlG2) CMK Solyc01g009010 0.56

- 98 -  --,-  -

 VTE4b Solyc04g063230 0.92  CLD1 Solyc02g070490 0.57  ABA2b Solyc04g071960 0.93  MENG Solyc12g019010 0.60  HEMG2 Solyc03g005080 0.94  PDS Solyc03g123760 0.71  MENG Solyc12g019010 0.94  BCH1 Solyc06g036260 1.00  VTE3a Solyc03g005230 0.94      PDS Solyc03g123760 0.94 G3 (SlG3) DHNAT1 Solyc02g078410 0.55  PORB Solyc07g054210 0.94  CRTISO1 Solyc10g081650 0.56  CHL2a Solyc06g053980 0.94  SGR1 Solyc08g080090 0.57  VTE4c Solyc08g077240 0.95  Z-ISO Solyc12g098710 0.61  CAOb Solyc11g012850 0.95  Or1 Solyc03g093830 0.64  HDS Solyc11g069380 0.95  Or2 Solyc09g010110 0.67  NCED2 Solyc08g016720 0.95  KS1b Solyc08g005720 0.68  PORC Solyc10g006900 0.95  BCH2 Solyc03g007960 0.70  ABA3 Solyc07g066480 0.95  GA3ox4 Solyc01g058250 0.71  HPPD2/PDS1b Solyc07g045050 0.96  CYP707A3c Solyc04g071150 0.74 NCED3 Solyc07g056570 0.96 CMK Solyc01g009010 0.76 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

- 99 -  --,-  -

44 +/4  4" 44! 4$ 

Use # Name Sequence (5'-3')1 1 SlG1-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGGCATTTTTAGCTACCATTTCTG 2 SlG1-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTGATTCTGTCGATTTGCAATATAACTAGC 3 SlG2-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGAGATCTATGAACCTTGTTGATTC 4 SlG2-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTGATTTTGACGATTAGCAATGTAATCTG 5 SlG3-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGAGTCTTTCAACAACAATTACAAC 6 SlG3-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTGATTCTCTCTGTAAGCAATATAATTTG 7 SlG4-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGGCCCATACTAAGTCAAATAGG 8 SlG4-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTTTGCCGATGAAGAACGAAATC 9 SlG5-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGTCTATGCGAAAAGGTGTAATCC Cloning 10 SlG5-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTTTGCCGATGAAGAAGAAAATC 11 SlG1(-tp)-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGCTAGCGATGTTGCGAACTC 12 SlG1stop-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTGTCAATTCTGTCGATTTGCAATATAAC 13 SlG2(-tp)-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGTTATGGAAAAAGAAGAATTTAATTTC 14 SlG2stop-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTGTTAATTTTGACGATTAGCAATG 15 SlG3(-tp)-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGCAATGGAGTTTAAAGAATACG 16 SlG3stop-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTGTTAATTCTCTCTGTAAGCAATATAATTTG 17 AtHDS-attB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGACTGGAGTATTGCCAGCTC 18 AtHDS-attB2-R GGGGACCACTTTGTACAAGAAAGCTGGGTGATTCCGGATAACCGAAACTCTTCTC 19 SlPSY1-qPCR-F ACAGGCAGGTCTATCCGATG 20 SlPSY1-qPCR-R ACGCCTTTCTCTGCCTCATC 21 SlPSY2-qPCR-F CAGGGCTCTCCGATGAAGAC 22 SlPSY2-qPCR-R CACCGGCCATCTACTAGCAG 23 SlPSY3-qPCR-F TTGGATGCAATAGAGGAGAATG 24 SlPSY3-qPCR-R ATTGAATGGCTAAACTAGGCAAAG 25 SlG1-qPCR-F GGCCTTTGAACATGTGGCTACC 26 SlG1-qPCR-R ACTCGCCAAGTCCACAATTTGC RT-qPCR 27 SlG2-qPCR-F AAAGTCATCGTCGGAGCTCG 28 SlG2-qPCR-R GTTTAGCTTCGCCGTTGAGC 29 SlG3-qPCR-F AGGAGGTGCACCAGATGAAG 30 SlG3-qPCR-R TCAGCAACCAAGTCCTTCCC 31 SlEXP-qPCR-F GCTAAGAACGCTGGACCTAA 32 SlEXP-qPCR-R TGGGTGTGCCTTTCTGAATG

33 SlACT-qPCR-F CCTTCCACATGCCATTCTCC

34 SlACT-qPCR-R CCACGCTCGGTCAGGATCT

35 SlG1-qPCR-F GGCCTTTGAACATGTGGCTACC 36 SlG2-qPCR-F AAAGTCATCGTCGGAGCTCG

Genotyping 37 SlG3-qPCR-F AGGAGGTGCACCAGATGAAG PCR 38 eGFP-qPCR-2 R TCTCGTTGGGGTCTTTGCTC

39 ACT_genot_F GTGAAAAGATGACCCAGATTATG 40 ACT_genot_R CACGCTCGGTCAGGATCTTCATC 41 Lat1-F AGACCACGAGAACGATATTTGC

Genotyping 42 Lat2.1-R GCCTTTTCATATCCAGACACAC 2 qPCR 43 npt1-5'-F GACAGGTCGGTCTTGACAAAAAG 44 npt1-3'-R GAACAAGATGGATTGCACGC 1Gateway recombination sites in bold 2Described in Annex 4

- 100 -  --,-  -

4

J4 ,/4 ! "! 444! / Sequence Plasmid Use Construct Template Primers2 cloned3 backbone

35S:SlG1-GFP Tomato root cDNA 1 + 2 SlG11-1095 pGWB405

Subcellular 35S:SlG2-GFP Tomato flower cDNA 3 + 4 SlG21-1089 pGWB405 localization 35S:SlG3-GFP Tomato flower cDNA 5 + 6 SlG31-1080 pGWB405 assays/ Transgenic 35S:SlG4-GFP Tomato flower cDNA 7 + 8 SlG41-1179 pGWB605

plants 35S:SlG5-GFP Tomato flower cDNA 9 + 10 SlG51-1119 pGWB605

35S:pGFP Arabidopsis cDNA 17 + 18 AtHDS1-147 pGWB405

6xHis-SlG1 35S:SlG1-GFP 11 + 12 SlG1130-1098 pET32-GW

6xHis-SlG2 35S:SlG2-GFP 13 + 14 SlG2190-1092 pET32-GW In vitro GGPPS 6xHis-SlG3 35S:SlG3-GFP 15 + 16 SlG3 pET32-GW activity assays 196-1083 1 pET-AtG11 - - AtG11169-1116 pET32-GW 1 pET-G11s - - AtG11169-1050 pET32-GW 1 Constructs reported in Ruiz-Sola et al. (2016b), Annex2 2 See Table S1 3Numbers indicate the first and last nucleotide positions cloned from the coding sequence of the

indicated gene. J

J J J J

J J J J J J J J J J J J J J

- 101 -  --,-  -

J

- 102 - 



















      

























     

- 103 -      



- 104 -  ''

#(+   " ++ ++  +

&O ($&,+CO O "+O O &,*$O ".*+" ","'&O ('"&,O '*O ,!O +1&,!+"+O ' O "+'(*&'"+CO +'%O' O/!"!O*O++&,"$O,'O+-+,"&O$" O'&O*,!BO&$"#O',!*O&21%+O,$12"& O *$"*O "+'(*&'"O "'+1&,!,"O +,(+CO &'O 1O '&O '*O ,/'O &+O F'$+,"&O &O *'/&CO 8@@7EO !"$$"(+O ,O $BCO 977?EO $'+O ,O $BCO 9787EO *&'.3O ,O $BCO 978:GCO O ,".",1O *$"+O '&O O !" !*O &-%*O ' O &+O F'%&O ,O $BCO 978;EO -"2N'$O ,O $BCO 978=COO +$GBO!O(*+&O' O+.*$O &O(*$' +OF%%O"&,*+(" "O!'%'$' O &+GO"&OO &'%O*+-$,+O *'%O-($","'&+O' O &+CO &'%"O * %&,+O'*O/!'$N &'%+BO &$"#O '*,!'$' O &+O F!'%'$' O &+O "&O " *&,O +("+GO ,!,O "+($1O +"%"$*O "'$' "$O *'$+CO (*$' O &+O &'*%$$1O &-*O "&O ,!O &'%O ' O O ($&,O +("+O " O ,!1O )-"*O .&, '-+O +("$"2O -&,"'&+O ,!,O "%(*'.O ,!O (* '*%&O' O,!O'* &"+%O "&+,O" *&,O&."*'&%&,$O'&","'&+OF,-*O&O '"&+'&N!."CO 977@GBO O ,!"+O "+O &',O ,!O +CO O (*$' O /"$$O +- *O $,*"'-+O %-,,"'&+O '%"& O &O "&,".O (+-' &O FJ(+-' &"2,"'&KGCO +'%,!"& O ,!,O $"#$1O'-**O"&O,!O+O' O,!O*"'(+"+O $O &OF#O,O$BCO978:GBO!*O *O" *&,O/1+O '*OO(*$' O,'O+("$"2DO",O&O",!*O.'$.O,'/*+OO'%($,O &/O -&,"'&CO$."& O,!O'*" "&$O*'$O,'O&',!*O(*$' OFJ&' -&,"'&$"2,"'&KGCO '*O ",O &O *,"&O ,!O &+,*$O -&,"'&O -,O +("$"2O "&O +(" "O $$O '%(*,%&,+CO ,"++-+O '*O (*'+++O FJ+- -&,"'&$"2,"'&KGO F 1&!O &O '&*1CO 9777EO 1&!O &O '*CO9777EO &&&O&O '&*+!'.CO9787GBOO

!"$OO+"& $O O'(1O &O"+O(*+&,O"&O *&O$ CO+.*$O O(*$' +O 0"+,O"&O%'+,O($&,+CO$"#$1O*"+"& O-*"& O,!O".*+" ","'&O' O$&O($&,+BO.*$O %'$-$*O !& +O "&O "%('*,&,O O (*',"&O %'," +O '& **O &/O &O %'*O +("$"2O -&,"'&+O,'O+'%O(*$' +CO "."& O*"+O,'OCOO'*OO&21%+O "&O%&1O($&,O+("+OF& O&O"0'&CO977@EO'%&O,O$BCO978;EO $O,O$BCO978

- 105 -  ''

,!O$'& ,"'&O.",1BO!O!& O' O,!O%,!"'&"&OF GO(*+&,O"&O,!O " ,!O('+","'&O -(+,*%O ,'O ,!O  CO '*O O +*"&O FGO '*O &O $&"&O FGCO &$O ,!O (*',"&O ,'O (*'-O 9

%'& O,!O(*$' +O,!,O+!'/OO,".",1CO" *&,O$1*+O' O* -$,"'&O$O,'OO +- -&,"'&$"2,"'&O ,!,O $$'/O ,!"*O *,&,"'&O "&O ,!O &'%O ' O O ($&,O +("+BO !O .*1O "*+,O $1*O ' O +- -&,"'&$"2,"'&O "+O ,!O ,*&+*"(,"'&$O * -$,"'&O ' O " *&,O (*$' O &+CO /!"!O /*O '-&O ,'O +!'/O +(" "O 0(*++"'&O (,,*&+O +,*",$1O '&,*'$$O 1O " *&,O .$'(%&,$O '*O &."*'&%&,$O +,"%-$"O "&O +.*$O ($&,O +("+O F%&,O ,O $BCO 977=EO #O ,O $BCO 978:EO !& O ,O $BCO 978





 

- 106 -  ''

Cytosol-ER MVA Plastid MEP pathway pathway

IPP + DMAPP IPP + DMAPP

G3 G4 sG11* G11* SSUII GGPP GGPP G2

Other GPP SPS GGR GGPP Diterpenoids Arabidopsis isoprenoids GGPPS family Mitochondrion Plastoquinones Tocopherols IPP + DMAPP Chlorophylls PSY Phylloquinones G1* Monoterpenes

GGPP Carotenoids Other isoprenoids Other isoprenoids Ubiquinone ABA SLs

Cytosol-ER MVA Plastid MEP pathway pathway

IPP + DMAPP IPP + DMAPP

G4** G4** G1* G2* G3* GGPP

Other GGPPGGPP GGPP Diterpenoids Tomato isoprenoids ? GGPPS family PSY3 PSY2 PSY1 Mitochondrion IPP + DMAPP G5** Carotenoids Carotenoids Carotenoids (mycorrhization) (photoprotection) (pigmentation) GGPP ? Other ABA SLs isoprenoids Ubiquinone

+ #(+   +  + + + +   + +   +  +  + ++ (+ &O,!"+O" -*)+O"+' '*%+O$#O,!O(* "0O' O,!O+("+OF"&",O /",!O "% +GO '*O +"%($"",1BO "& $O +,*"+#+O "&",O ,!O "+' '*%+O &$12O "&O ,!"+O +,-1O &O '-$O +,*"+#+O "&",O *+-$,+O ,!,O *)-"*O '& "*%,"'&BO 1,'+'$"NCO %",'!'&*"$O &O ($+,""$O &21%+O *O *(*+&,O "&O (-*($CO *O &O *&O "*$+CO *+(,".$1BO '$"O **'/+O *(*+&,O +"& $O &21%,"O +,(+CO +!O **'/+O "&",O %-$,"($O &21%,"O +,(+O &O ',,O *1O$"&+O!" !$" !,O" *&,"$$1O$'$"2OO"+' '*%+O&'O1O,!O+%O &BO&21%+O %*#O "&O '$O "&",O (!1+"$O "&,*,"'&O /",!O ,!O -(+,*%O O "+' '*%BO &*$"&O &21%+O *(*+&,O ('+",".O 'N0(*++"'&O &O (-,,".O (*',"&N(*',"&O "&,*,"'&O /",!O ,!O -(+,*%OO"+' '*%BO-+,"'&O%*#+O"&",O!1(',!,"$O++'","'&+BO

$(+ +  ++ !+

 *"& O *"'(+"+O N&'"& O &+CO ",O /+O +!'/&O ,!,O /!*+O ,!O (*$' +O&'"& O%",'!'&*"$OF,8GO&O($+,""$OF,9O&O,88GO

- 107 -  ''

&21%+O/*O-")-",'-+$1O0(*++CO,!O &+O&'"& O,!ON,* ,O"+' '*%+O F,:O&O,;GO/*O*+,*",O,'O+(" "O,"++-+O *'%O+(" "O'* &+O F#O,O$BCO978:GBO.'$-,"'&*1O&$1++O' O,!O*"'(+"+O O &O+)-&+O &O0(*++"'&O(,,*&+O*.$O,!,O !O&O O*O,!O'$+,O(*$' +CO "&","& O,!,O,!O "*+,$1O&OO,".",1O/+O*$,O,'O($+,""$O"+'(*&'"O %,'$"+%OF'%&O,O$BCO978;GBO!O&$1+"+O$+'O+!'/O,!,O,!O!" !+,O$.$+O' O 0(*++"'&O ' O  O /'-$O * $,O ,!,O ",O "+O ,!O (*$' O ,!,O *,"&O %'+,O ' O ,!O &+,*$O -&,"'&BO ,*O %* O &+O F "O &O #GO &O "&$$1O  O +!'/O ',!*O $$-$*O $',"'&+O &O $'/*O ,*&+*"(,O $.$+O &M'*O +("$"2O 0(*++"'&O(,,*&+CO"&","& O,!,O&/$1O)-"*O &+O%-+,OO+("$"2O'&O ,!O++&,"$O'*" "&$O -&,"'&O"+O'.*OF'%&O,O$BCO978;GBO&$1+"+O' O !O &O  O %-,&,+O +!'/O ,!,O '&$1O ,!O ,88O &21%O "+O ++&,"$O '*O ($&,O .$'(%&,OF(*'.""& OO '*O(*"%*1O"+'(*&'"+O"&.'$.O"&O(!','+1&,!+"+O &O%*1'O.$'(%&,GO&O+- +,O,!,O !O%" !,O!.OO+(" "O*'$O "&O,!O+'&*1O%,'$"+%O+(",O"& O'&+,",-,".$1O0(*++OF-"2N'$O,O$BCO 978=CO O  + #EO -"2N'$O ,O $BCO 978=CO O  O $GBO !O ++&,"$O -&,"'&O ' O ,88O"&O(!','+1&,!+"+O'%($,$1O ",+O/",!O,!O.'$-,"'&*1O&$1++CO0($"&"& O /!1O ,!"+O "+' '*%O "+O -")-",'-+$1O 0(*++O "&O *"'(+"+O &O /!1O ,!O ($+,""$O O (''$O /+O "&","$$1O *)-"*O  '*O "&"& O %'*O (*$' +O &O -&,"'&+BO '/.*CO /O *('*,O !*O ,!,O ,!O ++&,"$O -&,"'&O ' O ,!O  O &O -*"& O %*1'O.$'(%&,O &O*$"+O'&O&',!*O$1*O' O,*&+*"(,"'&$O* -$,"'&O '-&O '*O ,!O "*+,O ,"%O '*O O  O &BO O "+'.*O ,!,O ,!O  O &O (*'-+O ,*&+*"(,+O ' O " *&,O $& ,!+O ,!,O &'O ,".O O &21%+O /",!O ++&,"$O -&,"'&+O "&O " *&,O $$O '%(*,%&,+BO '& *O ,*&+*"(,+O *O ,*&+$,O "&,'O O ($+,"N,* ,O ,88O (*',"&O ,!,O +-(($"+O O '*O (!','+1&,!+"+N*$,O "+'(*&'"+CO/!"$O+!'*,*O,*&+*"(,+O$#"& O,!O "*+,OO''&O&'OO.*+"'&O ,!,O $#+O ,!O N,*%"&$O +" &$"& O ((,"O &O *%"&+O "&O ,!O 1,'+'$O ,'O (*'-O O '*O%*1'O.$'(%&,OF-"2N'$O,O$BCO978=COO +#EO-"2N'$O,O$BCO 978=COO O$GBOO

,O"+O('++"$O,!,CO-*"& O,!O.'$-,"'&O' O,!O*"'(+"+O O &O %"$1CO,!O "&","$O*'$O' O,88O/+O,'O+-(($1OO"&O($+,"+O-,O",O)-"*OO&/O'&O"&O,!O 1,'+'$O1O-+"& OO+'&OO''&O'/&+,*%O,!O'&O-+O,'O&'O,!O -$$N $& ,!O,88O(*',"&BO!O-+O' O&O$,*&,".O,*&+$,"'&O+,*,O+",O%" !,O!O&O +$,O '*O,!O+("$"2,"'&O' O !O&O '*O,!O((*&O' O,!ON "+' '*%+BO !+O *+-$,+O ,' ,!*O $,O -+O '&$-O ,!,O *"'(+"+O &O %"$1O "+O '*%O 1O ".O ,*&+*"(,"'&$$1O * -$,O &+O ,!,O &'O +"0O " *&,"$$1O

- 108 -  ''

$'$"2O(*',"&O"+' '*%+O/",!O(*,"-$*O -&,"'&+CO"$$-+,*,"& O "&O,!O'%($0",1O ,!,O!*,*"2+O($&,O%,'$"+%OF" -*O8GBO

+

%(+ + ++ !+

&O,!O+O' O,!O,'%,'OO %"$1CO' O/!"!O,!*O/+O.*1O$"%",O"& '*%,"'&O ,O ,!O  "&&"& O ' O ,!"+O ','*$O ,!+"+CO /O '-&O +"%"$*O %!&"+%+O * -$,"& O O "'+1&,!+"+O ,!*'- !O ,!O +("$"2,"'&O ' O " *&,O (*$' +BO +O (*."'-+$1O %&,"'&O /O "&," "O ".O N$"#O !'%'$' +O /!"!CO '*"& $1O ,'O &O 0(*++"'&O,++OF%%O  GCO+!'/O(*,"-$*O0(*++"'&O(,,*&+BO  O/+O %'+,$1O0(*++O"&O*'',+O&O$.+CO/!"$O !O&O "O+!'/O%&1O+"%"$*","+O ,O ,*&+*"(,"'&$O $.$BO !1O /*O '&+,",-,".$1O 0(*++CO +!'/"& O ,!O !" !+,O $.$+O ' O ,*&+*"(,+O %'& O ,'%,'O O (*$' +BO ',!O &+O /*O +,*'& $1O 0(*++O"&O$.+O&O/*O"&-O-*"& O *-",O*"(&"& BO #O/+O0(*++O"&O $'/*+CO/!"$O $O!OO(#O' O0(*++"'&O"&O*'',+O&O/+O*(*++O-*"& O *-",O *"(&"& OF" -*O9GBO &O,*%+O' O'* &$$N,* ,"& O/O '-&O "&O($+,""$OF$8N :GCO 1,'+'$"O F$;GO &O %",'!'&*"$O F$

&O0(*++"'&O&$1++O' O,!O($+,""$O(*$' +O+- +,O,!,O$9O%" !,OO,!O ,'%,'O )-".$&,O ' O ,88CO (* '*%"& O %'+,O ' O ,!O '*" "&$O O -&,"'&O "&O (!','+1&,!,"O,"++-+OFO!(,*O CO" BO

O

O

- 109 -  ''

SlG1 Tomato eFP Browser SlG2 SlG3 SlG4 SlG5 SlG6/SlSSUII

(RPKM) Transcript levels

Root Leaf Flower MG B B+10

Fruit

+$(+   ++++  +++ + +(+O+)O,O /*O *,*".O *'%O ,!O  '  ' ' ,+O F!,,(DMM*B-,'*'&,'BM (L,'%,'M "N "&M (B "GBO*(!+O+!'/O,!O,*&+*"(,O$.$+O' O  &$'&'  '"&'*'',CO$ CO $'/*O&O *-",O F CO %,-*O *&EO CO *#*EO A87O 1+GBO 0(*++"'&O ,O *O *(*+&,O +O  O F+O(*O "$'+O' O,*&+*"(,O(*O "$$"'&O%((O*+GBO'*O++"'&+DOO!(,*O CO$O 8B O

&(+  +++!+ !+*+ O

.*$O$"&+O' O."&O%'&+,*,O,!,OO(*',"&+O&O"&,*,O/",!O',!*O &21%+O,$12"& O-(+,*%O&O'/&+,*%O"'+1&,!,"O+,(+O"&O,!O($+,"+O' O " *&,O ($&,O +("+O F' 'O &O %*CO 8@?>EO %*CO 8@@:EO -"&+O ,O $BCO 8@>>EO *+*O ,O $BCO 9777EO -"2N'$O ,O $BCO 978=CO O  + #EO !'-O ,O $BCO 978>EO % &O,O$BCO978?EO& O,O$BCO978?GBO &O,!O+O' O*"'(+"+CO,88O!+O&O '-&O ,'O "&,*,O /",!O CO O &O 9O &21%+O F-"2N'$O ,O $BCO 978=CO O  O #EO % &O ,O $BCO 978?GCO (*+-%$1O ,'O "*,$1O (*'."O O '*O ,!O (*'-,"'&O' O+(" "O *'-(+O' O(!','+1&,!+"+N*$,O($+,""$O"+'(*&'"+BO!"+O"+O '&+"+,&,O /",!O ",+O !'-+N#("& O *'$O -*"& O (!','+1&,!,"N++'",O .$'(%&,BO NO '&,"&"& O (*',"&O '%($0+O /*O $+'O "+'$,O *'%O ,'%,'O!$'*'($+,+O&O *-",O!*'%'($+,+OF -"&+O,O$BCO8@>>EO*+*O,O$BCO9777GBO

- 110 -  ''

!O ,*&+*"(,"'&$O 'N* -$,"'&O ' O " *&,O ,'%,'O O &O O (*$' +O *('*,O"&O,!"+O/'*#O+- +,+O,!,O+(" "O(*',"&O("*+O'-$OO '*%O,'O(*'-O *',&'"+O(&"& O'&O,!O,"++-O&O,!O.$'(%&,$O(*'++OFO!(,*O CO " BO =GBO !-+CO $8N:O /'-$O (*'-O *',&'"+O '*O %1'**!"2,"'&O "&O *'',+CO $9N9O/'-$OO%'+,O*$.&,O '*O(!','(*',,"'&O"&O(!','+1&,!,"O,"++-+CO&O ,!O(*'-,"'&O' O*',&'"+O '*O *-",O(" %&,,"'&O-*"& O*"(&"& O/'-$O%"&$1O *$1O'&O,!O$:N8O,&%BO ,O"+O%'+,O$"#$1O,!,O,!+OO(*$' +O'-$O$+'O "&,*,O/",!O',!*O(*',"&+O+"+OBO

&,*,"'&O' OO&21%+O/",!O+'%O(*',"&+O!+O&O+!'/&O,'O "$",,O,!O ++%$1O' O+(" "O%-$,"&21%O'%($0+O&O%'-$,O,!O&21%,"O,".",1O' O " *&,O O (*$' +O ,'O O (*,"-$*O %&+BO !"+O "+O ,!O +O ' O O (*',"&+CO N+&"& O &21%+O ,!,O .'$.CO ,' ,!*O /",!O +(" "O O (*$' +CO,'O('+,N,*&+$,"'&$$1O* -$,O,!O$$',"'&O' O"+'(*&'"O(*-*+'*+BO!"+O %!&"+%O/+O"&," "O"&O*"'(+"+CO!'(CO*"O&O(((*OF& O&O"0'&CO 977@EO!'-O,O$BCO978>EO& O,O$BCO978?GCO-,O&',!"& O!+O&O*('*,O"&O,'%,'O 1,BO*CO/O(*'('+O,!O0"+,&O' OO O!'%'$' O"&O,'%,'O,!,O'&,"&+O$$O ,!O +,*-,-*$O !*,*"+,"+O ,'O (-,,".$1O "&,*,O /",!O O %'&'%*+O FO !(,*O GBO-*,!*O+,-"+O/"$$OO*)-"*O,'O"&," 1O,!O+(" "OO(*$' +O ,!,O1O+- -&,"'&$"2,"'&O)-"*O,!O"$",1O,'O"&,*,O/",!O$ CO(*!(+O,'O (*'-OO'*OO"&O+("$"2O%,'$'&+BOO

O '(++O

0(*"%&,+O*O-**&,$1O'& '"& O"&O'-*O$O,'OF8GO,*%"&O,!O+(" "O*'$+O' O,!O ,'%,'O ($+,"N$'$"2O O &21%+O F1O &*,"& O &O &$12"& O $'++N' N -&,"'&O %-,&,+O 1O  N+@GCO F9GO '& "*%O ,!"*O "+' '*%N+(" "O "&,*,"'&O /",!O O (*$' +O F1O (-$$N'/&O 0(*"%&,+O "&O %' O &O %'    O $$+O 0(*++"& O , O (*',"&+GCO &O F:GO "&," 1O &/O (*',"&O (*,&*+O F1O 'N "%%-&'(*"(",,"'&O ' O (*',"&O '%($0+O *'%O " *&,O ,"++-+O ' O ,'%,'O ($&,+O +,$1O ,*&+ '*%O /",!O '&+,*-,+O ,'O (*'-O N, O O "+' '*%+GBO +'$,"& ON'&,"&"& O%,'$'&+O'CO!'/.*CO"+OO!- O!$$& O+"&O ,!1O*O' ,&O++%$O-&*O*$$1O+(" "O'&","'&+O'*O"&O.*1O*+,*",O,"++-+O F%%O"&O!'(O,*"!'%+O'*O"&O,!1$#'"+O' O*"O!$'*'($+,+GBOO

!"$O ,!O 0"+,&O ' O +.*$O N&'"& O &+O !+O &O %'&+,*,O "&O %&1O ($&,O +("+CO ,!O "'$' "$O *'$+O ' O (*$' +O /",!O *+,*",CO '& "&CO '*O +("$"2O 0(*++"'&O (*' "$+O *%"&+O ."*,-$$1O -&#&'/&BO '*'.*CO +'O *CO '&$1O

- 111 -  ''

($+,""$OO(*$' +O!.O&O($1O!*,*"2O1'&O &O0(*++"'&O &$1++CO(*'$1O-+O' O,!"*O!" !*O0(*++"'&O$.$+O&O,!"*O"&.'$.%&,O"&O (*"%*1O (*'+++CO /!*O &O "%(,O "+O %'*O +"$1O ,,$O FB BO  O #&'#N '/&O&O#&'#N'-,O%-,&,+O'*O*"O O'.*0(*++"'&O'*O'/&* -$,"'&O "+($1O."+-$O(!&',1(+GBO &O,!"+O,!+"+CO/O"+'.*O,!O0"+,&O&O++&,"$O -&,"'&O' O,!O*"'(+"+O+88O1,'+'$"O(*',"&O '*O%*1'O.$'(%&,O-,O/O '-$O &',O "&," 1O ,!O N*".O "+'(*&'"O *+('&+"$O '*O ,!,O (!&',1(CO +"&O %,'$"O %+-*%&,+O "&O %*1'+O ,O +(" "O .$'(%&,$O +, +O "+O 0,*%$1O ,*"#1BO -,-*O ,!&'$' "$O .&+O +-!O +O +"& $N$$O %,'$'%"+O +!'-$O(*'."O,!O,''$+O,'O*++O,!"+O)-+,"'&O"&O,!O -,-*BO

.'$-,"'&*1O %!&"+%+O $"#O ,!'+O *('*,O !*O '*O O &21%+O !.O &O $+'O +*"O '*O %&1O &O (*$' O %"$"+O "&.'$.O "&O " *&,O +,(+O ' O "+'(*&'"O %,'$"+%O F*&'.3O ,O $BCO 9789CO 978:EO '*4 -2N'&("6&O &O '*'&,CO 978

O

O

O

O

O

O  O

- 112 - 



















 

























     

- 113 - 



- 114 -     

)2 8&8 !8 888   8458 8!$8 !&8 ! !8  7 "8 '& 28 8   8 8 ! !#8 !   !8 !!8 ! 8  "! 88!   ! 88 !8 ' 38 88$88!8 !8  88"!8" 88 87 8 88!8 "88  ! 8 !28

*2 88!))8  8 8! !8!8 ! 88! 8 88"!8"  88 7!8 !&8   !!8 $!8 ! 8   8  #8  8  8 !8  "!88! &!  7 !8 !8   28

+2 8  !8!))8  8  88!8&! 8" 8!8 8!87! 8  !7! !8 28 8 8 "8&8! 8&! 8  8 8 " 8  8  &8 #!38   8 " 8 !8  8 " 8  8 !8  "!8 8 ""8 68! 8  88!8&! 8 8!8! 28

,2 8!!88! 8#8 88"!!#8 8'& 88 8888!&88 8 !8!!8!8"8!8!#!&88!8  8   8&8 8!  28

-2 8!!8 8   8 8&8!88 ! 84 )38 *88 +538 &! 84 ,588! 84 -58$8" 8!8 28

.2 8 ! 8  !8    8 &8  "8  8    8 $!8  8 !8  ! 8 8!8!))28

/2 8 &  8 " !8 "!8  !8 8 *8 !8  !8   8  &!  8 8 ! &!!8 ! " 8 8 +8 !8  !8  &!  8 8  "! 28

02 &  8 8 8 %  8 " 8  !8  &!  8 8  !8 ! " 8 $8  8 7%  8   8 8  !" 8  8 8  8 8 8   28 8 87"8$!88" 8& '!88 ! 38 8 88 8  &8" "!887!!8  388 888 $8 8"!8  8" 8 "!8 28

12 "8 8!   !8# 8 !8$!8  8&!8# 88 "!38 " !8 !!8 !8 +8   8 # ! 8  8 !8 )8  8  !8  &!  8" 8 28

)(2  !" 8 88 8   8!8& &8! !88!!8!8 " 8 !888 88 8!8!8 "!88 ! 888! "7 8 28! !88 )88 +8$"88 !8 #!88 ! 38 $  8 % 8 !8 ! 8 *8 8 *8  8 +8 8 )8 !8  !8!8 "8 ! 88# 88 "! 288

- 115 -     

 

8

- 116 - 



















  

























     

- 117 -    



- 118 - !$ .$!%.

%".,HCH .-/HCH"/0#(")&H CH/HCH -HCH & #(HH(H#" ,-%3HJB6457C>J J +&$+&J *H')%0#+)%*)*J%J$ #0>J#%+J >J@<@J:84I:96>J ')HCH)#% H CH /,)%1HH(H )3'HJB644J#&% %J%J,%+ &%#J%#0* *J&J%&-#J * &)+H  %J *H')%0#+)%*)**>J & $>J &' 0*>J*>J&$$,%>J<@>@J97:I984>J ' (.H CH(H"# HCH)/1' -. ,H CH,#(!H H(H"//,#(%HJB644:C>J %,+ &%J&J J #J *'  J )%0#)%0#J '0)&' &*' +J *0%+ *J %J $ ** &%J &J B?CH8?J#%+J;;=@J55=;I564<>J  %HCH)'(HCH ,, (HCH/#4G)&H CH),#!/ 4G)( *#)(H CH ,/#-- 'H H (H ,()0HJB6457C>J )+) 1+ &%J&J+ JJ*0%+ *J%J$ #0J %J$"#%%.& !>J #%+J &#J &#JA;DJ7=7H85:>J #%H H(H (! H JB6447C>J +&# J)&**J+#"J+.%J0+&*&# J%J'#*+  #J'+ .0*J&J *&')%& J  &*0%+ * *@J ,%  )+ &%#J +)%*'&)+J &J %+)$ +*J )&**J + J  #&)&'#*+J %-#&'J$$)%>J) J & $J &' 0*J=:>DJ58:H598>J )/0# ,HCH/#, HCHE,&#(!/ HCH%"/-HH(H',HJB6444C>J &#,#)J#&% %J&J )%0#J ' &*' +J*0%+ *J%J&$')+$%++ &%J&J$&%&+)'%J*0%+ * *J %J'#%+J##*>J #%+J >J;=@J685I96>J /,% HCH & ..% H H(H,). /HJB6448C>J+)&$) J)%0#J ' &*' +J*0%+ *J)&$J$ %+@J &%*+),+ &%J &J J ,%+ &%#J ,* &%J ')&+ %J %J %  + &%J 0J  *' &*' &%+J *,*+)+J %#&*>J) >J & $>J &' 0*>J=;;@J96I:4>J /,% H CH #&/(!H H (H ,). /H J B5===C>J )%0#J  ' &*' +J *0%+ *@J #&% %?J /')** &%?J%J )+) 1+ &%J&J+ *J')%0#+)%*)*J*JJ +)& $)>J)&>J +#>J>J  >JB?@J574:6I574:;>J '!(H CH ,/('((H CH 6,H CH )-"'#  ,H CH  3 ,H H (H  &-"H J B645J %10$J ,* &%J )$&-*J &$'+ + &%J &)J )%0#)%0#J  ' &*' +J %J )&+%&%* *>J #%+J  0* &#>@J''>4546:>645<>J ',H J B5==7C>J #%+J ' 0+&%J *0%+ *J &$'#/@J &$'&%%+J %10$*?J $$,%&#&0J %J  &%* *>J + &*J%10$&#>J;:=@J796I7:9>J "(!H CH -# "H  CH )H CH  (!H CH #(!H H (H (H  J B6454C>J +),+,)J &J J +)&++)$) J )%0#J '0)&' &*' +J *0%+ *J )&$J $ %+J B !&. ##$&CJ )-#*J %+)*,,% +J),#+ &%>J#%+J##J;;@J898I8:;>J " (H CH (H H (H (!H J B6459C>J +)&$) J )%0#B)%0#CJ  ' &*' +J *0%+ *J *J %-&#-J %J$&%&+)'%J &*0%+ * *J %J) &'* *J#&.)*>J &#J#%+JADJ5878H587;>J &,% H CH (%H CH 0 (-)(H CH '-& 3H CH )! &'(H  H (H 1,-H J B5=<;C>J &#,#)J #&% %J %J *(,%J &J J  &#*+)&#H)')** #J %10$J )#+J +&J ')%0#+)%*)*J %J+ J *&')%J &*0%+ + J'+ .0>J &#>J##>J &#>J@@J757J &)-H CH ,()0H CH ),.)&)..#H CH #!& ,H CH ,,)H CH  ,, ,H H (H ,/#-- 'H J B6454C>J  J $"#%%. & !J J *0%+ *J *&10$*J -J &-)#'' %J %J *'  J ,%+ &%*J %J *&')%& J  &*0%+ * *?J %J &$'#+J #&**J &J J *0%+ *J + - +0J ,**J )#0J -#&'$%+#J))*+>J#%+J J?J )'(H CH &. (") H CH )&& ,H CH ,/#-- 'H H (H ,()0H J B6458C>J  *+ %+J -&#,+ &%)0J *+)+ *J %J+ JJ$ #0J)&$J'#%+*>J)&%+J#%+J J>DJ674>J

- 119 - !$ .$!%.

/(#&& ,HCH,,7H CH &)/,' HCH ,-.HCH),)(.HH(H ,, ,HJB5==:C>J$"#%%.& !J &%+ %*J+.&J )%+ ##0J/')**J)%*0#H ' &*' +J*0%+ *J%*>J >J &#>J $>J;@:@J ;;;8I;;<4>J /(#&& ,HCH),)(.CHH(H ,, ,HJB5==;C>J J$"#%%.& !.5J%J%)+*JJ%&-#J $ J+ +J%&*JJ$ +& &%) #J)%*0#H ' &*' +J*0%+ *J *&&)$>J J &#J $J;@;DJ 597<5H597<<>J )!)H H (H ',H J B5=<;C>J ,)  + &%J &J *&'%+%0#J '0)&' &*' +J *&$)*J %J )%0#)%0#J '0)&' &*' +J *0%+ *J )&$J '* ,$J  )&$&'#*+*J 0J  % +0J  )&$+&)' 0>J & $>J &' 0*>J+JBCG ' *J ' J +>JB;9@J584I58<>J /&/4 /H CH')&.HCH&)1-%3HCH % (4# HCH"//,#(%HH(H-- .H JB6456C>J %J%+.&)"J)&%*+),+ &%J %+  *J+ J,+ %+ J+)%*H')%0#J ' &*' +J*0%+ *J+ +J $"*J+ J*&#%*0#J$& +0J&J, (, %&%H=J %J) &'* *>J#%+J J?BDJ7::H7;9>J /, 0HCH ,.#(HCH #-"H CH )&)-)0HCH), (-. #(HCH6&.H CH #&& ,HH(H)"&'((H H B6447C>J BCH+H& $%J %J $0)%J *0%+ *J %*J &J #&)#J *%+J  &*0%+ * *J %J *%')&%@J ,%+ &%J %J /')** &%J &J + )J +)'%J *0%+ *J %*J &J J %.J +)'%J *0%+ *J*,$ #0>J#%+J##J:>@J566;I5685>J ,- ,H CH "/"H H (H ,'& 3H  J B6444C>J  0+&%J *0%+ *J )&$J +&$+&J B *"#$%"!. %' !&' CJ #&)&'#*+*HH')+ #J',)  + &%J%J & $ #J')&')+ *>J#%+J;::@J7:5I7:=>J  H CH,/H CH/-- H CH#&HCH.'#..#G ,.H CH, H H(H&&/-#HJB6444C>J +?JJ +&$+&J)%*0#J'0)&' &*' +J%J  #0J/')**J,) %J)#0J), +J-#&'$%+>J#%+J  0* &#>J:;<@J5795I57:6>J )&-. #(H H(H,)1(H JB5==4C>J,#+ &%J&J+ J$-#&%+J'+ .0>J +,)J<=<@J869I74>J ,)-$ (H CH )(!,(H CH  ( 3H CH #')(G&-H H (H  , /G#--).H J B6459C>J  )%+ #J +J &J '#%+J # ' *J &%J $$)%J &)% 1+ &%@J *'   + *J &J ' 0+&*' %&# ' *J %J ' 0+&*+)&#*>J >J &#>J $>J;B9@J9<54I69>J ,.'((H JB5==J#%+J*+)&#*J%J+ J$$)%J%- )&%$%+>J)%*J#%+J >J<@J5;4I5;9>J  H CH/$#)%HCH #HCH (!HCH .)HCH%.-/.)HCH)-"#HH(H (!H JB6447C>J+)&#*J ),#+J-#&'$%+J%J%J/')** &%J %J) &'* *>J#%+J 0* &#>J:<:@J569J  ( ,H CH ."/'HH(H,). /HJ B5==J #&% %J %J ,%+ &%#J /')** &%J &J J  J %& %J)%0#)%0#J ' &*' +J*0%+ *J)&$J)'%.!!%%J%J****$%+J&J+ J )&#J&J+ *J')%0#+)%*)*J %J##*J %,J&)J/&#J')&,+ &%>J) >J & $>J &' 0*>J J  '' ,&#(HCH,1))H H(H"H JB6456C>JJ) *&%JF3+)J&)J+.&J *+ %+J'+ .0*J %J+ J )#0J*+'*J&J'#%+J *&')%& J &*0%+ * *AJ)&>J ' J*>J>:@J=9I58<>J  '' ,&#(HCH#0 ,HCH,#%-)(H H(H)/&. ,HJ B6447C>J %10$*J %&J 0J + J )%*0#J  ' &*' +J *0%+ *J %J $ #0J %J + J  J ),* J $& %. &$!&&. %%#-. %#"$ %>J >J &#>J $>J;@A@J76576I84>J ),0."HH(H/'HJB6457C>J ' *J&J$ +& &%) >J)&>J ' J*>J>;@J9=4I:58>J -#)HCH (!H CH-#HCH"/(!HCH #HCH/HCH /)"HCH" (HH(H" (HJ B644J J %&-#J &$& $) J )%0#J  ' &*' +J *0%+ *J )&$J + J &) J  !"#%%.  !J#" %JJBC6H8J$&+ >J#%+J >J>>@J;5=I77>J

- 120 - !$ .$!%.

-# "H CH"(!HCH )HH(H(!HJB6455C>J+),+,)J%J$ % *$J&J%J) &'* *J $ ,$G#&%H  %H#%+ J')%0#J'0)&' &*' +J*0%+ *>J#%+J 0* &#J:>>DJ54;=H54=4>J (((H H (H )(,-")0H J B6454C>J  J -&#,+ &%J &J %J ,'# + &%*@J #** 0 %J %J  *+ %, * %J+.%J$&#*>J +>J->J%+>J::@J=;I54<>J )( -H CH  , 4G)(-H CH ) ,.-)(H CH ,'& 3H  H (H ,- ,H J B6457C>J ,%+ &%#J  )+) 1+ &%J &J #&%H  %J ')%0#J  ' &*' +J *0%+ **J )&$J +&$+&>J  & $>J >J ==B@J ;6=I;84>J #'HCH (4()HCH ,(( 4H CH&)-H CH(, HCH/ *)(HCH),.)&)..#HCH !H CH ,,)H H (H  ,, ,H J B6456C>J  )+) 1+ &%J &J ) &'* *J J *&10$*J %J J %J /')** &%J %#0* *J ')&- J %*  +J %+&J + J  &*0%+ * *J &J *&')%& J '),)*&)*J %J **>J  &J%J@DJ8=54=>J (! H H(H"-- '#(H JB6447C>J%&$J&)% 1+ &%J %J$"#%%.& !@JJ*,)-0J&)J %*J %-&#-J %J *&')%& J%J #&)&' 0##J$+&# *$>J#%+J &#J &#J>:DJ=69H=8<>J (/#H CH ,,)( H CH H,)&#H CH,- ,HCH,'& 3H CH#,)HH(H& --(,)HJ B6456C>J *&')%& ?J# ' ?J%J')&+ %J&%+%+*J %J %++J'#*+ *J *&#+J)&$J$*&)'J##*J&J +) + &%#J %J  H' $%+J +&$+&J ,#+ -)*J +J  )%+J ) '% %J*+*>J >J) >J&&J  $>J?9@J5;:8I;9>J #HCH/(HCH#%-HH(H#%" &HJB6459C>J) &'* *J) &*&$#J')&+ %*J&%+)&#J-,&#J +) " %J %J -#&'$%+#J ')&)$*J + )&, J + J ),#+ &%J &J # ' J $+&# *$>J )&>J +#>J>J >J>J>J>J::;@J<=H=<>J #(!H CH )H H (H (!H  J B6446C>J +),+,)?J $ % *$J %J ,%+ &%J &J ')%0#+)%*)**>J,)>J >J & $>J;?B@J777=I7798>J #)HCH)(!HCH #HCH/)H CH" (H CH(HCH #HCH/)H CH(HCH/(HH(H(!H JB6449C>J D%J %+)&%H)J$+ 0#J!*$&%+J %, #J)%0#)%0#J ' &*' +J*0%+ *J%J)&$J )'%. J%J +*J,%+ &%#J %+  + &%J %J0*+E>J &#>J &#>JB &*"C>JJ 3("H H (H )( ,3H J B6444C>J  J -&#,+ &%)0J +J %J &%*(,%*J &J ,'# +J %*>J  %J;B9@J5595I9>J 3("H H (H ), H J B6444C>J  J ')& # +0J &J ,'# +J %J ')*)-+ &%J 0J *,,%+ &%# 1+ &%>J%+ *J:>=@J89=I;7>J (4()HCH(, HCH/ *7(HCH&. &&HCH,,7H H(H ,, ,H JB645:C>J,'')** %J )%*0#J ' &*' +J*0%+ *J#+)*J #&)&'#*+J-#&'$%+J%J+) )*J*+)&#H'%%+J %,+ &%J&J!*$&%+HJ%JH)#+J)*'&%**>J#%+J 0* &#>J:@;@J=7I55;>J (4()HCH/-+/ .-HCH&)-H CH)3 ,)0H CH"&& ,HCH '#( %H CH,,)H H(H ,, ,HJ B644:C>J-)/')** &%J&J)%*0#J ' &*' +J*0%+ *J %J) &'* *J$ +& &%) J+) )*J #  +H'%%+J#* &%J&)$+ &%J%J#+)*J0+&" % %J &$&*+* *>J#%+J &#J &#J?:DJ5=9H657>J - ,, ,HCH,,7H CH (4()HCH"&& ,HCH ,(( 4G/-+/ .-HCH )(& 5(HCH ,(5( 4H CH/(#&& ,HCH),)(.HH(H ,, ,HJB6446C>J-)/')** &%J&J$"#%%.& !J)%*0#J  ' &*' +J*0%+ *JB5CJ %J+)%*% J) &'* *J %,*JJ##J+ G*%*%H# "J )*'&%*J%J),J0+&" % %J#-#*>J#%+J >J<9@J567I576>J /#(-HCH/")&.4H CH*-. *"()/HCH .#3,HCH,# #-HH(H),. ,H JB5=;;C>J J ')+ #J',)  + &%J%J')&')+ *J&JJ' 0+&%J*0%+ * 1 %J%10$J*0*+$>J) >J & $>J  &' 0*>J:A9@J798I:6>J ,0 3H H(H,). /HJB5==9C>J)'%& J +&# *$>J#%+J##J@@J5459I546:>J

- 121 - !$ .$!%.

! &HCH ,(")&4HCH,()0HCH )-/."H CH ,!/HCH /1#!HCH --$)"((H CH ,-" (4)(H CH #--# ,HH(H"'#.HJB6459C>J$"#%%.& !J *&')%0#J ' &*' +J*0%+ **J')&,J + J69J %+)$ +?J)%0#)%*0#J ' &*' +>J#%+J JA=DJ<8;H<9=>J !/,H H(H )3'HJB5==J%10$+ J*'+*J&J *&')%& J  %J#&%+ &%>J $>J->J BA@J56:7I56;:>J %H CH #.)H CH %!1H CH 1'/%#H H (H '#3H J B6444C>J  -J )%0#)%0#J  ' &*' +J *0%+ **J /')**J %J  )%+J &)%*J )J #&# 1J %+&J + )J *,##,#)J &$')+$%+*J %J) &'* *>J#%+J 0* &#J:;;DJ5489H549:>J "#&&#*-H CH F/,#H CH  ,-" (4)(H CH #" ,-%3H J B644J  J $"#%%. & !J+0'J J *&'%+%0#J ' &*' +J *&$)**J)J+)+J+&J$,#+ '#J*,##,#)J&$')+$%+*J%J -J&-)#'' %J,%+ &%*J %J *&')%& J &*0%+ * *>J#%+J##J;9DJ:;;H:=:>J )/&. ,HJB644:C>J)%*0#J ' &*' +J*0%+ *>JJ') $J&)J,%)*+% %J*+),+,)J%J ,%+ &%J)#+ &%* '*J %JH'�')%0#J ' &*' +J*0%+ **>J 0+& $>J->J>@J5;I6:>J /&#)H CH  , &&)H H (H ),#!/ 4G)( *#)(H J B6456C>J .J %*  +*J %+&J '#%+J *&')%& J $+&# *$>J &#J#%+J>DJ=:8H=:;>J #H CH '#.H CH #(!"H  CH "(% ,H H (H ! !)1H J B6457C>J +)&$) J %J &$&$) J )%0#J  ' &*' +J *0%+ **J )&$J &$!&'%. $"%'%J %J +  )J )&#J %J $&%&+)'%J %&#J#"#& J &*0%+ * *>J &#>J#%+J?@J5975I598=>J #". ,HCH #&G'-H CH 8&&( ,HCH" HCH/'&#(-)(H H(H  ! (",.H J B6459C>J J *$##?J  )%+ ##0J ),#+J $ #0J &J )%*0#J  ' &*' +J *0%+ **J %J $ 1J B. *%CJ ')&- *J )%*0#J  ' &*' +J &)J + J  &*0%+ * *J &J ) -&)H %,J **(, +)'%*>J #%+J;=:@J5795I:5>J ),#!/ 4G)( *#)(H JB6448C>J *+ %+J#  +H$ +J'+ .0*J),#+J+ J &*0%+ * *J%J / %J &J *&')%& J '),)*&)*J ,) %J ) &'* *J *# %J -#&'$%+>J #%+J ##J %# %J:?@J588I59:>J ),#!/ 4G)( *#)(H H(H),)(.HJB6459C>J)" %J%.J)&,%J %J+ J),#+ &%J&J+ J )#0J*+'*J&J'#%+J *&')%& J &*0%+ * *>J,))J' %J#%+J &#J;>DJ5;H66>J ),#!/ 4G)( *#)(H H(H),)(.HJB6446C>J#, + &%J&J+ J$+ 0#)0+ ) +&#J' &*' +J '+ .0J&)J *&')%& J &*0%+ * *J %J+) J%J'#*+ *>JJ$+&# J$ #*+&%J -J + )&, J%&$ *>J#%+J 0* &#>J:<9@J54;=I54<=>J /#4G)&H CH)'(HCH %HCH,$H CH)&#(-H CH, HCH &-"H CH /.#'((H CH /"&'((H CH #!& ,H CH ,/#-- 'H CH ),#!/ 4G)( *#)(H H (H ,()0H J B645:C>J ) &'* *J    J J J55J *JJ ,J *&10$J)(, )J &)J+ J')&,+ &%J&J$&*+J' &+&*0%+ * *H)#+J *&')%& *>J .J 0+&#J;9BDJ696H6:8>JJ (( 2H:>J /#4G)&H CH,$H CH (4()HCH &), (. HCH"#** ,HCH %1#& ,H H(H),#!/ 4G )( *#)(H J B645:C>J J * %#J ) &'* *J %J %&*J +.&J  )%+ ##0J +)+J )%0#)%0#J ' &*' +J*0%+ *J *&&)$*>J#%+J 0* &#>J:@;@J57=7I5846>.J(( 2H;>J /** &H CH ,)**H CH0#-HCH ,.#(HCH / -- HH(H(!,. ,HJB6457C>J ,++ &%*J %J     .   .  . +J +J  #&)&'#*+J -#&'$%+J %J $"#%%.& !JB$%%C>J$J J&+J:99DJ64;8H64<8>J

- 122 - !$ .$!%.

&&/H CH )(. #(H CH (#&&)(H CH  -H CH / H CH #&)( H CH"),0&HCH-) # ,HCH  , .. HCH )(",.HCH/-- H H(H#--# ,HJB644=C>JJ%&-#J'+ .0J&)J**(, +)'%J  &*0%+ * *J)&$J1?1H)%*0#J'0)&' &*' +J %J+ J. #J+&$+&J " !' .$"&%>J#%+J ##J;:@J745I75;>J 0(H"# HCH' (.H CH"'#.HCH (! HCH,#(!H H(H"//,#(%HJB644;C>J)%0#J  ' &*' +J*0%+ *J *J)(, )J&)J &*0%+ * *J&J )## %*>J#%+J >J>;@J;96I:6>J "#&'#&& ,H CH"/0#(")&H CH ,-)(H CH/HCH",)(( /H CH"'#.HCH#&% ,-)(HCH -.H  H (H #" ,-%3H J B644=C>J &%&+)'%*J %J + J #%,#)J +)  &$*J &J +&$+&J )J *0%+ * 1J)&$JJ%)0#J ' &*' +J'),)*&)J)+ )J+ %J)%0#J ' &*' +>J)&>J +#>J >J >J:9?@J54<:9I54<;4>J "'#.H H (H  ,-" (4)(H J B644J #&% %J %J  )+) 1+ &%J &J +.&J  )%+J +0'*J &J )%0#J ' &*' +J*0%+ **J)&$J &).0J*'),JB.%C>J 0+& $ *+)0J?B@J8=I9;>J "'#.HCH".& ,HCH '*HCH , %&#(!HCH !/#(HH(H ,-" (4)(H JB6454C>JJ ,%+ &%#J )%0#J%J)%0#)%0#J ' &*' +J*0%+ *J *J %-&#-J %J+)'%J&#&)* %J&)$+ &%J %J.%>J#%+J 0* &#>J:>;@J:7=I:99>J "/",HCH3% 1#4HCH!( ,HCH .4 4HCH (%H CH,#!)(#HCH" ,HCH)"#"HH(H #- (, #"H J B6447C>J ,%+ ++ -J ****$%+J &J )&**+#"J +.%J + J +.&J *&')%& J  &*0%+ * *J'+ .0*J %J'#%+*J0J J*'+)&*&'0>J 0+& $>J->J;@J7I5:>J )&(#%H H (H ,.& 3H J B5==9C>J ,#&+ J *(,%J &J J ',++ -J )%0#)%0#J '0)&' &*' +J*0%+ *JB%%"J 849;;CJ)&$J) &'* *JB=9H45J#%+J 0* &#>J:9A@J 5787>J )&(#%H H (H ,.& 3H J B5==8C>J ,#&+ J *(,%J &J %J ) &'* *J  J &)J )%0#)%0#J'0)&' &*' +J*0%+ *>J#%+J 0* &#>J:9=@J58:=I;4>J )&(#%H H (H ,.& 3H J B5==:C>J .&J $&)J $$)*J &J ) &'* *J )%0#)%0#J '0)&' &*' +J*0%+ *J$ #0JBJ=:I458C>J#%+J 0* &#>J::9@J5879>J ./ ,HH(H)#(-)(G "0#H JB644=C>J&.J&% %+J%J.JJ+ +J&)+ &#&*J)J* $ #)?J ,+J')#&*J )AJ)%*J%+>J;>@J654I:>J ,-"#-H CH " ..#(#H CH (H H (H )/&. ,H J B5==8C>J )0*+#J *+),+,)J &J )&$ %%+J )%*0#J ' &*' +J*0%+ *J+J6>:H2J)*&#,+ &%>J & $ *+)0J<<@J54<;5I54<;;>J ")&&H J B6459C>J  &*0%+ * *J %J  &#& #J ,%+ &%*J &J +)'%& *J %J '#%+*>J %J -%*J %J  & $ #J% %) %G &+ %&#&0?J''>J:7I54:>J ")&&HCH #-"H CH,&)0H CH" ,'(HCH ,-" (4)(H CH#" ,-%3HH(H/, 0HJB6448C>J &)$+ &%J &J $&%&+)'%*J %J !&$$!' . '%J%J $. $($J #&.)*J %-&#-*J +)& $) J)%0#J ' &*' +J*0%+ **>J#%+J##J:?@J=;;I=6>J ( ,'). (H CH /,/! H H (H /--)(H J B644=C>J .J %*  +*J %+&J * &)+H  %J ')%0#+)%*)**@J *+),+,)#J +,)*?J -&#,+ &%)0J *+&)0J %J '&+%+ #J &)J *#+ -J %  + &%>J##>J &#>J J >J??@J7:<9I7:=9>J #% ,-HCH)(! ,-H CH #/HCH &.. HH(H)/1' -. ,HJB6458C>J +&# J% %) %J&J -&#+ #J *&')%& *J %J'#%+*J%J$ )&*>J#%+>J##J%- )&%>J<@@J5;97I5;;9>J ,()0HCH)'(HH(H,/#-- 'HJB6457C>J +.&)"J%#0* *J&J+ J J%J J'+ .0*J &)J *&')%& J*0%+ * *>J%%,J-J#%+J &#J?=DJ::9H;44>J

- 123 - !$ .$!%.

,()0H CH )'(H H (H ,/#-- 'H J B6456C>J +),+,)J %J 0%$ *J &J + J *&')%& J '+ .0J%+.&)">J &#>J#%+J>@J75J (!HCH" (HCH(HCH #H CH(!HH(H"(!HJB645:C>J+),+,)#J%#0**J&J* &)+H  %J ')%0#+)%*)**J %+ 0J %J -&#,+ &%) #0J &%*)-J J #J %J $%%J'#%+*>J &#J#%+JBDJ5=9H648>J (!HH(H#2)(HJB644=C>J+)& $) J)%0#B)%0#C ' &*' +J*0%+ *J)&$J &'J B' ' '%. '#' '%CJ%J+ J-&#,+ &%J&J$&%&+)'%J &*0%+ * *>J)&J +#JJ JJJJ :9?DJ==58H==5=>J (!HCH#(H CH4#4HCH,)/(HCH#HCH H CH #(!HCH")HH(H#2)(HJB644J)'%J  &*0%+ * *J %J#%,#)J+)  &$*J&J &'>J#%+J 0* &#>J:=A@J5698I::>J (!H CH #(HCH/HCH" (HCH/)H CH)HH(H/(!H JB645<C>J &#,#)J#&% %J%J ,%+ &%#J )+) 1+ &%J&J$,#+ '#J)%0#)%0#J'0)&' &*' +J*0%+ **JB'CJ )&$J!$"$#%.#!' &>J#%+J##J'>J7<@J55;H56<>J (!HCH/(!HCH)H CH"/(!HCH(!HH(H /HJB645<C>J+)&$) J)%0#)%0#J  ' &*' +J*0%+ *J&%+) ,+*J+&J)&+%& J &*0%+ * *J %J) '% %J), +*J&J)J''')J B#%' .!!'' .-)>J&%& *C>J >J) >J&&J $> ??D 55:=5I55;44>J "(!H CH/HCH")/H CH(!H CH")H CH #/H CH)(!HCH/HCH/(!H H(H)HJ B6459C>J %+  + &%J &J )%0#)%0#J  ' &*' +J *0%+ *J %*J )&$J $#&$*' . ( "$>J#%+J##J'>J<=@J65;=I<<>H ")/HCH(!HCH/. (-)"(H CH #(!H CH"(!HCH"(!HCH/, 0HH(H /HJB645;C>JJ )), + %J ')&+ %J &J )%0#)%0#J  ' &*' +J *0%+ *J &%+)&#*J $+&# J #,/J +&.)J  #&)&' 0##J &*0%+ * *J %J) >J)&>J +#>J>J >J>J>J>J::=@J:<::I:<;5>J "/HCH/4/%#H CH#.)HCH%H CH(%H CH%!1HCH .-/HH(H 1'/%#H J B5==;C>J)%0#)%0#J'0)&' &*' +J*0%+ *J%&J0J+ J%.#0J *&#+J%J,J )&$J$"#%%.& !J *J#&# 1J %J$ +& &%) >J#%+J &#J &#J<>DJ775H785>J "/HCH/4/%#H CH%H CH(%H CH%!1HCH 1'/%#H H(H .-/H JB5==;C>J #&% %J %J ,%+ &%#J /')** &%J &J J %&-#J )%0#)%0#J '0)&' &*' +J *0%+ *J %J )&$J$"#%%.& !J %J%$." >J#%+J##J 0* &#JJ J

- 124 - ....

.

.

.

...... 

;

  ;;;;

!#- .,..,..,.. ,. .,..,.  . ,. ( . ,. (. ,. . ,. ! . ,. %!#-'. . . "$. . . 7/-.384; $!"%%;    ;   ; ;..;%;;';%!,+ ; $#'$; !$; &; "$!'&! ; !; !%&; "!&!%+ &%%9$&; %!"$ !%4; ); +&!4; *)+6; /2/:/314;

; ; 6;;$!;!;&; ; &; ;&%;)!$;)%;&!;"$!$ ;&;*"$  &%;  ';  ; '$; 0;  ; '$; 15; ); )$; $#'%&; +; &; !'$ ; &!$; &$;&; &;$!' ;!;$()%4; ;

;

;

.

.

.

.

.

.

.

.

.

.

i 

. Research

Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids

M. Aguila Ruiz-Sola1*, Diana Coman2*, Gilles Beck2, M. Victoria Barja1, Maite Colinas2, Alexander Graf 2, Ralf Welsch3, Philipp Rutimann€ 4, Peter Buhlmann€ 4, Laurent Bigler5, Wilhelm Gruissem2, Manuel Rodrıguez-Concepcion 1 and Eva Vranova2,6 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona 08193, Spain; 2Department of Biology, Plant Biotechnology, ETH Zurich, Universit€atstrasse 2, Zurich 8092, Switzerland; 3Faculty of Biology II, University of Freiburg, Freiburg 79104, Germany; 4Department of Mathematics, Seminar for Statistics, ETH Zurich,

5 6 R€amistrasse 101, Zurich 8092, Switzerland; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland; Present address: Pavol Jozef Safarik University in Kosice, Faculty of Science, Institute of Biology and Ecology, Manesova 23, Kosice 04154, Slovakia

Summary Authors for correspondence: Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids  Eva Vranova and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and Tel: +421 55 234 2319 plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP syn- Email: [email protected] thase (GGPPS) . Seven out of 10 functional GGPPS isozymes in Arabidopsis thaliana Manuel Rodrıguez-Concepcion reside in plastids. We aimed to address the function of different GGPPS paralogues for plastid Tel: +34 935 636 600 ext. 3222 isoprenoid biosynthesis. Email: [email protected] We constructed a gene co-expression network (GCN) using GGPPS paralogues as guide Received: 5 June 2015 genes and genes from the upstream and downstream pathways as query genes. Furthermore, Accepted: 30 June 2015 knock-out and/or knock-down ggpps mutants were generated and their growth and metabolic phenotypes were analyzed. Also, interacting protein partners of GGPPS11 were New Phytologist (2016) 209: 252–264 searched for. doi: 10.1111/nph.13580 Our data showed that GGPPS11, encoding the only plastid isozyme essential for plant development, functions as a hub gene among GGPPS paralogues and is required for the pro- duction of all major groups of plastid isoprenoids. Furthermore, we showed that the GGPPS11 Key words: Arabidopsis thaliana, gene protein physically interacts with enzymes that use GGPP for the production of carotenoids, paralogues, geranylgeranyl diphosphate synthase, GGPPS11. chlorophylls, tocopherols, phylloquinone, and plastoquinone. GGPPS11 is a hub isozyme required for the production of most photosynthesis-related iso- prenoids. Both gene co-expression and protein–protein interaction likely contribute to the channeling of GGPP by GGPPS11.

Introduction against herbivores and pathogens, in attracting pollinators and seed-dispersing animals, and as allelochemicals that influence Isoprenoids are the most functionally and structurally diverse competition among plant species. Large numbers of specialized group of plant metabolites reported to date. They are produced isoprenoid metabolites have a commercial value as flavours, pig- in all living organisms, but their abundance and variety in plants ments, polymers, or drugs (Gershenzon & Dudareva, 2007; is unparalleled (Croteau et al., 2000; Bouvier et al., 2005; Pulido Kirby & Keasling, 2009). et al., 2012). From the 10s of 1000s of plant isoprenoid com- Despite their structural and functional diversity, all iso- pounds, only a few can be considered as ‘primary’ metabolites, prenoids are derived from the same five-carbon (C5) precursors, that is, those that are essential for plant function and are therefore isopentenyl diphosphate (IPP) and its isomer dimethylallyl common to all plant species. These include molecules involved in diphosphate (DMAPP), also called isoprene units (Fig. 1). The respiration, photosynthesis, and regulation of growth and devel- addition of IPP units to DMAPP generates prenyl diphosphate opment (Fig. 1). The others are specialized metabolites whose molecules of increasing size such as geranyl diphosphate (GPP, biosynthesis is usually restricted to specific plant families or even C10), farnesyl diphosphate (FPP, C15) and geranylgeranyl to particular species. They typically function in protecting plants diphosphate (GGPP, C20). These are the starting points for the production of the huge variety of isoprenoids found in plants. *These authors contributed equally to this work. Consistent with the compartmentalization of most metabolic

252 New Phytologist (2016) 209: 252–264 Ó 2015 The Authors www.newphytologist.com New Phytologist Ó 2015 New Phytologist Trust New Phytologist Research 253

Fig. 1 Isoprenoid biosynthesis in plant cells. The universal C5 isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) can be synthesized by the MVA pathway in the cytosol or the methylerythritol 4-phosphate (MEP) pathway in plastids, and then transported among cell compartments. Addition of IPP molecules to DMAPP produces prenyl diphosphates of increasing chain length, such as geranyl diphosphate (GPP, C10), farnesyl diphosphate (FPP, C15) and geranylgeranyl diphosphate (GGPP, C20). These are the starting points for the production of particular groups of isoprenoids, including the plant hormones brassinosteroids (BRs), cytokinins (CKs), gibberellins (GAs), abscisic acid (ABA) and strigolactones (SLs). GGPP is synthesized in different compartments by GGPP synthase (GGPPS) enzymes (the numbers refer to the Arabidopsis thaliana isoforms). Some of the enzymes that channel GGPP to specific isoprenoid pathways are indicated: SPS2, solanesyl diphosphate synthase 2; GGR, geranylgeranyl reductase; PSY, phytoene synthase. Dashed arrows indicate multiple steps. Grey arrows represent transport of isoprenoid precursors between cell compartments. Plastid GGPPS paralogues expression pattern (i.e. root, flower, seed and other plant organs) and expression intensity (i.e. black squares, high; dark grey squares, medium; light grey squares, low) are shown in the pictogram. pathways in plants (Lunn, 2007), different steps of plant iso- and DMAPP precursors are synthesized by the methylerythritol prenoid biosynthesis can take place in different plant tissues and 4-phosphate (MEP) pathway (Fig. 1). subcellular compartments. All land plants use two different path- The main groups of plastid isoprenoids, including photosyn- ways for the production of the same universal isoprene units thesis-related metabolites such as carotenoids and the side chain (Fig. 1). The mevalonic acid (MVA) pathway synthesizes of chlorophylls, tocopherols (vitamin E), phylloquinones (vita- cytosolic IPP for the production of sterols, brassinosteroids, min K), and plastoquinones, are derived from GGPP synthesized sesquiterpenes, and prenyl moieties used for protein modifica- by GGPPS enzymes (Fig. 1). Twelve paralogous GGPPS genes tion. MVA-derived IPP is also transported to mitochondria for (GGPPS1–GGPPS12) exist in the genome of the model plant the biosynthesis of ubiquinone (Disch et al., 1998). Plastid IPP Arabidopsis thaliana (Lange & Ghassemian, 2003). However,

Ó 2015 The Authors New Phytologist (2016) 209: 252–264 New Phytologist Ó 2015 New Phytologist Trust www.newphytologist.com New 254 Research Phytologist

GGPPS12 (At4g38460) does not show GGPPS activity and and grown under long-day conditions for 5 additional days. GGPPS5 (At3g14510) is likely a pseudogene (Okada et al., 2000; Seeds from Arabidopsis insertion lines belonging to SALK, SAIL, Wang & Dixon, 2009; Beck et al., 2013; Coman et al., 2014). FLAG, and SM collections (Supporting Information Table S1; The remaining 10 GGPPS isozymes produce GGPP in vitro and/ Tissier et al., 1999; Samson et al., 2002; Sessions et al., 2002; or in vivo and localize to different subcellular compartments Alonso et al., 2003) were obtained from Torrey Mesa Research (Zhu et al., 1997a,b; Okada et al., 2000; Wang & Dixon, 2009; Institute (http://www.syngenta.com/), from the European Beck et al., 2013). GGPPS2 (At2g18620), GGPPS6 Arabidopsis Stock Center (http://arabidopsis.info/), and from the (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), INRA (http://urgv.evry.inra.fr/FLAGdb). The original genetic GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 background of these lines is indicated in Table S1. The loss-of- (At4g36810) are plastid enzymes. Among these plastid isoforms, function T-DNA lines FLAG134B10 (ggpps2), SAIL1148_A03 only GGPPS2 and GGPPS11 are ubiquitously expressed, but (ggpps6), and FLAG470E09 (ggpps8) were back-crossed four GGPPS11 produces much higher mRNA levels than any of the times to the Columbia (Col-0) accession. Then, heterozygous other paralogues in most organs, especially in photosynthetic tis- plants were allowed to self-pollinate and the homozygous lines sues (Fig. 1; Beck et al., 2013). Expression of genes encoding the were identified in the progeny by segregation analysis and PCR- GGPPS6, 7, 8, 9, and 10 isoforms was confined to specific organs based genotyping (see Table S2 for primers). A GGPPS9-specific and developmental stages, with higher levels in roots, developing 95-bp fragment in the 30-UTR was amplified (see Table S2 for seeds, and flowers (in particular, GGPPS6 and 7). Together, the PCR primers) and cloned into the pHellsgate8 vector (Helliwell Arabidopsis GGPPS paralogues show significantly different quan- & Waterhouse, 2003) to generate lines defective in GGPPS9 by titative and tissue-specific expression patterns. Based on their RNA interference (RNAi; see Table S3 for cloning details). Con- expression patterns, we hypothesized that GGPPS11 might be structs containing the GGPPS11 promoter and/or coding region responsible for the housekeeping production of GGPP in chloro- were also constructed as described in Table S3 and then used for plasts, whereas other plastid-localized GGPPS isozymes might Agrobacterium-mediated transformation of Arabidopsis wild-type have specific and/or minor roles in the tissues where they are (Col-0) and GGPPS11-defective mutant plants. expressed (Beck et al., 2013). Homozygous transgenic lines containing a single T-DNA inser- To address the relevance of the different GGPPS paralogues tion were selected based on the segregation of the corresponding for plastid isoprenoid biosynthesis in Arabidopsis, we constructed resistance marker. In the case of T-DNA insertion mutants, the a gene co-expression network (GCN) and linked individual chi-squared goodness of fit test was performed with 1 degree of enzymes to GGPP-consuming downstream pathways and to the freedom and 95% interval of confidence to verify the Mendelian upstream pathways. Furthermore, knock-out and/or knock-down segregation of the associated resistance (Table S1). In the case of mutants for each plastid GGPPS gene were generated and their the ggpps11-5 mutant, where silencing of the kanamycin resistance growth and metabolic phenotypes were analyzed. Our results gene was observed, PCR-based genotyping results were scored. In show that GGPPS11 is a hub gene and GGPPS11 is required for the case of the null ggpps11-3 and ggpps11-4 mutants, the number the production of all major groups of plastid isoprenoids and is of green vs brown seeds was scored. Homozygous mutant lines the only plastid isozyme essential for plant development. Consis- were confirmed by PCR-based genotyping (Fig. S1a; Table S2). In tent with the connection at the gene expression level unveiled by most cases, reverse transcription RT-PCR was used to confirm the the GCN, we also found that GGPPS11 can physically interact absence of transcripts in mutant lines using cDNA isolated from with enzymes that use GGPP for the production of photosynthe- roots as template and primers spanning the T-DNA insertion site sis-related isoprenoids, suggesting a mechanism for the channel- (Fig. S1a; Table S2). When necessary to amplify low abundance ing of GGPP to specific downstream pathways. transcripts, nested PCR was carried out using 1 ll of the RT-PCR as template (Fig. S1a; Table S2). The transcript down-reg- ulation in GGPPS9 RNAi lines (Fig. S1b) was assessed by Materials and Methods ® TaqMan RT-qPCR (Applied Biosystems, Foster City, CA, USA) using cDNA isolated from roots as template, and UPL6 (Universal Plant material and growth conditions Probe Library, F. Hoffmann-La Roche, Basel, Switzerland). The Arabidopsis thaliana (L.) Heynh plants were grown either on transcript down-regulation in ggpps11-5 plants was assessed as Murashige-Skoog (MS) medium (Duchefa) containing 0.8% w/v described (Rodriguez-Villalon et al., 2009). Primer sequences are plant agar or on soil in a climate-controlled growth chamber at listed in Table S2. The IMAGEJ software (http://imagej.nih.gov/ij/) 22°C under long-day (16 h : 8 h, light : dark) or short-day was used for measurements of plant morphological traits (e.g. (8 h : 16 h, light : dark) conditions. For methyl viologen treat- cotyledon length). ments, seeds were surface-sterilized and sown on a sterile mesh of filter paper or synthetic fabric (Sefar Nitex 03-100/44) on top of GCN analysis solid MS medium in square culture dishes. Following stratifica- tion for 3 d at 4°C in the dark, plates were incubated vertically at The GCN was generated as described in Coman et al. (2014). In 22°C under long-day photoperiod for 5 d. Then, the mesh with brief, the AtIPD database (Vranova et al., 2011) was used to assem- the plants was transferred to new plates containing solid MS ble a list comprising the guide genes (GGPPS2, GGPPS6– medium either supplemented or not with 5 lM methyl viologen GGPPS11) and the query genes (genes encoding the MVA and the

New Phytologist (2016) 209: 252–264 Ó 2015 The Authors www.newphytologist.com New Phytologist Ó 2015 New Phytologist Trust New Phytologist Research 255

MEP pathway enzymes and enzymes from downstream biosyn- sonicated, and centrifuged and the resulting supernatants were thetic pathways). The Arabidopsis Developmental Baseline dataset pooled to the organic phase. Extracts were dried by a speed-vac- generated within the AtGenExpress Consortium was used (Schmid uum centrifugation at 20°C for c. 2 h. The dry pellets were then et al., 2005). Next, the pairwise Pearson correlation between each resuspended in 200 ll of a 7 : 3 chloroform/2-propanol solution. guide and query genes was computed and Fisher’s Z-transforma- After vortexing, sonication, and centrifugation, 140 ll were tion was employed to test if the pairwise correlations were signifi- transferred to a glass vial for UPLC-MS analysis in a system con- cant. The family wise error was controlled using Holm–Bonferroni sisting of a Waters Acquity ultra high performance liquid chro- correction. The GGPPS GCN was built based on the corrected P- matograph (UPLC) and a Bruker quadrupole time-of-flight values from the significance test as estimator of significant positive (QTOF) high-resolution mass spectrometer equipped with elec- co-expression between pairs of genes (i.e. P-values ≤ 0.05 indicate trospray ionization source. An Acquity BEH C8 2.1 9 100 mm, significantly co-expressed genes). The GGPPS GCN was displayed 1.7 lm column from Waters was used in the study. The two sol- + as undirected graph with nodes representing genes and edges repre- vents used for gradient elution were A (H2O 1% ammonium senting significant correlation between pair of genes (i.e. P-value acetate + 0.1% acetic acid) and B (acetonitrile/isopropanol (7 : 3) ≤ 0.05) using Cytoscape (Shannon et al., 2003). + 1% ammonium acetate + 0.1% acetic acid). A further metabolic analysis of ggpps11-5 plants was performed by extract- ing and quantifying photosynthetic pigments (chlorophylls and Microscopy carotenoids) and prenylquinones as described (Rodrıguez-Con- Clearing of Arabidopsis ovules was performed as described (Stan- cepcion et al., 2004; Martinis et al., 2011). geland & Salehian, 2002) with some modifications: Hoyer’s solu- tion contained 66.7 g chloral hydrate and 8.3 ml glycerol Yeast two-hybrid assays dissolved in 25 ml water. Siliques were dissected with hypoder- mic needles or ovules were taken out of siliques and cleared for The split-ubiquitin system was used as described (Obrdlik et al., several hours or overnight. Embryo development was studied 2004). ORFs were truncated by the length of putative transit pep- microscopically with a Zeiss Axioplan 2 microscope equipped tides predicted by ChloroP (Emanuelsson et al., 1999) which was with differential interference contrast optics. Pictures were taken 55 aa for G11, 57 aa for phytoene synthase (PSY), 43 aa for GGR with the connected Axiocam Hrc (Carl Zeiss, Jena, Germany). and 59 aa for SPS2, as described in Table S3. The cDNAs were For determination of chloroplast size and abundance, wild- cloned into pNXgate for Nub-GGPS11 or pMetYCgate for Cub type and ggpps11-5 lines were grown for 7 d under long-day con- fusions and transformed into the yeast strain THY.AP4 (Nub) or ditions. Then, whole seedlings were embedded in 5% (w/v) THY.AP5 (Cub), respectively. Separate strains carrying Nub and agarose blocks and 200 lm cross-sections of their cotyledons Cub fusions were mated and the resulting diploid cells were cul- were obtained with a Vibratome Series 1000 Sectioning System. tured in synthetic complete medium lacking leucin and trypto- Sections were observed with a Olympus FV 1000 Confocal Laser phane. Interaction growth tests were performed on synthetic Scanning Microscope (Tokyo, Japan). Chloroplasts were identi- minimal agar, supplemented with 150 lMmethionineforPSY- fied based on chlorophyll autofluorescence. Pictures of chloro- Cub combinations to reduce a weak background activation of the plasts from different stomata and mesophyll regions were taken reporter gene. For b-galactosidase assays and phytoene extraction, and used to count chloroplasts with the ImageJ software. To esti- yeasts were cultivated overnight in synthetic complete medium sup- mate chloroplast area, only the largest chloroplast of each guard plemented with adenine and histidine at 28°C. b-Galactosidase cell and the five largest chloroplasts in the pictures of the meso- activity was determined in triplicates as described (Obrdlik et al., phyll region were used for ImageJ calculations. 2004) and expressed relative to cell density measured at 600 nm. Phytoene was quantified as described (Welsch et al., 2010). Extraction and analysis of metabolites Bimolecular fluorescence complementation (BiFC) Seedlings were grown for 10 d on MS medium supplemented with 1% of sucrose and frozen in liquid nitrogen before analysis. Constructs for BiFC experiments were generated in pSPYNE(R) Frozen plant material from seven biological replicates was ground 173 and pSPYCE(MR) vectors (Waadt et al., 2008) as described and 100 mg samples were resuspended in 1 ml of extraction mix- in Table S3. Onion (Allium cepa) epidermal peels were ture 1 (methanol/chloroform/water 2.5 : 1 : 1) containing two microbombarded with DNA-coated 1 lM gold microcarriers internal standards at 1 lgml 1 concentration, corticosterone and using a Biolistic PDS-1000/He system (Bio-Rad) and incubated C17-choline. After mixing and sonication, samples were cen- at 22°C in the dark for 24 h before observation with a Leica trifuged for 3 min at 20 000 g at 4°C. The supernatants were (Leica Microsystems CMS GmbH, Mannheim, Germany) TCS transferred to fresh tubes and 200 ll water and 400 ll chloro- 4D Confocal Laser Scanning Microscope. form were added. The tubes were briefly vortexed and then cen- l trifuged again. Approximately 500 l of the organic lower phase Gene ID numbers was transferred to a fresh tube. The pellet resulting from the first extraction was re-extracted with 300 ll of extraction mixture 2 AGI locus identifiers of the GGPPS characterized in this study (2-propanol/hexane/water 5 : 2 : 2.5). Samples were vortexed, are: GGPPS1 (GGPPS6 in Zhu et al., 1997b; Okada et al., 2000)

Ó 2015 The Authors New Phytologist (2016) 209: 252–264 New Phytologist Ó 2015 New Phytologist Trust www.newphytologist.com New 256 Research Phytologist

is At1g49530; GGPPS2 is At2g18620; GGPPS3 (GGPPS4 in plastid GGPPS paralogue and the only one highly expressed in Okada et al., 2000) is At2g18640; GGPPS4 (GGPPS5 in Zhu green tissues (Fig. 1; Beck et al., 2013), is significantly co-ex- et al., 1997a; GGPPS2 in Okada et al., 2000) is At2g23800; pressed with all genes encoding MEP pathway enzymes and GGPPS6 is At3g14530; GGPPS7 (GGPPS3 in Okada et al., almost all genes from pathways synthesizing photosynthesis-re- 2000) is At3g14550; GGPPS8 is At3g20160; GGPPS9 is lated isoprenoids (Fig. 2b; Table S6). This is in agreement with At3g29430; GGPPS10 is At3g32040; GGPPS11 (GGPPS1 in similar network studies of the GGPPS genes that used different Okada et al., 2000) is At4g36810; GGPPS12 is At4g38460. data sets and calculation methods (Wille et al., 2004; Gilbert et al., 2009; Meier et al., 2011; Lonzano & Swirszcz, 2012; Yang Results et al., 2014). Only few significant connections exist between GGPPS11 and genes from the hormone biosynthetic pathways (gibberellins, ABA and strigolactones). GGPPS11 is a hub gene in the modular GGPPS gene co-ex- The other plastid GGPPS genes are significantly co-expressed pression network with only a few genes from downstream plastid pathways. Gene co-expression networks (GCNs) may be indicative for GGPPS2, GGPPS6/GGPPS7, GGPPS8 and GGPPS10 have simi- modular organization and functional relationships between genes lar co-expression pattern and they are co-expressed with genes (Oliver, 2000). Genes associated with the same metabolic path- encoding gibberellin 3-oxidase 1 (GA3ox1, At1g15550) and gib- way are highly co-expressed across various spatial, temporal and/ berellin 3-oxidase 2 (GA3ox2, At1g80340) from the GA biosyn- or environmental conditions compared to genes from different thetic pathways and with isochorismate synthase 2 (ICS2, pathways (Gachon et al., 2005; Wei et al., 2006; Heyndrickx & MENF2, At1g18870) from the phylloquinone biosynthetic path- Vandepoele, 2012). Here we have used a targeted GCN analysis way. GGPPS2 and GGPPS8 to GGPPS10 are co-expressed with to predict the association of individual plastid GGPPS isozymes the 5-aminolevulinate dehydratase (HEMB2, At1g443180) from with pathways in the isoprenoid metabolism. the chlorophyll biosynthetic pathway (Fig. 2b). Interestingly, As input expression dataset for the targeted GCN analysis we GGPPS2, GGPPS6/GGPPS7 and GGPPS10 are co-expressed used the Developmental Baseline microarray compendium, with genes encoding enzymes in the cytosolic MVA pathway which contains gene expression information for various stages of (Fig. 2) but not with genes encoding enzymes in the MEP path- Arabidopsis development from embryogenesis to senescence as way. Cross-compartment transport of prenyl diphosphate inter- well as for various organs and tissues (Schmid et al., 2005). As mediates has been reported (Bick & Lange, 2003; Flugge€ & Gao, guide genes we used the GGPPS genes that encode plastid 2005) and therefore GGPPS2, GGPPS6/GGPPS7 and isozymes (GGPPS2 and GGPPS6 to GGPPS11). As query genes, GGPPS10 might use precursors derived from the cytosolic MVA we used the genes encoding the enzymes from the plastid MEP pathway. This would be consistent with the expression patterns pathway and the cytosolic MVA pathway and the enzymes from of the GGPPS2, GGPPS6/GGPPS7 and GGPPS10 genes, which downstream plastid biosynthetic pathways for the production of appear to be confined to nongreen tissues (Beck et al., 2013). Yet, carotenoids, chlorophylls, plastoquinone, phylloquinone, toco- GGPPS11 might be the main isozyme that uses IPP and pherols, gibberellins, abscisic acid (ABA) and strigolactones (SLs; DMAPP precursors produced via the MEP pathway for GGPP Table S4). To build the targeted GCN, the correlation of tran- biosynthesis and the main one contributing GGPP for the syn- script profiles between guide and query genes was assessed and thesis of photosynthesis-related isoprenoids (Fig. 2; Table S6). tested for statistical significance (Coman et al., 2014). The GGPPS GCN has in total 73 nodes and 83 edges repre- Mutants in the GGPPS genes confirm essentiality of senting significant co-expression (P-value ≤ 0.05; Table S5) GGPPS11 between the GGPPS genes encoding plastid isozymes and genes from the MEP pathway, the MVA pathway and biosynthetic To test if the function of GGPPS11 is essential compared with pathways downstream of GGPPS (Fig. 2a). The GGPPS GCN other plastid GGPPS, we established a collection of full loss-of- shows a modular organization. The major component in the net- function mutants for plastid GGPPS genes (Figs 3, S1; Table S1). work with the highest connectivity is GGPPS11, which accounts Homozygous lines with a single T-DNA inserted in the coding for 68.6% of total edges in the GCN. The remaining GGPPS region could be obtained for all genes except GGPPS9 and paralogues on average account for only 6.2% of total edges GGPPS11 (see the Materials and Methods section and Fig. S1a). (Fig. 2a). The high node degree of GGPPS11 indicates the central The absence of detectable full-length transcripts in ggpps2, relevance of this gene for GGPP synthesis in plastids. The small ggpps6, ggpps7, ggpps8 and ggpps10 mutants was confirmed by node degree of GGPPS2 and GGPPS6 to GGPPS10 suggests a standard reverse transcription PCR (RT-PCR), indicating that all minor role for these paralogues in Arabidopsis plastid GGPP syn- are null mutants (see the Materials and Methods section and thesis, in agreement with gene expression profiles (Beck et al., Fig. S1a). The two available T-DNA insertion mutants for 2013). GGPPS11 were ggpps11-3 (SALK_085914) and ggpps11-4 We next mapped GCN onto the isoprenoid metabolic path- (SAIL_712_D06) according to the annotation by Ruppel et al. way network (Vranova et al., 2011) to determine the involvement (2013). Because no T-DNA insertion line for GGPPS9 could be of GGPPS11 and other GGPPS paralogues in different pathway identified in public repositories, we generated RNAi lines for this branches. GGPPS11, which is the most ubiquitously expressed paralogue (see the Materials and Methods section and Fig. S1b).

New Phytologist (2016) 209: 252–264 Ó 2015 The Authors www.newphytologist.com New Phytologist Ó 2015 New Phytologist Trust New Phytologist Research 257

(a)

(b)

A 95 nucleotide tag located in the 30UTR region of GGPPS9 was with 21% and 16% of transcript wild-type levels, respectively selected to ensure specific targeting of this paralogue. Two inde- (Fig. S1b). pendent homozygous lines with the lowest transcript levels were All lines used in this work were either originally in the Col-0 selected for further analysis, the ggpps9-1 and ggpps9-6 RNAi lines background or back-crossed into Col-0 to ensure comparability

Ó 2015 The Authors New Phytologist (2016) 209: 252–264 New Phytologist Ó 2015 New Phytologist Trust www.newphytologist.com New 258 Research Phytologist

Fig. 2 The Arabidopsis GGPPS gene co-expression network. Genes are shown as nodes and statistically significant positive co-expression relationships (P- value ≤ 0.05) are shown as edges. The GGPPS genes encoding plastid isozymes are indicated in green (dark green, GGPPS11; GGPPS2; light green, GGPPS6-10). GGPPS6 and GGPPS7 are ambiguously amplified by the same probe set on the AffymetrixTM (Santa Clara, CA, USA). microarray and are referred here to as ‘GGPPS6/7’. The grey nodes represent the genes encoding enzymes from the methylerythritol 4-phosphate (MEP) and the mevalonic acid (MVA) pathways and from biosynthetic pathways located downstream of geranylgeranyl diphosphate synthase (GGPPS). Only significant co- expression edges between GGPPSs and genes from isoprenoid pathway are shown (i.e. co-expression between GGPPs are not depicted here). (a) The modular co-expression network of the GGPPSs encoding plastid isozymes during Arabidopsis development is shown. GGPPS11 has the highest connectivity and is a hub in the gene co-expression network envisioning an essential role owed to its high nonoverlapping connectivity. The remaining paralogues form overlapping modules. (b) The co-expression network of the GGPPSs encoding plastid isozymes, mapped onto the metabolic pathway of isoprenoid biosynthesis is shown. The plastid compartment is delimited by the grey dotted line. The MEP and the MVA pathways upstream of GGPPS and the downstream biosynthetic pathways that use GGPP as precursor are schematically represented. Multiple nodes aligned horizontally represent isozymes and the direction of the biosynthetic process is indicated by red arrows. GGPPS11 has the highest connectivity (green edges). Gene abbreviations are included in Supporting Information Table S6.

between the mutant lines (see the Materials and Methods section (Figs 3d, S2, S3). But similar to ggpps11-1 plants, ggpps11-5 and Table S1). All ggpps mutants had segregation ratios consistent seedlings were smaller than the wild-type, had shorter roots, and with single locus recessive nuclear mutations (Table S1). Mutant showed a developmental delay when growing in long or short lines for GGPPS2, GGPPS6, GGPPS7, GGPPS8, GGPPS9, or days (Figs 3d, S2, S3). The number of chloroplasts appeared to GGPPS10 did not show any developmental defects compared to be similar in wild-type and ggpps11-5 plants (Fig. S4). Also simi- wild-type plants. Homozygous ggpps11-3 and ggpps11-4 lines larly, guard cell chloroplasts in the mutant had a wild-type size. could not be identified in the F2 progeny. Even screening of a However, chloroplasts in mesophyll cells were found to be larger population of 87 F2 ggpps11-4 seedlings grown on antibi- smaller in ggpps11-5 plants (Fig. S4). Consistently, the white sec- otic selection media using PCR genotyping revealed no homozy- tors of ggpps11-1 leaves showed an improper development of gous mutant plants. Similar results were reported by Ruppel et al. mesophyll chloroplasts but normal-appearing guard cell chloro- (2013) from genotyping a segregating ggpps11-3 population. In plasts (Ruppel et al., 2013). siliques of heterozygous ggpps11-3 and ggpps11-4 plants, 19% Reverse transcription quantitative PCR (RT-qPCR) analysis of (n = 2286) and 22% (n = 2021), respectively, of developing seeds GGPPS11 transcript levels in wild-type and ggpps11-5 seedlings were white, and at a later stage brownish and shrunken (Fig. 3b), showed substantially reduced levels in mutant plants before and suggesting defective homozygous embryo and/or seed develop- after de-etiolation (Fig. 3e). The visual phenotype of the ggpps11- ment. To discriminate between these two possibilities, we ini- 5 mutant was fully complemented by expressing either the G11 tially examined embryo development in siliques from minigene (Fig. S2) or the GGPPS11 coding region fused to the heterozygous plants. Approx. 20% of the embryos in these green fluorescent protein (GFP) reporter under the transcrip- siliques were found to be arrested at the heart stage (Fig. 3c). The tional control of the constitutive 35S promoter (g11 + SG11G arrested embryos could not develop further and seeds with those lines; Figs 3d, S3), demonstrating that it was specifically caused aborted embryos eventually collapsed and dried (Fig. 3b). The by a defective GGPPS11 expression. embryo lethal phenotype of the ggpps11-4 allele was comple- mented by expressing a genomic fragment with the GGPPS11 Metabolite analysis confirms the essential role of GGPPS11 gene (G11 minigene), including the promoter and protein coding in plastid isoprenoid metabolism region (Fig. S2). We therefore conclude that the embryo lethal phenotype of these plants was specifically caused by a loss of We next analyzed the level of photosynthesis-related isoprenoid GGPPS11 activity and hence that GGPPS11 activity is essential metabolites in wild-type, ggpps11-5, and complemented during embryo development. (g11 + SG11G) lines using high pressure liquid chromatography (HPLC) and UPLC-MS (see Materials and Methods). Levels of chlorophylls (a and b), carotenoids (b-carotene, violaxanthin, Reduced GGPPS11 levels in the ggpps11-5 allele result in neoxanthin, and lutein) and prenylquinones such as tocopherols pale plants with smaller mesophyll chloroplasts (ɑ-tocopherol and ɣ-tocopherol), plastoquinones (plastochro- We next searched the SALK collection of T-DNA insertion lines manol-8 and plastoquinone-9) and phylloquinone were signifi- (Alonso et al., 2003) for potential knock-down mutants to under- cantly reduced in ggpps11-5 seedlings, whereas complemented stand the contribution of GGPPS11 to the production of plastid lines showed a metabolite profile similar to that of wild-type con- isoprenoids. Line SALK_140601 was selected and confirmed to trols (Figs 4, S5). It is likely that the observed reduction of contain a T-DNA 148 bp upstream of the first ATG codon in chloroplast size (Fig. S4) and photosynthesis-related metabolites the GGPPS11 gene by sequencing the insertion site in the (Figs 4, S5) in ggpps11-5 plants could have an impact on photo- genome of homozygous plants. The new insertion allele was synthetic rate, as previously reported for another GGPPS11-de- named ggpps11-5 (Fig. 3a). Unlike the variegated phenotype of fective allele (Ruppel et al., 2013). We additionally evaluated the ggpps11-1 mutant, a likely knock-down allele with a point whether the metabolic, physiological, and developmental changes mutation in the coding region of the GGPPS11 gene (Ruppel associated with a reduction in GGPPS11 activity in the ggpps11- et al., 2013), ggpps11-5 plants were paler than the wild-type 5 mutant had an impact on the protection against oxidative

New Phytologist (2016) 209: 252–264 Ó 2015 The Authors www.newphytologist.com New Phytologist Ó 2015 New Phytologist Trust New Phytologist Research 259

(a) (d)

(b)

(c) (e)

stress. We addressed this question by comparing the response of by methyl viologen was similar in wild-type and ggpps11-5 plants wild-type and mutant plants to treatment with methyl viologen based on the reduction of root growth and shoot fresh weight (also known as paraquat, a widely used inductor of oxidative (Fig. S3). Together, metabolite and phenotypic analysis of the stress in the chloroplast). The response to oxidative stress caused ggpps11-5 mutant suggests that partial loss of GGPPS11 function

Ó 2015 The Authors New Phytologist (2016) 209: 252–264 New Phytologist Ó 2015 New Phytologist Trust www.newphytologist.com New 260 Research Phytologist

Fig. 3 Collection of ggpps mutants. (a) Schematic representation of mutations disrupting the plastid geranylgeranyl diphosphate synthase (GGPPS) genes. ggpps2 (FLAG_134_B10), ggpps6 (SAIL_1148_A03), ggpps7 (SALK_119280), ggpps8 (FLAG_470_E09), ggpps9-1 and ggpps9-6 (RNAi), ggpps10 (SM_3_32015), ggpps11-3 (SALK_085914), ggpps11-4 (SAIL_712_D06) and ggpps11-5 (SALK_140601). The genomic location of the T-DNA insertion lines and of the gene specific tag selected as target for RNAi mediated silencing, are shown and marked by an arrowhead. Gene models are according to 0 0 TAIR v10 Arabidopsis thaliana genome annotation and are shown in 5 -3 orientation. Coding regions are shown in grey and untranslated regions are shown in black. (b) Representative images of wild-type (WT) siliques and the segregating population of seeds in siliques of heterozygous ggpps11-3 and ggpps11-4 full loss-of-function mutant plants. White and brownish seeds are observed in both mutant backgrounds. (c) Representative images of embryos in the segregating population of seeds found in siliques of heterozygous ggpps11-4 plants at different stages of development. Images in the same column correspond to green or white/brown seeds of the same silique. Similar results were obtained for the ggpps11-3 line. Bars, 20 lm. (d) Partial loss-of-function ggpps11-5 mutant plants show pigmentation and growth defects. Representative images of WT, mutant ggpps11-5, and complemented g11 + SG11G seedlings grown for 7 d under long-day conditions (LD, upper panel) and for 4 wk under short-day (SD) or 3 wk under LD (lower panel) conditions. (e) Reverse transcription quantitative (RT-q)PCR analysis of GGPPS11 transcript levels of WT and ggpps11-5 mutant plants. The graph on the right represents GGPPS11 transcript levels of 4-d-old etiolated WT and ggpps11-5 seedlings immediately before and after illumination with white light for 6 h. The graph on the left represents GGPPS11 transcript levels in WT and ggpps11-5 seedlings grown for 11 d under SD or 7 d under LD photoperiod. The UBC/UBC21/ PEX4 (At5g25760; Czechowski et al., 2005) gene was used for normalization. Data correspond to mean and standard deviation of n = 4 independent samples. Asterisks mark statistically significant differences (P < 0.05) relative to WT samples.

most gibberellin producing and inactivating pathway genes used as markers for GA contents (Curaba et al., 2004; Eriksson et al., 2006; Fig. S6). We also tested whether ggpps2, ggpps6, ggpps7, ggpps8, ggpps9 and ggpps10 mutants were compromised in the synthesis of pho- tosynthesis-related isoprenoid metabolites. Profiling of chloro- phylls (a and b), carotenoids (b-carotene, neoxanthin) and prenylquinones (phylloquinone) using UPLC-MS (see the Materials and Methods section) showed that none of the mutants except ggpps8 (in which a small decrease in chlorophyll b level was detected) had significantly decreased levels of these iso- prenoid metabolites (Fig. S5). These results are consistent with the GCN prediction that GGPPS11 is the main plastid GGPPS isozyme that produces a common pool of GGPP for the Fig. 4 Plastid isoprenoid levels are reduced in ggpps11-5 plants. biosynthesis of photosynthesis-related isoprenoids (Fig. 1). Arabidopsis thaliana wild-type (WT), mutant ggpps11-5, and complemented g11 + SG11G seedlings grown for 7 d under short-day conditions were used to quantify the levels of the indicated groups of GGPPS11 interacts with plastid enzymes that use GGPP as plastid isoprenoids. Data of individual metabolites are shown in Fig. S5. substrate Values are shown relative to those found in WT plants and correspond to mean and standard deviation of n = 8 (carotenoids and chlorophylls) or GGPPS enzymes have been found in multienzyme complexes n = 4 (tocopherols and plastoquinones) independent samples. Asterisks containing phytoene synthase (PSY) and other isoprenoid biosyn- mark statistically significant differences (P < 0.05) relative to WT samples. thetic enzymes in chromoplasts (Maudinas et al., 1977; Dogbo Absolute levels in WT plants are as follows: carotenoids, et al., 1988; Camara, 1993; Fraser et al., 2000). Based on our 137.9 7.0 lgg 1 FW; chlorophylls, 177.8 8.9 lgg 1 FW; tocopherols, GCN analysis and metabolite profiling data, we reasoned that 6.1 0.2 lgg 1 FW; plastoquinones, 9.3 0.9 lgg 1 FW. GGPPS11 might interact with PSY but also with other enzymes that use GGPP as a substrate for the production of downstream reduces the supply of GGPP for the production of photosynthe- isoprenoids in Arabidopsis chloroplasts (Fig. 1). To test this possi- sis-related metabolites, which in turn would negatively impact bility, we used g11 + SG11G plants for immunoprecipitation chloroplast development and photosynthetic efficiency and even- assays. Transgenic lines expressing a GFP-tagged version of tually cause the growth defects observed in the ggpps11-5 mutant. deoxyxylulose 5-phosphate, the first enzyme of the MEP pathway In principle, reduced production of gibberellins (Fig. 1) could (Pulido et al., 2013), were used as controls for immunoprecipita- also contribute to reduced growth. However, experiments with tion experiments with a commercial anti-GFP serum. Analysis of the ggpps11-1 mutant allele, which has a stronger growth and pig- co-immunoprecipitated proteins by mass spectrometry detected mentation phenotype compared to ggpps11-5, indicated that fur- the presence of GGR (At1g74470) and SPS2 (At1g78510) only ther reduction in GGPPS11 activity did not significantly affect in g11 + SG11G samples. GGR produces the phytyl moiety of gibberellin-controlled processes such as seed germination, chlorophylls, tocopherols and phylloquinone (Keller et al., 1998) hypocotyl elongation, or flowering (Ruppel et al., 2013). Consis- and, SPS2 specifically converts GGPP into solanesyl diphosphate tent with the conclusion that GGPPS11 does not significantly for the production of photoactive plastoquinone (Block et al., contribute to the biosynthesis of these hormones, mutant 2013; see Fig. 1). However, PSY was not detected among ggpps11-5 seedlings showed wild-type levels of transcripts from the co-immunoprecipitated proteins. Furthermore, the

New Phytologist (2016) 209: 252–264 Ó 2015 The Authors www.newphytologist.com New Phytologist Ó 2015 New Phytologist Trust New Phytologist Research 261

(a) (b) (c)

(d)

Fig. 5 Geranylgeranyl diphosphate synthase 11 (GGPPS11) interacts with phytoene synthase (PSY), GGR, and SPS2 in vivo. (a) Growth of yeast strains co-expressing the indicated proteins on synthetic minimal medium. Empty vectors expressing Nub (N-terminal ubiquitin moiety) or Cub (C-terminal ubiquitin moiety) alone were used as negative controls, and constructs with the KAT1 protein, known to homodimerize, were used as a positive control. Growth indicates interaction. (b) Quantification of interaction by b-galactosidase activity from yeast strains co-expressing the indicated proteins. (c) Levels of phytoene (produced by the PSY enzyme from GGPP) in yeast cells co-expressing the indicated proteins. Values in (b, c) correspond to mean and standard deviation of n = 3 independent samples. (d) Bimolecular fluorescence complementation (BiFC) experiments in onion (Allium cepa) epidermal tissue. Cells were co-bombarded with a construct to transiently express the full-length GGPPS11 protein with its C-terminus fused to the C-terminal domain of YFP (G11-CY) together with plasmids expressing full-length PSY, GGR or SPS2 proteins with their C-termini fused to the N-terminal half of YFP (PSY-NY, GGR-NY and SPS2-NY, respectively) or a negative control (C-NY). An extra plasmid encoding a cytosolic DsRed marker protein was also included to mark transformed cells. Panels show merged images obtained by observation of DsRed fluorescence (red), yellow fluorescent protein (YFP) fluorescence (green, indicative of positive interaction), and bright field. Green fluorescent dots correspond to plastids (leucoplasts). Bars, 20 lm. immunoprecipitation results were not consistently reproducible, To verify that the observed interaction of GGPPS11 with perhaps due to transient or unstable nature of the interactions or GGPP-consuming enzymes occurs under appropriate physio- to their dependence on specific growth conditions or cell types. logical conditions (i.e. inside plastids in living plant cells), we As an alternative and more robust approach to evaluate the carried out bimolecular fluorescence complementation (BiFC) interaction between GGPPS11 and downstream enzymes, we assays (Ohad et al., 2007). Onion (Allium cepa) epidermal peels used yeast two-hybrid (Y2H) analysis. Because PSY enzymes have were microbombarded with particles coated with constructs been found associated to membranes in all plastid types (Dogbo expressing GGPPS11 fused to the C-terminal domain of the et al., 1988; Bonk et al., 1997; Fraser et al., 2000; Welsch et al., yellow fluorescent protein (YFP) (G11-CY) and the interacting 2000; Li et al., 2008), we used a split-ubiquitin membrane-based enzymes fused to the N-terminal half of YFP (PSY-NY, GGR- Y2H system (Obrdlik et al., 2004). A clear interaction between NY, and SPS2-NY). As shown in Fig. 5(d), BiFC experiments Arabidopsis GGPPS11 and PSY enzymes was detected by growth confirmed the interaction of Arabidopsis GGPPS11 with PSY, in selective medium (Fig. 5a) and b-galactosidase activity GGR, and SPS2 in the plastids of plant cells. (Fig. 5b) of yeast strains co-expressing GGPPS11 fused to the N-terminal ubiquitin moiety (Nub-G11) and PSY fused to the Discussion C-terminal ubiquitin moiety (PSY-Cub). The fusion proteins maintained their enzymatic activity, as demonstrated by the accu- Using GCN (Fig. 2), mutant analyses (Figs 3, S2–S4) and mulation of phytoene (the product of PSY) in yeast strains metabolite profiling (Figs 4, S5) we demonstrated the central role expressing both Nub-G11 and PSY-Cub (Fig. 5c), while this was of the GGPPS11 isozyme for the synthesis of photosynthesis-re- not observed in yeasts co-expressing Nub and PSY-Cub. Y2H lated isoprenoids and hence for chloroplast and plant develop- experiment further confirmed the interaction of GGPPS11 with ment. Furthermore, immunoprecipitation, Y2H, and BiFC GGR, another membrane-associated enzyme (Peltier et al., 2004; assays (Fig. 5) provided evidence that GGPPS11 interacts with Joyard et al., 2009; Tanaka et al., 2010). However, interaction enzymes that use GGPP as substrate. with SPS2 could not be evaluated with this experimental system The remaining individual plastid GGPPS enzymes appear to because the SPS2-Cub fusion alone showed a very strong activa- be dispensable for the synthesis of major plastid isoprenoids tion of the reporter genes (Fig. 5). and for normal plant growth and development. So far we can

Ó 2015 The Authors New Phytologist (2016) 209: 252–264 New Phytologist Ó 2015 New Phytologist Trust www.newphytologist.com New 262 Research Phytologist

only speculate on their function. Multiple paralogues are gen- Acknowledgements erally maintained in the genome if they confer a selective advantage, such as a better performance under certain condi- We are very grateful to G. Glauser (University of Neuch^atel, tions, gene dosage or reducing metabolic cross talk by associa- Switzerland) for the analysis of prenylquinones. We also thank V. tion with different metabolic fluxes (Force et al., 1999). Burlat and V. Courdavault for providing the BiFC vectors, M. Expression of the GGPPS2 and GGPPS6 to GGPPS10 par- Rothbart and B. Grimm for the GGR clone, P. Obrdlik for the alogues is restricted to specific tissues and developmental stages Y2H plasmids, F. Wust€ for his support with the Y2H setup and mainly in flowers, seeds and in roots (Beck et al., 2013) and M. Nater for her phenotyping work. Technical support from correlates, in general, with the developmentally regulated syn- M.R. Rodrıguez-Goberna and members of the CRAG Services is thesis of hormones (Bennett et al., 2006; Nambara & Marion- greatly appreciated. We would finally like to thank M. Meret Poll, 2006; Floss & Walter, 2009; Ruyter-Spira et al., 2013; from the Max Planck Institute of Molecular Plant Physiology in Seto & Yamaguchi, 2014). Expression of genes encoding GA Golm (Germany) for support in the metabolomics sample prepa- biosynthetic enzymes do correlate with GGPPS-encoding genes ration procedure. This work was supported by grants from in the GCN. Nevertheless, ggpps mutants do not show any CYTED (Ibercarot-112RT0445), MINECO (BIO2011-23680), apparent change from the normal phenotype that would imply AGAUR (2014SGR-1434), ETH Zurich (TH-51 06-1), the EU GA, ABA or strigolactone hormone deficiencies. Since these FP7 contract 245143 (TiMet) and SK grant VEGA 1/0417/13. plastid GGPPS isozymes seem to be redundant in their func- M.A.R-S. and M.V.B. were supported by MINECO FPI and tion, combinations of multiple mutants will have to be gener- AGAUR FI fellowships. ated in order to reveal their function. Our data provide evidence that GGPPS11 can interact with References the three enzymes that channel GGPP to the production of major photosynthesis-related isoprenoids: PSY to carotenoids, Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson et al. GGR to chlorophylls, tocopherols, phylloquinones and SPS2 DK, Zimmerman J, Barajas P, Cheuk R 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657. to plastoquinones (Fig. 1). The formation of multienzyme Beck G, Coman D, Herren E, Ruiz-Sola MA, Rodrıguez-Concepcion M, complexes containing GGPPS11 and particular GGPP-con- Gruissem W, Vranova E. 2013. Characterization of the GGPP synthase gene suming enzymes could ensure an efficient allocation of sub- family in Arabidopsis thaliana. Plant Molecular Biology 82: 393–416. strates into particular pathways, a mechanism to control Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. 2006. The metabolic flux to specific isoprenoid biosynthetic pathways in Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology 16: 553–563. addition to the co-regulation of gene expression. Our data are Bick JA, Lange BM. 2003. Metabolic cross talk between cytosolic and plastid consistent with the existence of multienzyme complexes con- pathways of isoprenoid biosynthesis: unidirectional transport of intermediates taining GGPPS and PSY in chromoplasts that are specialized across the chloroplast envelope membrane. Archives of Biochemistry and in the production and accumulation of high amounts of Biophysics 415: 146–154. Block A, Fristedt R, Rogers S, Kumar J, Barnes B, Barnes J, Elowsky CG, carotenoids (Maudinas et al., 1977; Dogbo et al., 1988; et al. Wamboldt Y, Mackenzie SA, Redding K 2013. Functional modeling Camara, 1993; Fraser et al., 2000; Ruiz-Sola & Rodrıguez- identifies paralogous solanesyl-diphosphate synthases that assemble the side Concepcion, 2012). It is therefore possible that complexes con- chain of plastoquinone-9 in plastids. Journal of Biological Chemistry 288: taining GGPPS11 and GGR might be found in tocopherol- 27594–27606. rich seeds, whereas complexes containing PSY, GGR, or/and Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E, SPS2 might form, albeit transiently, in the chloroplasts of pho- Kleinig H, Beyer P. 1997. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and tosynthetic tissues. The formation of a particular complex oligomeric assembly. European Journal of Biochemistry 247: 942–950. might be determined by the abundance of the corresponding Bouvier F, Rahier A, Camara B. 2005. Biogenesis, molecular regulation and GGPP-consuming enzyme in a given plastid, cell, tissue, organ, function of plant isoprenoids. Progress in Lipid Research 44: 357–429. or developmental stage. It is possible that competition among Camara B. 1993. Plant phytoene synthase complex: component enzymes, – different enzymes for GGPPS11 binding is also part of a regu- immunology, and biogenesis. Methods in Enzymology 214: 352 365. Coman D, Rutimann€ P, Gruissem W. 2014. A flexible protocol for targeted gene latory mechanism to balance the production of different types co-expression network analysis. Methods in Molecular Biology 1153: 285–299. of isoprenoid products. These possibilities require further Croteau R, Kutchan T, Lewis N. 2000. Natural products (secondary experimental analysis. metabolites). In: Buchanan B, Gruissem W, Jones R, eds. Biochemistry and In summary, our data confirm the central role of GGPPS11 molecular biology of plants. Rockville, MD, USA: American Society of Plant – for the synthesis of plastid isoprenoids. The essential nature of Biologists, 1250 1268. Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G. 2004. this particular GGPPS isozyme was demonstrated by in silico AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is analysis and confirmed genetically based on the severe develop- regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in mental phenotype of the ggpps11 null mutants and metabolically Arabidopsis. Plant Physiology 136: 3660–3669. using the knock-down ggpps11-5 allele. Furthermore, the forma- Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. tion of multienzyme complexes containing GGPPS11 and partic- Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139:5–17. ular GGPP-consuming enzymes could be an additional Disch A, Hemmerlin A, Bach TJ, Rohmer M. 1998. Mevalonate-derived mechanism besides the gene co-expression to control metabolic isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side flux to specific isoprenoid biosynthetic pathways. chain in tobacco BY-2 cells. Biochemistry Journal 331: 615–621.

New Phytologist (2016) 209: 252–264 Ó 2015 The Authors www.newphytologist.com New Phytologist Ó 2015 New Phytologist Trust New Phytologist Research 263

Dogbo O, Laferriere A, D’Harlingue A, Camara B. 1988. Carotenoid Obrdlik P, El-Bakkoury M, Hamacher T, Cappellaro C, Vilarino C, Fleischer biosynthesis: isolation and characterization of a bifunctional enzyme catalyzing C, Ellerbrok H, Kamuzinzi R, Ledent V, Blaudez D et al. 2004. K+ channel the synthesis of phytoene. Proceedings of the National Academy of Sciences, USA interactions detected by a genetic system optimized for systematic studies of 85: 7054–7058. membrane protein interactions. Proceedings of the National Academy of Sciences, Emanuelsson O, Nielsen H, von Heijne G. 1999. ChloroP, a neural network USA 101: 12242–12247. based method for predicting chloroplast transit peptides and their cleavage Ohad N, Shichrur K, Yalovsky S. 2007. The analysis of protein–protein sites. Protein Science 8: 978–984. interactions in plants by bimolecular fluorescence complementation. Plant Eriksson S, Bohlenius H, Moritz T, Nilsson O. 2006. GA4 is the active Physiology 145: 1090–1099. gibberellin in the regulation of LEAFY transcription and Arabidopsis floral Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y. 2000. Five initiation. Plant Cell 18: 2172–2181. geranylgeranyl diphosphate synthases expressed in different organs are localized Floss DS, Walter M. 2009. Role of carotenoid cleavage dioxygenase 1(CCD1) in into three subcellular compartments in Arabidopsis. Plant Physiology 122: apocarotenoid biogenesis revisited. Plant Signaling & Behavior 4: 172–175. 1045–1056. Flugge€ UI, Gao W. 2005. Transport of isoprenoid intermediates across Oliver S. 2000. Guilt-by-association goes global. Nature 403: 601–603. chloroplast envelope membranes. Plant Biology 7:91–97. Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ. 2004. New functions of the Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 1999. thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, Preservation of duplicate genes by complementary, degenerative mutations. fast, and versatile fractionation strategy. Journal of Biological Chemistry 279: Genetics 151: 1531–1545. 49367–49383. Fraser PD, Schuch W, Bramley PM. 2000. Phytoene synthase from tomato Pulido P, Perello C, Rodrıguez-Concepcion M. 2012. New insights into plant (Lycopersicon esculentum) chloroplasts – partial purification and biochemical isoprenoid metabolism. Molecular Plant 5: 964–967. properties. Planta 211: 361–369. Pulido P, Toledo-Ortiz G, Phillips MA, Wright LP, Rodrıguez-Concepcion M. Gachon CMM, Langlois-Meurinne M, Henry Y, Saindrenan P. 2005. 2013. Arabidopsis J-protein J20 delivers the first enzyme of the plastid Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: isoprenoid pathway to protein quality control. Plant Cell 25: 4183–4194. functional and evolutionary implications. Plant Molecular Biology 58: 229–245. Rodrıguez-Concepcion M, Fores O, Martınez-Garcıa JF, Gonzalez V, Phillips Gershenzon J, Dudareva N. 2007. The function of terpene natural products in MA, Ferrer A, Boronat A. 2004. Distinct light-mediated pathways regulate the the natural world. Nature Chemical Biology 3: 408–414. biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling Gilbert HN, van der Laan MJ, Dudoit S. 2009. Joint multiple testing procedures development. Plant Cell 16: 144–156. for graphical model selection with applications to biological networks. [WWW Rodriguez-Villalon A, Gas E, Rodrıguez-Concepcion M. 2009. Phytoene document] URL http://www.bepress.com/ucbbiostat/paper245/ [accessed 23 synthase activity controls the biosynthesis of carotenoids and the supply of their April 2015]. metabolic precursors in dark-grown Arabidopsis seedlings. Plant Journal 60: Helliwell C, Waterhouse P. 2003. Constructs and methods for high-throughput 424–435. gene silencing in plants. Methods 30: 289–295. Ruiz-Sola MA, Rodrıguez-Concepcion M. 2012. Carotenoid biosynthesis in Heyndrickx KS, Vandepoele K. 2012. Systematic identification of functional Arabidopsis: a colorful pathway. The Arabidopsis Book/American Society of Plant plant modules through the integration of complementary data sources. Plant Biologists 10: e0158. Physiology 159: 884–901. Ruppel NJ, Kropp KN, Davis PA, Martin AE, Luesse DR. 2013. Mutations in Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland GERANYLGERANYL DIPHOSPHATE SYNTHASE 1 affect chloroplast N. 2009. Chloroplast proteomics and the compartmentation of plastid development in Arabidopsis thaliana (Brassicaceae). American Journal of Botany isoprenoid biosynthetic pathways. Molecular Plant 2: 1154–1180. 100: 2074–2084. Keller Y, Bouvier F, d’Harlingue A, Camara B. 1998. Metabolic Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology compartmentation of plastid prenyl lipid biosynthesis – evidence for the of strigolactones. Trends in Plant Science 18:72–83. involvement of a multifunctional geranylgeranyl reductase. European Journal of Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L, Pelletier G, Biochemistry 251: 413–417. Caboche M, Lecharny A. 2002. FLAGdb/FST: a database of mapped flanking Kirby J, Keasling JD. 2009. Biosynthesis of plant isoprenoids: perspectives for insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucleic microbial engineering. Annual Review of Plant Biology 60: 335–355. Acids Research 30:94–97. Lange BM, Ghassemian M. 2003. Genome organization in Arabidopsis thaliana: Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant B, Weigel D, Lohmann JU. 2005. A gene expression map of Arabidopsis Molecular Biology 51: 925–948. thaliana development. Nature Genetics 37: 501–506. Li F, Vallabhaneni R, Wurtzel ET. 2008. PSY3, a new member of the phytoene Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho synthase gene family conserved in the Poaceae and regulator of abiotic stress P, Bacwaden J, Ko C et al. 2002. A high-throughput Arabidopsis reverse induced root carotenogenesis. Plant Physiology 146: 1333–1345. genetics system. Plant Cell 14: 2985–2994. Lonzano AC, Swirszcz G. 2012. Multi-level Lasso for sparse multi-task Seto Y, Yamaguchi S. 2014. Strigolactone biosynthesis and perception. Current regression. In: Langford J, Pineau J, eds. Proceedings of the 29th International Opinion in Plant Biology 21: 1–6. Conference on Machine Learning (ICML-12). Edinburgh, UK: ACM, 361– Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 368. Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for Lunn JE. 2007. Compartmentation in plant metabolism. Journal of Experimental integrated models of biomolecular interaction networks. Genome Research 13: Botany 58:35–47. 2498–2504. Martinis J, Kessler F, Glauser G. 2011. A novel method for prenylquinone Stangeland B, Salehian Z. 2002. An improved clearing method for GUS assay in profiling in plant tissues by ultra-high pressure liquid chromatography-mass Arabidopsis endosperm and seeds. Plant Molecular Biology Reporter 20: 107– spectrometry. Plant Methods 7: 23. 114. Maudinas B, Bucholtz ML, Papastephanou C, Katiyar SS, Briedis AV, Porter Tanaka R, Rothbart M, Oka S, Takabayashi A, Takahashi K, Shibata M, JW. 1977. The partial purification and properties of a phytoene synthesizing Myouga F, Motohashi R, Shinozaki K, Grimm B et al. 2010. LIL3, a light- enzyme system. Archives of Biochemistry and Biophysics 180: 354–362. harvestinglike protein, plays an essential role in chlorophyll and tocopherol Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET. 2011. A biosynthesis. Proceedings of the National Academy of Sciences, USA 107: 16721– transcriptional analysis of carotenoid, chlorophyll and plastid isoprenoid 16725. biosynthesis genes during development and osmotic stress responses in Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones Arabidopsis thaliana. BMC Systems Biology 5: 77. JD. 1999. Multiple independent defective suppressor-mutator transposon Nambara E, Marion-Poll A. 2006. Abscisic acid biosynthesis and catabolism. insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11: 1841– Annual Review of Plant Biology 56: 165–185. 1852.

Ó 2015 The Authors New Phytologist (2016) 209: 252–264 New Phytologist Ó 2015 New Phytologist Trust www.newphytologist.com New 264 Research Phytologist

Vranova E, Hirsch-Hoffmann M, Gruissem W. 2011. AtIPD: a curated database Fig. S1 Mutants of the plastid GGPPS2, 6–10 isoforms. of Arabidopsis isoprenoid pathway models and genes for isoprenoid network – analysis. Plant Physiology 156: 1655 1660. Fig. S2 Complementation of GGPPS11-defective mutants with Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J. 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous the G11 minigene. formation of alternative CBL/CIPK complexes in planta. Plant Journal 56: 505–516. Fig. S3 Phenotype of seedlings and adult plants with altered Wang GD, Dixon RA. 2009. Heterodimeric geranyl(geranyl)diphosphate synthase GGPPS11 levels grown under different photoperiods. from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proceedings of the National Academy of Sciences, USA 106: 9914–9919. Wei HR, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP, Fig. S4 Chloroplast size in stomata and mesophyll cells. Somerville C, Loraine A. 2006. Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiology 142: 762–774. Fig. S5 Levels of individual plastid isoprenoids. Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P. 2010. Provitamin A accumulation in cassava Fig. S6 Level of transcripts encoding gibberellin pathway genes. (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22: 3348–3356. Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J. 2000. Regulation and Table S1 List of ggpps mutant lines used in this work and their activation of phytoene synthase, a key enzyme in carotenoid biosynthesis segregation ratios during photomorphogenesis. Planta 211: 846–854. Wille A, Zimmermann P, Vranova E, Furholz A, Laule O, Bleuler S, Hennig L, Table S2 Primers used in this work Prelic A, von Rohr P, Thiele L et al. 2004. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology 5: R92. Table S3 Constructs and cloning details Yang E, Lozano AC, Ravikumar P. 2014. Elementary estimators for high- dimensional linear regression. In: Jebara T, Xing EP, eds. Proceedings of the 31st Table S4 List of GCN input genes International Conference on Machine Learning (ICML-14), vol. 32. Beijing, China: JMLR:W&CP, 388–396. Zhu X, Suzuki K, Okada K, Tanaka K, Nakagawa T, Kawamukai M, Matsuda Table S5 The GGPPS GCN representing significant co-expres- K. 1997a. Cloning and functional expression of a novel geranylgeranyl sion relationships pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli. Plant – and Cell Physiology 38: 357 361. Table S6 Gene abbreviations used in Fig. 2 Zhu X, Suzuki K, Saito T, Okada K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M. 1997b. Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in Please note: Wiley Blackwell are not responsible for the content mitochondria. Plant Molecular Biology 35: 331–341. or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office. Supporting Information Additional supporting information may be found in the online version of this article.

New Phytologist is an electronic (online-only) journal owned by the New Phytologist Trust, a not-for-profit organization dedicated to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews.

Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. We are committed to rapid processing, from online submission through to publication ‘as ready’ via Early View – our average time to decision is <27 days. There are no page or colour charges and a PDF version will be provided for each article.

The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table of contents email alerts.

If you have any questions, do get in touch with Central Office ([email protected]) or, if it is more convenient, our USA Office ([email protected])

For submission instructions, subscription and all the latest information visit www.newphytologist.com

New Phytologist (2016) 209: 252–264 Ó 2015 The Authors www.newphytologist.com New Phytologist Ó 2015 New Phytologist Trust SUPPORTING INFORMATION FIGURES S1-S6 AND TABLES S1-S6

SUPPORTING INFORMATION FIGURES

Ă ď td td ŐŐƉƉƐϮ ϭ͘Ϭ ŐŐƉƉƐϲ ŐŐƉƉƐϳ ƚƌĂŶƐĐƌŝƉƚ ůĞǀĞůƐ ŐŐƉƉƐϴ Ϭ͘ϱ

ŐŐƉƉƐϭϬ ''WW^ϵ '^WƐ '^WƐ '^WƐ н> ZĞůĂƚŝǀĞ Ϭ͘Ϭ ŐE ĐE

Figure S1. Mutants of the plastid GGPPS2,6-10 isoforms. (a) PCR genotyping of T-DNA insertion lines disrupting GGPPS2, GGPPS6, GGPPS7, GGPPS8 and GGPPS10 genes (left panel) and RT-PCR with corresponding cDNAs (right panel). For genotyping, the state of the transgene allele as heterozygous or homozygous was analysed using combinations of gene specific primers (GSPs) and a primer annealing to the left border of the T-DNA (LB). As control, the same GSPs were used with genomic DNA isolated from wild type Col-0 plants (WT). Homozygous mutant lines for ggpps2, ggpps6, ggpps7, ggpps8 and ggpps10 are shown. In the RT-PCR, full length cDNA spanning the T- DNA insertion site for each mutant could not be amplified, whereas in the control Col-0 (WT) the respective transcripts were present. (b) Transcript down-regulation in ggpps9-1 and ggpps9-6 stable RNAi lines. The actin (ACT2; At3g18780) gene was used for normalization. Data correspond to mean and standard deviation of n=5 independent samples. GGPPS9 transcript levels are down-regulated to 21% in ggpps9-1 andto16%inggpps9-6 compared to the WT levels. Ă

1 2 3 4 5 6 7 ,ĞŵŝnjLJŐŽƵƐ ;dϭͿƚƌĂŶƐĨŽƌŵĂŶƚƐ

ď ŐŐƉƉƐϭϭͲϱн td ŐŐƉƉƐϭϭͲϱ 'ϭϭŵŝŶŝŐĞŶĞ

^

>

Đ ŐŐƉƉƐϭϭͲϱн td ŐŐƉƉƐϭϭͲϱ 'ϭϭŵŝŶŝŐĞŶĞ

>

Figure S2. Complementation of GGPPS11-defective mutants with the G11 minigene. The promoter and coding region of the GGPPS11 gene (G11 minigene) was amplified from the genome of Col-0 plants, cloned in a binary vector, and used to transform heterozygous ggpps11-4 (a) and homozygous ggpps11-5 (b,c) lines. (a) Rescue of the embryo lethal phenotype of the ggpps11-4 allele with the G11 minigene. The graph shows the percentage of aborted seeds in siliques from heterozygous ggpps11-4 lines either untransformed or transformed with the G11 minigene (T1 population, in which a ~6.25 % of aborted seeds was expected assuming complementation). Between 420 and 856 seeds were counted from each plant. (b) Representative images of seedlings from wild type (WT), mutant ggpps11-5,and complemented ggpps11-5 lines harbouring the G11 minigene. Plants were grown for 7 days under short day (SD) or long day (LD) photoperiod. (c) Representative individuals of the indicated lines grown for 3 weeks under LD. Ăď^ > ^ > td td

ŐŐƉƉƐϭϭͲϱ ŐŐƉƉƐϭϭͲϱ

Őϭϭн^'ϭϭ' ηϭϬ Őϭϭн^'ϭϭ' ηϭϬ

Őϭϭн^'ϭϭ' ηϭϭ Őϭϭн^'ϭϭ' ηϭϭ

Đ Ě Ϭ͘ϴ ϰϬ td td

ŐŐƉƉƐϭϭͲϱ ůƐ ŐŐƉƉƐϭϭͲϱ Ğ Őϭϭн^'ϭϭ' ηϭϬ ϯϬ Őϭϭн^'ϭϭ' ηϭϬ Ύ Őϭϭн^'ϭϭ'ηϭϭ Őϭϭн^'ϭϭ'ηϭϭ Ϭ͘ϲ Ύ Ύ ϮϬ ƚƌĂŶƐĐƌŝƉƚ ůĞǀ Ϭ͘ϰ ϭϬ

;ŵŵͿ Ύ ϯ ''WW^ϭϭ Ϭ͘Ϯ Ϯ ϭ

ZĞůĂƚŝǀĞ Ύ Ϭ͘Ϭ Ϭ ^ > ϲ ϱϬ Ğ td td ŐŐƉƉƐϭϭͲϱ ϰϱ ŐŐƉƉƐϭϭͲϱ ϱ Őϭϭн^'ϭϭ'ηϭϭ ϰϬ Őϭϭн^'ϭϭ'ηϭϭ Ύ ϰ ϯϱ ϯϬ Ύ ϯ Ϯϱ ϮϬ Ϯ ϭϱ ZŽŽƚ ůĞŶŐƚŚ ;ĐŵͿ

Ύ ^ŚŽŽƚ ǁĞŝŐŚƚ ;ŵŐͿ Ύ ϭ ϭϬ Ύ ϱ Ϭ Ϭ ϬʅDDs ϱʅDDs ϬʅDDs ϱʅDDs Figure S3. Phenotype of seedlings and adult plants with altered GGPPS11 levels grown under different photoperiods. (a) Representative images of wild type (WT), mutant ggpps11-5 and complemented seedlings of the indicated lines grown for 7 days under short day (SD) or long day (LD) photoperiod. (b) Representative individuals of the indicated lines grown for 4 weeks under SD or 3 weeks under LD. (c) Estimation of seedling size (D, distance between the tips of cotyledons; see red arrow on (a)) for the indicated lines grown for 7 days under SD or LD conditions. Values correspond to mean and standard deviation of at least n=25 seedlings. Asterisks mark statistically significant differences (p<0.05) relative to WT samples. (d) GGPPS11 transcript levels in WT, ggpps11-5 and complemented seedlings of the indicated lines grown for 7 days under LD photoperiod. The UBC/UBC21/PEX4 (At5g25760) gene was used for normalization. Data correspond to mean and standard deviation of n=4 independent samples. Asterisks mark statistically significant differences (p<0.05) relative to WT samples. (e) Root length and shoot weight of WT, ggpps11-5 and complemented seedlings grown for 5 days under LD and then transferred to plates supplemented (+) or not (-) with 5 μM methyl viologen (MV). After 5 more days under LD, the length of the roots was monitored before removing them to quantify the fresh weight of the remaining shoot tissue. Data correspond to mean and standard deviation of at least n=45 individuals in 5 independent samples. Asterisks mark statistically significant differences (p<0.05) relative to WT samples.

Ă ď Đ ϱϬ Ϭ͘ϴ td ϰϱ ŐϭϭͲϱ Ϭ͘ϳ ϰϬ Ϯ

Ϳ Ϭ͘ϲ Ϯ ϯϱ Ύ ϯϬ Ϭ͘ϱ td ŐŐƉƉƐϭϭͲϱ Ϯϱ Ϭ͘ϰ ϮϬ Ϭ͘ϯ ϭϱ Ϭ͘Ϯ

ϭϬ ŚůŽƌŽƉůĂƐƚƐ ͬϭϬϬђŵ ŚůŽƌŽƉůĂƐƚ ĂƌĞĂ ;ђŵ ϱ Ϭ͘ϭ Ϭ Ϭ͘Ϭ ^ƚŽŵĂƚĂ DĞƐŽƉŚLJůů DĞƐŽƉŚLJůůtd

Figure S4. Chloroplast size in stomata and mesophyll cells. (a) Representative images of chloroplasts from WT and ggpps11-5 stomata (upper panels) and mesophyll cells (lower panels). Bar, 10 μm. (b) Chloroplast area. Values correspond to mean and standard error of n=9 (guard cells) or n=45 (mesophyll cells) chloroplasts from 3 different sections of 3 cotyledons from independent plants. Asterisk marks statistically significant difference (p<0.01) relative to the WT. (c) Chloroplast concentration in the mesophyll. Values correspond to mean and standard error of n=6 pictures from 3 different sections of the cotyledons from 2 independent plants. No statistically significant differences between WT and mutant samples were found. Đ ď Ă Relative levels ZĞůĂƚŝǀĞ ůĞǀĞůƐ oma n tnaddvaino = needn ape.Atrssmr ttsial significant statistically mark Asterisks samples. independent correspond and n=7 plants samples. WT of WT of to deviation relative those (p<0.05) to standard differences relative represented and are mean Data photoperiod. to day long under days 10 hs on nW lnsadcrepn oma n tnaddvaino = crtnisand in isoprenoids (carotenoids plastid n=8 individual of of Levels deviation (c) standard samples. mutant and WT and statistically WT to mark mean relative Asterisks to samples. (p<0.05) mutant independent differences correspond plastoquinones) (WT), significant and and (tocopherols type plants n=4 wild or WT chlorophylls) in in isoprenoids found plastid those individual of complemented Levels (b) isoprenoids. plastid pathways. individual of Levels S5. Figure Ϭ͘Ϭ Ϭ͘Ϯ Ϭ͘ϰ Ϭ͘ϲ Ϭ͘ϴ ϭ͘Ϭ ϭ͘Ϯ Ϭ͘Ϭ Ϭ͘ϱ ϭ͘Ϭ ϭ͘ϱ Ϯ͘Ϭ Ϯ͘ϱ ĐĂƌŽƚĞŶŽŝĚƐ td Ύ td β   ϭϬ ϳϴϵ Ϯϲ ͲĐĂƌŽƚĞŶĞ Ύ g11+SG11G ĐĂƌŽƚĞŶŽŝĚƐ Ύ ggpps2 ŐƉϭͲ Őϭϭн^'ϭϭ' ŐŐƉƉƐϭϭͲϱ Ύ ϭϭ td , Ύ ggpps6 ŶĞŽdžĂŶƚŚŝŶ   ϭϬ ϳϴϵ Ϯϲ edig rw o asudrsotdy ausaesonrltv to relative shown are Values day. short under days 7 for grown seedlings Ύ ƉŚLJƚŽĞŶĞ , ŚŽŽŚůƐƉůĂƐƚŽƋƵŝŶŽŶĞƐ ĐŚůŽƌŽƉŚLJůůƐ ggpps7 ϭϭ Ύ Ϭ͘Ϭ Ϭ͘Ϯ Ϭ͘ϰ Ϭ͘ϲ Ϭ͘ϴ ϭ͘Ϭ ϭ͘Ϯ , Ϭ͘Ϭ Ϭ͘ϱ ϭ͘Ϭ ϭ͘ϱ ggpps8 W^z ŚŽŽŚůƐƚŽĐŽƉŚĞƌŽůƐ ĐŚůŽƌŽƉŚLJůůƐ td Ύ ƚŽĐŽƉŚĞƌŽůƐ ŚŽŽŚů ƉŚLJůůŽƋƵŝŶŽŶĞ Ă ĐŚůŽƌŽƉŚLJůů , ƉŚLJƚLJůͲWW   ϭϬ ϳϴϵ Ϯϲ ggpps9 ''WW a ceai ersnaino GGPP-consuming of representation Schematic (a) Ύ ''Z , ^W^Ϯ ggpps10 ϭϭ Ύ Ϭ͘Ϭ Ϭ͘Ϯ Ϭ͘ϰ Ϭ͘ϲ Ϭ͘ϴ ϭ͘Ϭ ϭ͘Ϯ ƉŚLJůůŽƋƵŝŶŽŶĞ td ŚŽŽŚů ď ĐŚůŽƌŽƉŚLJůů   ϭϬ ϳϴϵ Ϯϲ ƐŽůĂŶĞƐLJůͲWW and Ύ Ύ ggpps11-5 ϭϭ Ύ Ύ Ϭ͘Ϭ Ϭ͘ϱ ϭ͘Ϭ Ϭ͘Ϭ Ϭ͘Ϯ Ϭ͘ϰ Ϭ͘ϲ Ϭ͘ϴ ϭ͘Ϭ ϭ͘Ϯ edig rw for grown seedlings td ggpps11-5 ƉůĂƐƚŽƋƵŝŶŽŶĞƐ   ϭϬ ϳϴϵ Ϯϲ Ύ ΎΎ ,and Ύ ϭϭ td ŐŐƉƉƐϭϭͲϱ Ϯ͘Ϭ

ϭ͘ϱ

ϭ͘Ϭ

ZĞůĂƚŝǀĞ ƚƌĂŶƐĐƌŝƉƚ ůĞǀĞůƐ Ϭ͘ϱ

Ϭ͘Ϭ 'ĂϮϬKdžϭ 'ĂϮϬKdžϮ 'ĂϯKdžϭ 'ĂϯKdžϮ 'ĂϮKdžϮ 'ĂϮKdžϰ

Figure S6. Level of transcripts encoding gibberellin pathway genes. Transcripts of different Arabidopsis genes encoding enzymes involved in the production of biologically active gibberellins (GA20ox and GA3ox) or in their inactivation (GA2ox) were quantified by RT-qPCR in samples from wild type (WT) and mutant ggpps11-5 seedlings grown for 11 days under short day. The UBC/UBC21/PEX4 (At5g25760) gene was used for normalization. Data correspond to mean and standard deviation of n=4 independent samples. No statistically significant differences (p<0.05) were found between WT and mutant seedlings. SUPPORTING INFORMATION TABLES

Table S1. List of ggpps mutant lines used in this work and their segregation ratios. DĞŶĚĞůŝĂŶ KƌŝŐŝŶĂů ^ĞŐƌĞŐĂƚŝŽŶ ŵŽŶŽŐĞŶŝĐ 'ĞŶĞƚŝĐ KƌŝŐŝŶĂů^ĞĞĚ 'ĞŶĞ '/ ůůĞůĞ 'ĞŶĞƚŝĐ DƵƚĂŐĞŶ ZĞƐŝƐƚĂŶĐĞ ;ƌĞƐŝƐƚĂŶƚ ʖϮ ƌĞĐĞƐƐŝǀĞ ĂĐŬŐƌŽƵŶĚ ^ŽƵƌĐĞ/ ĂĐŬŐƌŽƵŶĚ ͬƐĞŶƐŝƚŝǀĞͿ ƐĞŐƌĞŐĂƚŝŽŶ Ϯ ;ʖ Ϭ͘Ϭϱсϯ͘ϴϰͿ ''WW^Ϯ ƚϮŐϭϴϲϮϬ ŐŐƉƉƐϮ ŽůϬ tƐ dͲE &>'ͺϭϯϰͺϭϬ <ĂŶĂŵLJĐŝŶ ϯ͕ϭϴ Ϭ͕ϯϱ LJĞƐ ''WW^ϲ ƚϯŐϭϰϱϯϬ ŐŐƉƉƐϲ ŽůϬ ŽůϯƋƌƚϭ dͲE ^/>ͺϭϭϰϴͺϬϯ WWd;ĂƐƚĂͿ Ϯ͕ϱϳ Ϭ͕Ϯϰ LJĞƐ ''WW^ϳ ƚϯŐϭϰϱϱϬ ŐŐƉƉƐϳ ŽůϬ ŽůϬ dͲE ^><ͺϭϭϵϮϴϬ <ĂŶĂŵLJĐŝŶ Ϯ͕ϳϱ Ϭ͕Ϭϰ LJĞƐ ''WW^ϴ ƚϯŐϮϬϭϲϬ ŐŐƉƉƐϴ ŽůϬ tƐ dͲE &>'ͺϰϳϬͺϬϵ <ĂŶĂŵLJĐŝŶ ϯ͕ϱϲ ϭ͕ϳϵ LJĞƐ ŐŐƉƉƐϵͲϭ ŽůϬ ŽůϬ ZEŝ ŝŶŚŽƵƐĞ <ĂŶĂŵLJĐŝŶ ϯ͕Ϭϭ Ϭ͕ϵ LJĞƐ ''WW^ϵ ƚϯŐϮϵϰϯϬ ŐŐƉƉƐϵͲϲ ŽůϬ ŽůϬ ZEŝ ŝŶŚŽƵƐĞ <ĂŶĂŵLJĐŝŶ ϰ͕ϴϴ Ϭ͕Ϭϲ LJĞƐ ''WW^ϭϬ ƚϯŐϯϮϬϰϬ ŐŐƉƉƐϭϬ ŽůϬ ŽůϬ dͲE ^DͺϯͺϯϮϬϭϱ WWd;ĂƐƚĂͿ ϰ͕Ϯϲ Ϭ͕ϭϲ LJĞƐ ŐŐƉƉƐϭϭͲϯ ŽůϬ ŽůϬ dͲE ^><ͺϬϴϱϵϭϰ <ĂŶĂŵLJĐŝŶ ϯ͘Ϯϰ;ΎϭͿ ϯ͕ϯϳͲϭϭ LJĞƐ ''WW^ϭϭ ƚϰŐϯϲϴϭϬ ŐŐƉƉƐϭϭͲϰ ŽůϯƋƌƚϭ ŽůϯƋƌƚϭ dͲE ^/>ͺϳϭϮͺϬϲ WWd;ĂƐƚĂͿ ϯ͘ϱϱ;ΎϭͿ Ϯ͕ϳϴϰϬϳͲϭϰLJĞƐ ŐŐƉƉƐϭϭͲϱ ŽůϬ ŽůϬ dͲE ^><ͺϭϰϬϲϬϭ <ĂŶĂŵLJĐŝŶ ϭ͘ϴ;ΎϮͿ Ϭ͕ϯ LJĞƐ ;ΎϭͿ^ĞŐƌĞŐĂƚŝŽŶĂŶĂůLJƐŝƐďĂƐĞĚŽŶƚŚĞŶƵŵďĞƌŽĨŐƌĞĞŶǀƐ͘ďƌŽǁŶƐĞĞĚƐ ;ΎϮͿ^ĞŐƌĞŐĂƚŝŽŶĂŶĂůLJƐŝƐďĂƐĞĚŽŶƚŚĞWZͲďĂƐĞĚŐĞŶŽƚLJƉŝŶŐ   Table S2. Primes used in this work. hƐĞ EŽ͘ EĂŵĞ ^ĞƋƵĞŶĐĞ;ϱΖͲϯΖͿ ϭ 'ϭϭͲϱ& 'ddd'd'd'' Ϯ 'ϭϭͲϯZ dd'''d' ϯ 'ϭϭͲ^ƉĞ/ͲϯZ d'd'ddd'ddd'' ϰ 'ϭϭƉƌŽŵͲϱ& 'd'''d ϱ 'ϭϭƉƌŽŵͲϯZ 'd'd'''dddd'dd' ϲ 'ϭϭͲ^ƉĞ/Ͳϱ& 'd'dd''dd'd'dd' ϳ 'ϭϭͲ^ŵĂ/ͲϯZ ''''ddd'ddd'' ϴ W^zͲ^ƉĞ/Ͳϱ& d'dd'dddddd'd''d'ddd'' ϵ W^zͲ^ŵĂ/ͲϯZ d''''dd'd'dd ϭϬ ''ZͲ^ƉĞ/Ͳϱ& dd'd''''''dddd ϭϭ ''ZͲ^ŵĂ/ͲϯZ d'd'''d'ddddddd ϭϮ ^W^ϮͲ^ƉĞ/Ͳϱ& 'ddd'd'd'd'dd'd' ϭϯ ^W^ϮͲ^ŵĂ/ͲϯZ dd''''ddddd'dddd ůŽŶŝŶŐ ϭϰ 'ϭϭͲϭ 'ddd'd'''ddd'ddddd'dd'dd' ϭϱ 'ϭϭͲϮ d'ddd'd''d'''d'ddd'ddd''d'ddd ϭϲ W^zͲϭ 'ddd'd'''ddd'ddddd'd''''d' ϭϳ W^zͲϮ d'ddd'd''d'''ddd'd'ddd'dd'' ϭϴ ''ZͲϭ 'ddd'd'''ddd'''''d ϭϵ ''ZͲϮ d'ddd'd''d'''dd'dddddd ϮϬ ^W^ϮͲϭ 'ddd'd'''ddd'''d'dd''dd Ϯϭ ^W^ϮͲϮ d'ddd'd''d'''dddddd'dd ϮϮ 'ϵͲĂ 'd''''ddd'dd'd Ϯϯ 'ϵͲď ''dd'dddd'' Ϯϰ 'ϵͲĐ 'dd'''ddd'dd'd Ϯϱ 'ϵͲĚ ''dd'dddd'' Ϯϲ DϭϯͲZ 'dd'd'dddd' Ϯϳ 'ϮͲ& 'dd''d''d' Ϯϴ 'ϮͲZ ''dd'd''' Ϯϵ 'ϲͲ& d''d'ddd''dd'ddd ϯϬ 'ϲͲZ 'dddd''d'' ϯϭ 'ϳͲ& 'ddddd''''d' ϯϮ 'ϳͲZ 'd'''d'd'd ϯϯ 'ϴͲ& d''d'''ddddd'dd 'ĞŶŽƚLJƉŝŶŐ ϯϰ 'ϴͲZ d'dddd'dd'dd'd'dd ϯϱ 'ϭϬͲ& 'd'd'ddd'dd'' ϯϲ 'ϭϬͲZ 'dddd''''' ϯϳ ^ĂůŬͲ>ďϭ ''d'''dd'd'd ϯϴ ^ĂŝůͲ> d'dd'dddddd'd ϯϵ ^DͲ> d'd''d''d'' ϰϬ &ůĂŐͲ> d''''d'd'''d'  hƐĞ EŽ͘ EĂŵĞ ^ĞƋƵĞŶĐĞ;ϱΖͲϯΖͿ ϰϭ 'ϮͲ& d'ddddddd ϰϮ 'ϮͲZ dddd'ddddd''d'ddd ϰϯ 'ϲͲ& d''''d'd' ϰϰ 'ϲͲZ dd''''' ϰϱ 'ϳͲ& 'ddddd''''d' ϰϲ 'ϳͲZ ''d'd''d' ϰϳ 'ϴͲ& d''d'''ddddd'dd ϰϴ 'ϴͲZ d'dddd'dd'dd'd'dd ϰϵ 'ϭϬͲ& d'd'ddd'' ZdͲWZ ϱϬ 'ϭϬͲZ d'dd'd'dd''d'd' ϱϭ 'ϮͲŶͲ& 'dd''d''d' ϱϮ 'ϮͲŶͲZ dddd'ddddd''d'ddd ϱϯ 'ϲͲŶͲ& d'dd'd'dd''d'd'd ϱϰ 'ϲͲŶͲZ ''''''dddd' ϱϱ 'ϳͲŶͲ& 'ddddd''''d' ϱϲ 'ϳͲŶͲZ 'd'd''' ϱϳ 'ϭϬͲŶͲ& d'd'ddd'' ϱϴ 'ϭϬͲŶͲZ d'dd'd'dd''d'd' ϱϵ 'ϵͲ& dd'''dd'''''d ϲϬ 'ϵͲZ d'ddddddd'dddd' ϲϭ 'ϭϭͲ& dddd'dddd'd'd ϲϮ 'ϭϭͲZ dd'd'ddd'dd' ϲϯ 'ϮϬŽdžϭͲ& ddd'ddd'' ϲϰ 'ϮϬŽdžϭͲZ ''dddd'''d'd'''' ϲϱ 'ϮϬŽdžϮͲ& 'dddd'dd ϲϲ 'ϮϬŽdžϮͲZ ''d'd''''' ϲϳ 'ϯŽdžϭͲ& ddddddd ZdͲƋWZ ϲϴ 'ϯŽdžϭͲZ '''''''''''''' ϲϵ 'ϯŽdžϮͲ& 'dd'ddddd''ddd ϳϬ 'ϯŽdžϮͲZ ''d'dd''''d ϳϭ 'ϮŽdžϮͲ& '''''ddd''dddd' ϳϮ 'ϮŽdžϮͲZ d'''dd'dd''''''d ϳϯ 'ϮŽdžϰͲ& 'd'd''d''dd' ϳϰ 'ϮŽdžϰͲZ d'd''d'ddd ϳϱ hͲ& d'dd'''dd'dd' ϳϲ hͲZ ''dd'''d'd'

  Table S3. Constructs and cloning details. WƌŝŵĞƌƐ /ŶƐĞƌƚŽƌWZ WůĂƐŵŝĚ ůŽŶŝŶŐ hƐĞ ŽŶƐƚƌƵĐƚ dĞŵƉůĂƚĞ ;ƐĞĞdĂďůĞ^ϱͿ ƉƌŽĚƵĐƚ ďĂĐŬďŽŶĞ ŵĞƚŚŽĚ ''WW^ϭϭ ƉZϮ͘ϭ dKWKd ƉZͲ'ϭϭͲƉнĐĚƐ 'ĞŶŽŵŝĐE ϰнϮ   SURPRWHU&'6 dKWK ĐůŽŶŝŶŐ ''WW^ϭϭ ƉZϮ͘ϭ dKWKd ƉZͲ'ϭϭͲƉ 'ĞŶŽŵŝĐE ϰнϱ     SURPRWHU dKWK ĐůŽŶŝŶŐ ''WW^ϭϭ  ƉZϮ͘ϭ dKWKd ƉZͲ'ϭϭͲĐĚƐн ^ĞĞĚůŝŶŐĐE ϭнϯ ϭͲϭϭϲϬ ĐEͬŶŽƐƚŽƉ dKWK ĐůŽŶŝŶŐ /ŶŝƚŝĂů ĐůŽŶŝŶŐ W^z  ƉZϮ͘ϭ dKWKd ƉZͲW^zͲĐĚƐн ^ĞĞĚůŝŶŐĐE ϴнϵ ϭͲϭϯϭϭ ĐEͬŶŽƐƚŽƉ dKWK ĐůŽŶŝŶŐ ''Z ƉZϮ͘ϭ dKWKd ƉZͲ''ZͲĐĚƐн ^ĞĞĚůŝŶŐĐE ϭϬнϭϭ ϭͲϭϰϬϭ ĐEͬŶŽƐƚŽƉ dKWK ĐůŽŶŝŶŐ ^WWϮ ƉZϮ͘ϭ dKWKd ƉZͲ^W^ϮͲĐĚƐн ^ĞĞĚůŝŶŐĐE ϭϮнϭϯ ϭͲϭϮϱϭ ĐEͬŶŽƐƚŽƉ dKWK ĐůŽŶŝŶŐ ''WW^ϵ yďĂ/ͬyŚŽ/ͬ Ɖ'ϵͲ'^d ^ĞĞĚůŝŶŐĐE ϮϮнϮϯнϮϰнϮϱ ϭϭϰϬͲϭϮϯϱ Ɖ,ĞůůƐŐĂƚĞϴ ĐE ĐŽZ/ͬ,ŝŶĚ/// dƌĂŶƐŐĞŶŝĐ ''WW^ϭϭ ƉD/ϭϯ 'ϭϭŵŝŶŝŐĞŶĞ ƉdKWKͲ'ϭϭͲƉнĐĚƐ ϮϲнϮ   Ăŵ,/ͬWŵů/ ƉůĂŶƚƐ SURPRWHU&'6 ϬϮ ''WW^ϭϭ  ƉD/ϭϯ Ɖ^'ϭϭ' ƉdKWKͲ'ϭϭͲĐĚƐн Ͳ ϭͲϭϭϲϬ EĐŽ/ͬ^ƉĞ/ ĐEͬŶŽƐƚŽƉ ϬϮ ''WW^ϭϭ ŝŶǀŝǀŽ ƉEƵďͲ'ϭϭ ƉZͲ'ϭϭͲĐĚƐ ϭϰнϭϱ ϮϭϯͲϭϭϲϬ ƉEyŐĂƚĞ ĐEͬŶŽƐƚŽƉ ƌĞĐŽŵďŝŶĂƚŝŽŶ W^z ŝŶǀŝǀŽ ƉW^zͲƵď ƉZͲW^zͲĐĚƐн ϭϲнϭϳ ϮϭϬͲϭϯϭϭ ƉDĞƚzŐĂƚĞ ĐEͬŶŽƐƚŽƉ ƌĞĐŽŵďŝŶĂƚŝŽŶ zϮ,Ͳ^h^ ''Z ŝŶǀŝǀŽ Ɖ''ZͲƵď ƉZͲ''ZͲĐĚƐн ϭϴнϭϵ ϭϮϵͲϭϰϬϭ ƉDĞƚzŐĂƚĞ ĐEͬŶŽƐƚŽƉ ƌĞĐŽŵďŝŶĂƚŝŽŶ ^W^Ϯ ŝŶǀŝǀŽ Ɖ^W^ϮͲƵď ƉZͲ^W^ϮͲĐĚƐн ϮϬнϮϭ ϭϳϳͲϭϮϱϭ ƉDĞƚzŐĂƚĞ ĐEͬŶŽƐƚŽƉ ƌĞĐŽŵďŝŶĂƚŝŽŶ ''WW^ϭϭ  Ɖ'ϭϭͲz ƉdKWKͲ'ϭϭͲĐĚƐ ϲнϳ ϭͲϭϭϲϬ Ɖ^z ^ƉĞ/ͬ^ŵĂ/ ^ͬŶŽƐƚŽƉ ''WW^ϭϭ  Ɖ'ϭϭͲEz ƉdKWKͲ'ϭϭͲĐĚƐ ϲнϳ ϭͲϭϭϲϬ Ɖ^zE ^ƉĞ/ͬ^ŵĂ/ ^ͬŶŽƐƚŽƉ W^z  ƉW^zͲEz ƉdKWKͲW^zͲĐĚƐ Ͳ ϭͲϭϯϭϭ Ɖ^zE ^ƉĞ/ͬ^ŵĂ/ ĐEͬŶŽƐƚŽƉ W^z  ƉW^zͲz ƉdKWKͲW^zͲĐĚƐ Ͳ ϭͲϭϯϭϭ Ɖ^z ^ƉĞ/ͬ^ŵĂ/ ĐEͬŶŽƐƚŽƉ ŝ& ''Z Ɖ''ZͲEz ƉdKWKͲ''ZͲĐĚƐ Ͳ ϭͲϭϰϬϭ Ɖ^zE ^ƉĞ/ͬ^ŵĂ/ ĐEͬŶŽƐƚŽƉ ''Z Ɖ''ZͲz ƉdKWKͲ''ZͲĐĚƐ Ͳ ϭͲϭϰϬϭ Ɖ^z ^ƉĞ/ͬ^ŵĂ/ ĐEͬŶŽƐƚŽƉ ^W^Ϯ Ɖ^W^ϮͲEz ƉdKWKͲ^W^ϮͲĐĚƐ Ͳ ϭͲϭϮϱϭ Ɖ^zE ^ƉĞ/ͬ^ŵĂ/ ĐEͬŶŽƐƚŽƉ ^W^Ϯ Ɖ^W^ϮͲz ƉdKWKͲ^W^ϮͲĐĚƐ Ͳ ϭͲϭϮϱϭ Ɖ^z ^ƉĞ/ͬ^ŵĂ/ ĐEͬŶŽƐƚŽƉ 

Table S4. List of GCN input genes. Genes are grouped by pathways according to AtIPD (*). Genes which are part of several pathways are included in each pathway group (e.g. At1g74470). AGI, Arabidopsis Genome Initiative gene code. ĨĨLJŵĞƚƌŝdžΡ ĨĨLJŵĞƚƌŝdžΡ WĂƚŚǁĂLJ '/ WĂƚŚǁĂLJ '/ WƌŽďĞƐĞƚ/ WƌŽďĞƐĞƚ/ DWWd,tz ,>KZKW,z>>/K^zEd,^/^ ϮϰϱϮϴϭͺĂƚ ƚϰŐϭϱϱϲϬ ϮϲϰϲϲϬͺĂƚ ƚϭŐϬϵϵϰϬ ϮϰϳϰϬϭͺĂƚ ƚϱŐϲϮϳϵϬ ϮϱϲϬϮϬͺĂƚ ƚϭŐϱϴϮϵϬ ϮϲϳϮϮϬͺĂƚ ƚϮŐϬϮϱϬϬ ϮϲϰϬϴϱͺĂƚ ƚϮŐϯϭϮϱϬ ϮϲϲϴϲϯͺĂƚ ƚϮŐϮϲϵϯϬ ϮϱϮϯϭϴͺĂƚ ƚϯŐϰϴϳϯϬ ϮϲϬϯϮϰͺĂƚ ƚϭŐϲϯϵϳϬ ϮϰϳϯϵϮͺĂƚ ƚϱŐϲϯϱϳϬ ϮϰϳϲϯϳͺĂƚ ƚϱŐϲϬϲϬϬ ϮϰϱϮϰϱͺĂƚ ƚϭŐϰϰϯϭϴ ϮϱϯϮϯϱͺĂƚ ƚϰŐϯϰϯϱϬ ϮϲϬϯϳϬͺĂƚ ƚϭŐϲϵϳϰϬ DsWd,tz ϮϰϲϬϯϯͺĂƚ ƚϱŐϬϴϮϴϬ ϮϰϴϳϳϵͺĂƚ ƚϱŐϰϳϳϮϬ ϮϰϱϬϰϮͺĂƚ ƚϮŐϮϲϱϰϬ ϮϰϴϲϵϬͺĂƚ ƚϱŐϰϴϮϯϬ ϮϱϱϴϮϲͺĂƚ ƚϮŐϰϬϰϵϬ ϮϱϰϴϰϱͺĂƚ ƚϰŐϭϭϴϮϬ ϮϱϳϮϭϵͺĂƚ ƚϯŐϭϰϵϯϬ ϮϱϵϵϴϯͺĂƚ ƚϭŐϳϲϰϵϬ ϮϲϰϴϮϬͺĂƚ ƚϭŐϬϯϰϳϱ ϮϲϰϴϱϲͺĂƚ ƚϮŐϭϳϯϳϬ ϮϱϱϰϬϮͺĂƚ ƚϰŐϬϯϮϬϱ ϮϰϲϳϳϴͺĂƚ ƚϱŐϮϳϰϱϬ ϮϱϱϱϯϳͺĂƚ ƚϰŐϬϭϲϵϬ ϮϰϲϮϴϲͺĂƚ ƚϭŐϯϭϵϭϬ ϮϱϬϮϮϭͺĂƚ ƚϱŐϭϰϮϮϬ ϮϲϲϰϭϰͺĂƚ ƚϮŐϯϴϳϬϬ ϮϱϬϮϰϯͺĂƚ ƚϱŐϭϯϲϯϬ ϮϱϭϴϴϭͺĂƚ ƚϯŐϱϰϮϱϬ ϮϱϰϲϮϯͺĂƚ ƚϰŐϭϴϰϴϬ ''WW/K^zEd,^/^ ϮϰϴϵϮϬͺĂƚ ƚϱŐϰϱϵϯϬ ϮϲϱϵϮϰͺĂƚ ƚϮŐϭϴϲϮϬ ϮϲϭϲϵϱͺĂƚ ƚϭŐϬϴϱϮϬ ϮϱϴϭϮϭͺƐͺĂƚ ƚϯŐϭϰϱϯϬ ϮϱϰϭϬϱͺĂƚ ƚϰŐϮϱϬϴϬ ϮϱϴϭϮϭͺƐͺĂƚ ƚϯŐϭϰϱϱϬ ϮϱϭϲϲϰͺĂƚ ƚϯŐϱϲϵϰϬ ϮϱϳϭϭϳͺĂƚ ƚϯŐϮϬϭϲϬ ϮϱϬϬϬϲͺĂƚ ƚϱŐϭϴϲϲϬ ϮϱϲϳϯϴͺĂƚ ƚϯŐϮϵϰϯϬ ϮϲϰϴϯϵͺĂƚ ƚϭŐϬϯϲϯϬ ϮϱϲϲϴϰͺĂƚ ƚϯŐϯϮϬϰϬ ϮϱϯϴϳϭͺĂƚ ƚϰŐϮϳϰϰϬ ϮϰϲϭϵϴͺĂƚ ƚϰŐϯϲϴϭϬ ϮϰϴϭϵϳͺĂƚ ƚϱŐϱϰϭϵϬ '/Z>>/E^/K^zEd,^/^ ϮϰϲϯϬϴͺĂƚ ƚϯŐϱϭϴϮϬ ϮϱϱϰϲϭͺĂƚ ƚϰŐϬϮϳϴϬ ϮϰϱϮϰϮͺĂƚ ƚϭŐϰϰϰϰϲ ϮϲϮϴϵϭͺĂƚ ƚϭŐϳϵϰϲϬ ϮϲϬϮϯϲͺĂƚ ƚϭŐϳϰϰϳϬ ϮϰϲϴϲϰͺĂƚ ƚϱŐϮϱϵϬϬ ZKdEK//K^zEd,^/^ ϮϲϰϱϴϲͺĂƚ ƚϭŐϬϱϭϲϬ ϮϱϬϬϵϱͺĂƚ ƚϱŐϭϳϮϯϬ ϮϲϲϯϯϱͺĂƚ ƚϮŐϯϮϰϰϬ ϮϰϱϮϴϰͺĂƚ ƚϰŐϭϰϮϭϬ ϮϱϵϰϱϯͺĂƚ ƚϭŐϰϰϬϵϬ ϮϱϵϬϵϮͺĂƚ ƚϯŐϬϰϴϳϬ ϮϱϵϳϭϰͺĂƚ ƚϭŐϲϬϵϴϬ ϮϲϬϴϮϭͺĂƚ ƚϭŐϬϲϴϮϬ ϮϱϰϬϲϱͺĂƚ ƚϰŐϮϱϰϮϬ ϮϰϲϰϭϭͺĂƚ ƚϭŐϱϳϳϳϬ ϮϱϬϲϭϭͺĂƚ ƚϱŐϬϳϮϬϬ ϮϰϳϵϯϲͺĂƚ ƚϱŐϱϳϬϯϬ ϮϰϴϯϳϭͺĂƚ ƚϱŐϱϭϴϭϬ ϮϱϵϭϰϬͺĂƚ ƚϯŐϭϬϮϯϬ ϮϲϭϳϲϴͺĂƚ ƚϭŐϭϱϱϱϬ ϮϰϲϮϲϴͺĂƚ ƚϭŐϯϭϴϬϬ ϮϲϬϮϵϵͺĂƚ ƚϭŐϴϬϯϯϬ ϮϱϭϵϲϵͺĂƚ ƚϯŐϱϯϭϯϬ ϮϲϬϯϬϬͺĂƚ ƚϭŐϴϬϯϰϬ ϮϱϰϬϮϬͺĂƚ ƚϰŐϮϱϳϬϬ ϮϱϰϯϵϳͺĂƚ ƚϰŐϮϭϲϵϬ ϮϰϴϯϭϭͺĂƚ ƚϱŐϱϮϱϳϬ W>^dKYh/EKE/K^zEd,^/^ ϮϰϳϬϮϱͺĂƚ ƚϱŐϲϳϬϯϬ ϮϲϯϭϮϮͺĂƚ ƚϭŐϳϴϱϭϬ ϮϲϰϳϵϵͺĂƚ ƚϭŐϬϴϱϱϬ ϮϲϮϱϮϲͺĂƚ ƚϭŐϭϳϬϱϬ ϮϲϯϴϳϯͺĂƚ ƚϮŐϮϭϴϲϬ ϮϰϴϮϬϳͺĂƚ ƚϱŐϱϯϵϳϬ ϮϱϱϴϱϳͺĂƚ ƚϭŐϲϳϬϴϬ ϮϲϮϲϯϱͺĂƚ ƚϭŐϬϲϱϳϬ ^dZ/'K>dKE/K^zEd,^/^ ϮϱϴϳϱϱͺĂƚ ƚϯŐϭϭϵϰϱ ϮϲϲϭϮϵͺĂƚ ƚϮŐϰϰϵϵϬ ϮϱϭϭϭϴͺĂƚ ƚϯŐϲϯϰϭϬ ϮϱϯϯϵϴͺĂƚ ƚϰŐϯϮϴϭϬ dKKW,ZK>/K^zEd,^/^ ϮϲϳϯϴϬͺĂƚ ƚϮŐϮϲϭϳϬ ϮϰϴϮϬϳͺĂƚ ƚϱŐϱϯϵϳϬ /K^zEd,^/^ ϮϲϮϲϯϱͺĂƚ ƚϭŐϬϲϱϳϬ ϮϱϵϲϲϵͺĂƚ ƚϭŐϱϮϯϰϬ ϮϲϲϵϯϴͺĂƚ ƚϮŐϭϴϵϱϬ ϮϲϯϱϳϬͺĂƚ ƚϮŐϮϳϭϱϬ ϮϱϭϭϭϴͺĂƚ ƚϯŐϲϯϰϭϬ ϮϱϲϭϵϬͺĂƚ ƚϭŐϯϬϭϬϬ ϮϱϯϯϵϰͺĂƚ ƚϰŐϯϮϳϳϬ ϮϱϱϴϱϳͺĂƚ ƚϭŐϲϳϬϴϬ ϮϲϮϴϳϱͺĂƚ ƚϭŐϲϰϵϳϬ ϮϲϬϳϵϳͺĂƚ ƚϭŐϳϴϯϵϬ ϮϲϬϮϯϲͺĂƚ ƚϭŐϳϰϰϳϬ ϮϱϳϮϴϬͺĂƚ ƚϯŐϭϰϰϰϬ W,z>>KYh/EKE/K^zEd,^/^ ϮϱϳϮϰϮͺĂƚ ƚϯŐϮϰϮϮϬ ϮϲϭϰϮϴͺĂƚ ƚϭŐϭϴϴϳϬ ϮϱϰϲϲϴͺĂƚ ƚϰŐϭϴϯϱϬ ϮϲϮϭϳϳͺĂƚ ƚϭŐϳϰϳϭϬ ϮϰϳϬϮϱͺĂƚ ƚϱŐϲϳϬϯϬ ϮϱϵϲϰϯͺĂƚ ƚϭŐϲϴϴϵϬ ϮϱϮϮϵϯͺĂƚ ƚϯŐϰϴϵϵϬ ϮϲϰϵϮϬͺĂƚ ƚϭŐϲϬϱϱϬ ϮϰϱϰϴϰͺĂƚ ƚϰŐϭϲϮϭϬ ϮϲϰϵϲϯͺĂƚ ƚϭŐϲϬϲϬϬ ϮϲϯϬϰϰͺĂƚ ƚϭŐϮϯϯϲϬ ϮϲϬϮϯϲͺĂƚ ƚϭŐϳϰϰϳϬ (*) Vranová, E., Hirsch-Hoffmann, M., Gruissem, W. (2011). AtIPD: A Curated Database of Arabidopsis Isoprenoid Pathway Models and Genes for Isoprenoid Network Analysis. Plant Physiol 156: 1655-1660.

ϲ Table S5. The GGPPS GCN representing significant co-expression relationships. The GGPPS paralogs (“Guide Gene”) significantly co-expressed with genes encoding enzymes in the MVA pathway, MEP pathway and downstream pathways using GGPP as precursor ("Query Gene").

'ƵŝĚĞ'ĞŶĞ YƵĞƌLJ'ĞŶĞ 'ƵŝĚĞ'ĞŶĞ YƵĞƌLJ'ĞŶĞ ƚϭŐϳϴϱϭϬ ƚϭŐϰϰϯϭϴ ƚϭŐϳϰϰϳϬ ƚϭŐϭϱϱϱϬ ƚϰŐϮϳϰϰϬ ƚϭŐϴϬϯϰϬ ''WW^Ϯ ƚϱŐϱϰϭϵϬ ƚϭŐϭϴϴϳϬ ƚϯŐϱϭϴϮϬ ƚϱŐϮϳϰϱϬ ƚϭŐϰϰϰϰϲ ƚϮŐϯϴϳϬϬ ƚϮŐϯϮϰϰϬ ƚϭŐϭϱϱϱϬ ƚϭŐϲϴϴϵϬ ƚϭŐϴϬϯϰϬ ƚϭŐϲϬϱϱϬ ƚϭŐϭϴϴϳϬ ƚϭŐϲϬϲϬϬ ƚϱŐϮϳϰϱϬ ƚϭŐϮϯϯϲϬ''WW^ϲͬϳ ƚϮŐϯϴϳϬϬ ƚϰŐϭϱϱϲϬ ƚϱŐϰϴϮϯϬ ƚϮŐϮϲϵϯϬ ƚϰŐϭϭϴϮϬ ƚϰŐϯϰϯϱϬ ƚϭŐϯϭϵϭϬ ƚϭŐϲϰϵϳϬ ƚϯŐϱϰϮϱϬ ƚϯŐϭϭϵϰϱ ƚϭŐϰϰϯϭϴ ƚϯŐϲϯϰϭϬ ƚϭŐϴϬϯϰϬ ''WW^ϴ ƚϮŐϭϴϵϱϬ ƚϭŐϭϴϴϳϬ ƚϱŐϲϮϳϵϬ ƚϭŐϭϱϱϱϬ ƚϮŐϬϮϱϬϬ ''WW^ϵ ƚϭŐϰϰϯϭϴ ƚϭŐϲϯϵϳϬ ƚϱŐϮϳϰϱϬ ƚϱŐϲϬϲϬϬ ƚϮŐϯϴϳϬϬ ƚϭŐϱϮϯϰϬ ƚϭŐϰϰϯϭϴ ''WW^ϭϬ ƚϭŐϭϳϬϱϬ ƚϭŐϭϱϱϱϬ ƚϱŐϭϳϮϯϬ ƚϭŐϴϬϯϰϬ ƚϰŐϭϰϮϭϬ ƚϭŐϭϴϴϳϬ ƚϯŐϬϰϴϳϬ ƚϭŐϬϲϴϮϬ ''WW^ϭϭ ƚϭŐϱϳϳϳϬ ƚϱŐϱϳϬϯϬ ƚϯŐϭϬϮϯϬ ƚϭŐϯϭϴϬϬ ƚϯŐϱϯϭϯϬ ƚϰŐϮϱϳϬϬ ƚϱŐϲϳϬϯϬ ƚϭŐϬϴϱϱϬ ƚϮŐϮϭϴϲϬ ƚϭŐϲϳϬϴϬ ƚϭŐϱϴϮϵϬ ƚϯŐϰϴϳϯϬ ƚϱŐϲϯϱϳϬ ƚϭŐϲϵϳϰϬ ƚϱŐϬϴϮϴϬ ƚϮŐϮϲϱϰϬ ƚϮŐϰϬϰϵϬ ƚϯŐϭϰϵϯϬ ƚϭŐϬϯϰϳϱ ƚϰŐϬϭϲϵϬ ƚϱŐϭϰϮϮϬ ƚϱŐϭϯϲϯϬ ƚϰŐϭϴϰϴϬ ƚϱŐϰϱϵϯϬ ƚϭŐϬϴϱϮϬ ƚϰŐϮϱϬϴϬ ƚϯŐϱϲϵϰϬ ƚϱŐϭϴϲϲϬ ƚϭŐϬϯϲϯϬ





 Table S6. Gene abbreviations used in Figure 2. 'ĞŶĞ '/ ĞƐĐƌŝƉƚŝŽŶ dϮ ƚϱŐϰϴϮϯϬ ĂĐĞƚŽĂĐĞƚLJůͲŽƚŚŝŽůĂƐĞϮ ,D'^ ƚϰŐϭϭϴϮϬ ϯͲŚLJĚƌŽdžLJͲϯͲŵĞƚŚLJůŐůƵƚĂƌLJůͲŽƐLJŶƚŚĂƐĞ D< ƚϱŐϮϳϰϱϬ ŵĞǀĂůŽŶĂƚĞŬŝŶĂƐĞ WD< ƚϭŐϯϭϵϭϬ ƉŚŽƐƉŚŽŵĞǀĂůŽŶĂƚĞŬŝŶĂƐĞ DWϭ ƚϮŐϯϴϳϬϬ ŵĞǀĂůŽŶĂƚĞĚŝƉŚŽƐƉŚĂƚĞĚĞĐĂƌďŽdžLJůĂƐĞϭ DWϮ ƚϯŐϱϰϮϱϬ ŵĞǀĂůŽŶĂƚĞĚŝƉŚŽƐƉŚĂƚĞĚĞĐĂƌďŽdžLJůĂƐĞϮ y^ ƚϰŐϭϱϱϲϬ ϭͲĚĞŽdžLJͲͲdžLJůƵůŽƐĞͲϱͲƉŚŽƐƉŚĂƚĞƐLJŶƚŚĂƐĞ yZ ƚϱŐϲϮϳϵϬ yWƌĞĚƵĐƚŽŝƐŽŵĞƌĂƐĞ Dd ƚϮŐϬϮϱϬϬ ϮͲ ͲŵĞƚŚLJůͲͲĞƌLJƚŚƌŝƚŽůϰͲƉŚŽƐƉŚĂƚĞĐLJƚŝĚLJůƚƌĂŶƐĨĞƌĂƐĞ D< ƚϮŐϮϲϵϯϬ ϰͲ;ĐLJƚŝĚŝŶĞϱΖͲĚŝƉŚŽƐƉŚŽͿͲϮͲ ͲŵĞƚŚLJůͲͲĞƌLJƚŚƌŝƚŽůŬŝŶĂƐĞ D^ ƚϭŐϲϯϵϳϬ ϮͲ ͲŵĞƚŚLJůͲͲĞƌLJƚŚƌŝƚŽůͲϮ͕ϰͲĐLJĐůŽĚŝƉŚŽƐƉŚĂƚĞƐLJŶƚŚĂƐĞ ,^ ƚϱŐϲϬϲϬϬ ϰͲŚLJĚƌŽdžLJͲϯͲŵĞƚŚLJůďƵƚͲϮͲĞŶLJůĚŝƉŚŽƐƉŚĂƚĞƐLJŶƚŚĂƐĞ ,Z ƚϰŐϯϰϯϱϬ ,DWWƌĞĚƵĐƚĂƐĞ <KϮ ƚϮŐϯϮϰϰϬ ĞŶƚ ͲŬĂƵƌĞŶŽŝĐĂĐŝĚŽdžŝĚĂƐĞϮ 'ϯŽdžϭ ƚϭŐϭϱϱϱϬ ŐŝďďĞƌĞůůŝŶϯͲŽdžŝĚĂƐĞϭ 'ϯŽdžϮ ƚϭŐϴϬϯϯϬ ŐŝďďĞƌĞůůŝŶϯͲŽdžŝĚĂƐĞϮ͖ ''Z ƚϭŐϳϰϰϳϬ ŐĞƌĂŶLJůŐĞƌĂŶLJůƌĞĚƵĐƚĂƐĞ ^W^ϭ ƚϭŐϳϴϱϭϬ ƐŽůĂŶĞƐLJůͲĚŝƉŚŽƐƉŚĂƚĞƐLJŶƚŚĂƐĞϭ ^W^Ϯ ƚϭŐϭϳϬϱϬ ƐŽůĂŶĞƐLJůͲĚŝƉŚŽƐƉŚĂƚĞƐLJŶƚŚĂƐĞϮ ,^d ƚϯŐϭϭϵϰϱ ŚŽŵŽŐĞŶƚŝƐĂƚĞƐŽůĂŶĞƐLJůƚƌĂŶƐĨĞƌĂƐĞ sdϮ ƚϮŐϭϴϵϱϬ ŚŽŵŽŐĞŶƚŝƐĂƚĞƉŚLJƚLJůƚƌĂŶƐĨĞƌĂƐĞ sdϯ ƚϯŐϲϯϰϭϬ D^YͬDWYŵĞƚŚLJůƚƌĂŶƐĨĞƌĂƐĞ sdϰ ƚϭŐϲϰϵϳϬ ĚĞůƚĂͬŐĂŵŵĂͲƚŽĐŽƉŚĞƌŽůŵĞƚŚLJůƚƌĂŶƐĨĞƌĂƐĞ DE&Ϯ ƚϭŐϭϴϴϳϬ ŝƐŽĐŚŽƌŝƐŵĂƚĞƐLJŶƚŚĂƐĞϮ DE ƚϭŐϲϴϴϵϬ ϮͲƐƵĐĐŝŶLJůͲϲͲŚLJĚƌŽdžLJͲϮ͕ϰͲĐLJĐůŽŚĞdžĂĚŝĞŶĞͲϭͲĐĂƌďŽdžLJůĂƚĞƐLJŶƚŚĂƐĞ;W,z>>KͿ DE ƚϭŐϲϬϱϱϬ ϭ͕ϰͲĚŝŚLJĚƌŽdžLJͲϮͲŶĂƉŚƚŽLJůͲŽƐLJŶƚŚĂƐĞ DE ƚϭŐϲϬϲϬϬ ϭ͕ϰͲĚŝŚLJĚƌŽdžLJͲϮͲŶĂƉŚƚŚŽĂƚĞƉŚLJƚLJůƚƌĂŶƐĨĞƌĂƐĞ DE' ƚϭŐϮϯϯϲϬ ĚĞŵĞƚŚLJůƉŚLJůůŽƋƵŝŶŽŶĞŵĞƚŚLJůƚƌĂŶƐĨĞƌĂƐĞ ,Dϭ ƚϭŐϱϴϮϵϬ ŐůƵƚĂŵLJůͲƚZEƌĞĚƵĐƚĂƐĞϭ '^ϭ ƚϱŐϲϯϱϳϬ ŐůƵƚĂŵĂƚĞͲϭͲƐĞŵŝĂůĚĞŚLJĚĞϮ͕ϭͲĂŵŝŶŽŵƵƚĂƐĞ '^Ϯ ƚϯŐϰϴϳϯϬ ŐůƵƚĂŵĂƚĞͲϭͲƐĞŵŝĂůĚĞŚLJĚĞϮ͕ϭͲĂŵŝŶŽŵƵƚĂƐĞ ,Dϭ ƚϭŐϲϵϳϰϬ ϱͲĂŵŝŶŽůĞǀƵůŝŶĂƚĞĚĞŚLJĚƌĂƚĂƐĞ ,DϮ ƚϭŐϰϰϯϭϴ ϱͲĂŵŝŶŽůĞǀƵůŝŶĂƚĞĚĞŚLJĚƌĂƚĂƐĞ ,D ƚϱŐϬϴϮϴϬ ƉŽƌƉŚŽďŝůŝŶŽŐĞŶĚĞĂŵŝŶĂƐĞ ,D ƚϮŐϮϲϱϰϬ ƵƌŽƉŽƌƉŚLJƌŝŶŽŐĞŶ///ͲƐLJŶƚŚĂƐĞ ,Dϭ ƚϯŐϭϰϵϯϬ ƵƌŽƉŽƌƉŚLJƌŝŶŽŐĞŶ///ĚĞĐĂƌďŽdžLJůĂƐĞ ,DϮ ƚϮŐϰϬϰϵϬ ƵƌŽƉŽƌƉŚLJƌŝŶŽŐĞŶ///ĚĞĐĂƌďŽdžLJůĂƐĞ ,D& ƚϭŐϬϯϰϳϱ ĐŽƉƌŽƉŽƌƉŚLJƌŝŶŽŐĞŶ///ŽdžŝĚĂƐĞ ,D'ϭ ƚϰŐϬϭϲϵϬ ƉƌŽƚŽƉŽƌƉŚLJƌŝŶŽŐĞŶ/yŽdžŝĚĂƐĞ ,D'Ϯ ƚϱŐϭϰϮϮϬ ƉƌŽƚŽƉŽƌƉŚLJƌŝŶŽŐĞŶ/yŽdžŝĚĂƐĞ ,>, ƚϱŐϭϯϲϯϬ ŵĂŐŶĞƐŝƵŵĐŚĞůĂƚĂƐĞ,ƐƵďƵŶŝƚ ,>ϭϭ ƚϰŐϭϴϰϴϬ ŵĂŐŶĂƐŝƵŵĐŚĞůĂƚĂƐĞ/ƐƵďƵŶŝƚ ,>ϭϮ ƚϱŐϰϱϵϯϬ ŵĂŐŶĂƐŝƵŵĐŚĞůĂƚĂƐĞ/ƐƵďƵŶŝƚ ,> ƚϭŐϬϴϱϮϬ ŵĂŐŶĞƐŝƵŵĐŚĞůĂƚĂƐĞƐƵďƵŶŝƚ ,>D ƚϰŐϮϱϬϴϬ DŐͲƉƌŽƚŽƉŽƌƉŚLJƌŝŶ/yŵĞƚŚLJůƚƌĂŶƐĨĞƌĂƐĞ Z ƚϯŐϱϲϵϰϬ DŐͲƉƌŽƚŽƉŽƌƉŚLJƌŝŶ/yŵŽŶŽŵĞƚŚLJůĞƐƚĞƌĐLJĐůĂƐĞ WKZ ƚϱŐϱϰϭϵϬ ƉƌŽƚŽĐŚůŽƌŽƉŚLJůůŝĚĞƌĞĚƵĐƚĂƐĞ WKZ ƚϰŐϮϳϰϰϬ ƉƌŽƚŽĐŚůŽƌŽƉŚLJůůŝĚĞƌĞĚƵĐƚĂƐĞ WKZ ƚϭŐϬϯϲϯϬ ƉƌŽƚŽĐŚůŽƌŽƉŚLJůůŝĚĞƌĞĚƵĐƚĂƐĞ sZ ƚϱŐϭϴϲϲϬ ĚŝǀŝŶLJůƌĞĚƵĐƚĂƐĞ K ƚϭŐϰϰϰϰϲ ĐŚůŽƌŽƉŚLJůůĂŽdžLJŐĞŶĂƐĞ ,>' ƚϯŐϱϭϴϮϬ ĐŚůŽƌŽƉŚLJůůƐLJŶƚŚĞƚĂƐĞ Ϯ ƚϭŐϱϮϯϰϬ ƐŚŽƌƚͲĐŚĂŝŶĂůĐŽŚŽůĚĞŚLJĚƌŽŐĞŶĂƐĞĂĐƚŝǀŝƚLJ W^z ƚϱŐϭϳϮϯϬ ƉŚLJƚŽĞŶĞƐLJŶƚŚĂƐĞ W^ ƚϰŐϭϰϮϭϬ ƉŚLJƚŽĞŶĞĚĞƐĂƚƵƌĂƐĞ ^ ƚϯŐϬϰϴϳϬ njĞƚĂͲĐĂƌŽƚĞŶĞĚĞƐĂƚƵƌĂƐĞ Zd/^Kϭ ƚϭŐϬϲϴϮϬ ĐĂƌŽƚĞŶŽŝĚŝƐŽŵĞƌĂƐĞϭ Zd/^KϮ ƚϭŐϱϳϳϳϬ ĐĂƌŽƚĞŶŽŝĚŝƐŽŵĞƌĂƐĞϮ >zď dϯŐϭϬϮϯϬ ůLJĐŽƉĞŶĞďĞƚĂͲĐLJĐůĂƐĞ >zĞ ƚϱŐϱϳϬϯϬ ůLJĐŽƉĞŶĞĞƉƐŝůŽŶͲĐLJĐůĂƐĞ  ƚϱŐϲϳϬϯϬ njĞĂdžĂŶƚŚŝŶĞƉŽdžŝĚĂƐĞ s ƚϭŐϬϴϱϱϬ ǀŝŽůĂdžĂŶƚŚŝŶĚĞͲĞƉŽdžŝĚĂƐĞ sƌ ƚϮŐϮϭϴϲϬ ǀŝŽůĂdžĂŶƚŚŝŶĚĞͲĞƉŽdžŝĚĂƐĞƌĞůĂƚĞĚŐĞŶĞ E^ ƚϭŐϲϳϬϴϬ ŶĞŽdžĂŶƚŚŝŶƐLJŶƚŚĂƐĞ >hdϱ ƚϭŐϯϭϴϬϬ ĐĂƌŽƚĞŶĞŚLJĚƌŽdžLJůĂƐĞzWϵϳϯ ,ϭ ƚϰŐϮϱϳϬϬ ĐĂƌŽƚĞŶĞŚLJĚƌŽdžLJůĂƐĞ >hdϭ ƚϯŐϱϯϭϯϬ ĐĂƌŽƚĞŶĞŚLJĚƌŽdžLJůĂƐĞzWϵϳϭ

 ''''

'

'

'

' '''''''''''''''''''''''''''''''''''''''''''''''

/

 ////

&  ' %$'  ' %$'  '$''$' '$'' ' ' &   ' ' +$"#' ,)/ / /  / / /  /  !/  / ! !/ /! /)/  / !)/!#"*/#%(%.#&"$)/

/

- / / / !/// / / */!// / !// !// /  /// //  //// ///)/ /

/

/

'

'

'

'

'

'

'

'

'

'

ii 

' Research Report

A Single Arabidopsis Gene Encodes Two Differentially Targeted Geranylgeranyl Diphosphate Synthase Isoforms1[OPEN]

M. Águila Ruiz-Sola2, M. Victoria Barja2, David Manzano, Briardo Llorente, Bert Schipper, Jules Beekwilder, and Manuel Rodriguez-Concepcion* Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain (M.A.R.-S., M.V.B., D.M., B.L., M.R.-C.); and Plant Research International, 6700 AA Wageningen, The Netherlands (B.S., J.B.) ORCID IDs: 0000-0002-2281-6700 (M.A.R.-S.); 0000-0002-3846-4885 (M.V.B.); 0000-0002-5483-7223 (D.M.); 0000-0002-3727-1395 (B.L.); 0000-0002-1280-2305 (M.R.-C.).

A wide diversity of isoprenoids is produced in different plant compartments. Most groups of isoprenoids synthesized in plastids, and some produced elsewhere in the plant cell derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. In Arabidopsis (Arabidopsis thaliana), five genes appear to encode GGPPS isoforms localized in plastids (two), the endoplasmic reticulum (two), and mitochondria (one). However, the loss of function of the plastid-targeted GGPPS11 isoform (referred to as G11) is sufficient to cause lethality. Here, we show that the absence of a strong transcription initiation site in the G11 gene results in the production of transcripts of different lengths. The longer transcripts encode an isoform with a functional plastid import sequence that produces GGPP for the major groups of photosynthesis-related plastidial isoprenoids. However, shorter transcripts are also produced that lack the first translation initiation codon and rely on a second in-frame ATG codon to produce an enzymatically active isoform lacking this N-terminal domain. This short enzyme localizes in the cytosol and is essential for embryo development. Our results confirm that the production of differentially targeted enzyme isoforms from the same gene is a central mechanism to control the biosynthesis of isoprenoid precursors in different plant cell compartments.

Plants produce tens of thousands of isoprenoid com- diphosphate (IPP) and dimethylallyl diphosphate pounds, including some that are essential for respi- (DMAPP), which can be interconverted by IPP/ ration, photosynthesis, and regulation of growth and DMAPP isomerase (IDI) enzymes. Plants use two un- development. Despite their structural and functional related pathways to synthesize these units (Fig. 1). The diversity, all isoprenoids derive from the same five- mevalonic acid (MVA) pathway synthesizes IPP in the carbon precursors, the double-bond isomers isopentenyl cytosol, whereas the methylerythritol 4-phosphate (MEP) pathway supplies both IPP and DMAPP in the plastid (Bouvier et al., 2005; Vranová et al., 2013; 1 This work was funded by grants from the Ministerio de Economía Rodriguez-Concepción and Boronat, 2015). IPP and y Competitividad (BES-2009-025359, BIO2011-23680, BIO2014-59092-P, DMAPP units can be exchanged between cell com- PCIN-2015-103, BIO2015-71703-REDT, and FPDI-2013-018882), Minis- partments to a certain level. For example, MVA-derived terio de Educación, Cultura y Deporte (FPU14/05142), European Com- IPP can be imported by mitochondria for the biosyn- mission H2020 ERA-IB-2 program (BioProMo), and Generalitat de thesis of ubiquinone (Lütke-Brinkhaus et al., 1984; Catalunya (2014SGR-1434 and 2015FI_B 00007). 2 Disch et al., 1998). However, this limited exchange of These authors contributed equally to the article. common isoprenoid precursors is not active enough to * Address correspondence to [email protected]. The author responsible for distribution of materials integral to the rescue a genetic or pharmacological blockage of one of findings presented in this article in accordance with the policy de- the pathways with IPP/DMAPP produced by the scribed in the Instructions for Authors (www.plantphysiol.org) is: noninhibited pathway (Bouvier et al., 2005; Vranová Manuel Rodriguez-Concepcion ([email protected]). et al., 2013; Rodriguez-Concepción and Boronat, 2015). M.A.R.-S. and M.R.-C. conceived the project and the original re- Addition of IPP units to DMAPP generates longer search plan; M.A.R.-S., M.V.B., and M.R.-C. designed the experi- prenyl diphosphate molecules, including C10 geranyl ments; M.A.R.-S. and M.V.B. performed most of the experiments; diphosphate (GPP), C15 farnesyl diphosphate (FPP), fi D.M., M.V.B., B.S., and J.B. performed metabolite pro ling experi- and C20 geranylgeranyl diphosphate (GGPP), which ments; B.L. provided technical assistance and discussion on experi- arethenusedinspecific downstream pathways to mental design to M.A.R.-S. and M.V.B.; M.A.R.-S., M.V.B., D.M., B.L., B.S., J.B., and M.R.-C. analyzed the data; M.R.-C. wrote the article produce particular isoprenoids (Fig. 1). FPP and with contributions of all the authors. GGPP pools represent nodes of the major metabolic [OPEN] Articles can be viewed without a subscription. branch points in the isoprenoid biosynthesis network www.plantphysiol.org/cgi/doi/10.1104/pp.16.01392 (Vranová et al., 2011; Vranová et al., 2013). As prenyl

Ò Plant Physiology , November 2016, Vol. 172, pp. 1393–1402, www.plantphysiol.org Ó 2016 American Society of Plant Biologists. All Rights Reserved. 1393 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Ruiz-Sola et al.

Figure 1. Isoprenoid biosynthetic pathways and enzymes in Arabidopsis. Solid arrows indicate single enzymatic steps, and dashed arrows rep- resent multiple steps. Mevalonic acid (MVA) pathway: HMG-CoA, hydroxymethylglutaryl- CoA. Methylerythritol 4-phosphate (MEP) path- way: GAP, glyceraldehyde 3-phosphate; DXP, deoxyxylulose 5-phosphate. Prenyl diphos- phates: IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl di- phosphate; FPP, farnesyl diphosphate; GGPP, geranylgeranyl diphosphate; PPP,polyprenyl diphosphate. Hormones: CKs, cytokinins; BRs, brassinosteroids; GAs, gibberellins; SLs, strigo- lactones; ABA, abscisic acid. Enzymes: HMGR, HMG-CoA reductase; DXS, DXP synthase; IDI, IPP/DMAPP isomerase; FPPS, FPP synthase; GGPPS, GGPP synthase. *GGPPS activity un- clear. **Isoforms reported in this work.

diphosphates grow longer, however, their transport several Arabidopsis genes encode proteins with ho- between cell compartments becomes increasingly re- mology to DXS, only one of them produces a functional strained (Bick and Lange, 2003). enzyme with DXS activity (Phillips et al., 2008a). In the The two pathways for the production of isoprenoid case of HMGR, the HMG1 gene produces long and precursors have been extensively studied in Arabi- short transcripts encoding two enzyme isoforms dopsis (Arabidopsis thaliana; Fig. 1). All the MEP path- (HMGR1L and HMGR1S, respectively) that only differ way enzymes are encoded by nuclear genes and in their N-terminal region, whereas the HMG2 gene imported into plastids, whereas cytosolic, endoplasmic produces only one isoform, HMGR2 (Caelles et al., reticulum (ER), and peroxisomal-associated locations 1989; Enjuto et al., 1994; Lumbreras et al., 1995). The have been found for MVA enzymes (Pulido et al., 2012; three HMGR isoforms are primarily attached to the ER Rodriguez-Concepción and Boronat, 2015). The main and have the same topology in the membrane, with the rate-determining enzymes of the MEP and MVA highly divergent N-terminal region and the highly pathways are deoxyxylulose 5-phosphate synthase conserved catalytic domain exposed to the cytosol. (DXS) and hydroxymethylglutaryl-CoA reductase Downstream enzymes such as IDI, FPP synthase (HMGR), respectively (Fig. 1). Most plants contain (FPPS), and GGPP synthase (GGPPS) are also encoded small gene families encoding these two enzymes by small gene families in Arabidopsis and localize to (Rodriguez-Concepción and Boronat, 2015). While multiple subcellular compartments (Fig. 1). The two

1394 Plant Physiol. Vol. 172, 2016 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Dual Targeting and Function of GGPPS11 genes encoding IDI in Arabidopsis, IDI1 and IDI2, produce long and short transcripts encoding enzyme isoforms that differ in length at their N-terminal ends (Okada et al., 2008; Phillips et al., 2008b; Sapir-Mir et al., 2008). The long IDI1 isoform is targeted to plastids, the long IDI2 isoform is transported to mitochondria, and both short isoforms are sorted to peroxisomes. The two genes encoding FPPS in Arabidopsis produce three isoforms (Cunillera et al., 1997; Manzano et al., 2006; Keim et al., 2012). FPS1 encodes a long isoform targeted to mitochondria (FPP1L) and a short one lacking the N-terminal end that remains in the cytosol, whereas FPS2 only produces a cytosolic enzyme (Fig. 1). Unlike IDI and FPPS, GGPPS paralogs are encoded by a high number of genes in plant genomes, with a particularly large gene family present in Arabidopsis (Lange and Ghassemian, 2003; Coman et al., 2014). From the 12 initially reported genes, however, only four have been conclusively shown to encode true GGPPS en- zymes (Nagel et al., 2015; Wang et al., 2016). Two of them, GGPPS3 and GGPPS4, encode proteins sorted to the ER, and the other two, GGPPS2 and GGPPS11, en- code plastidial isoforms (Okada et al., 2000; Beck et al., 2013; Coman et al., 2014; Ruiz-Sola et al., 2016). The GGPPS1 gene encodes the only mitochondrial member of the family, but the in vivo activity of the protein is still unclear (Zhu et al., 1997; Okada et al., 2000; Beck et al., 2013; Nagel et al., 2015; Wang et al., 2016). To date, the production of more than one enzyme isoform from a single GGPPS-encoding gene has not been reported. Despite the presence of at least two GGPPS enzymes in Arabidopsis plastids, GGPPS11 (At4g36810, from herein referred to as G11) is by far the most abundant and ubiquitously expressed isoform (Beck et al., 2013; Ruiz-Sola et al., 2016). G11 is required for the pro- duction of all major groups of plastidial isoprenoids, including carotenoids and the side chains of chlo- rophylls, tocopherols, and prenylated quinones (Ruiz- Sola et al., 2016). Strikingly, several phenotypes have been described for G11-defective mutant alleles Figure 2. G11 mutant alleles and associated phenotypes. A, G11 (Ruppel et al., 2013; Ruiz-Sola et al., 2016). By car- gene model according to TAIR v10 annotation. The protein-coding rying out a comprehensive analysis of these alleles, sequence (which lacks introns) is shown as a wider box with a green we uncovered here the existence of two differentially section corresponding to the predicted plastid targeting sequence. targeted G11 enzymes, each of them indispensable The position of translation start and stop codons is shown with black for a distinct developmental process likely through triangles. The position of T-DNA insertions is represented with white the production of a different group of essential iso- triangles. The position of the point mutation in the g11-1 allele is prenoids. shown with a dashed line. Lower bars represent encoded proteins. B, Phenotype of G11-defective mutants either producing or not pro- ducing a sG11 protein. Representative seedlings of the indicated RESULTS AND DISCUSSION genotypes grown under long-day conditions for 10 d are shown to the same scale. Segregating populations of seeds in siliques of plants Different G11-Defective Alleles Show a Range of heterozygous for the g11-2 and g11-3 mutations is also shown. Phenotypes from Variegation to Embryo Lethality Boxed seeds correspond to the homozygous albino mutants repre- sented in the right. Brownish seeds did not produce seedlings due to To better understand the role of G11, the most abun- a blockage in embryo development at the heart stage (as shown in dant GGPPS isoform in Arabidopsis, we carefully re- the corresponding picture). C, Cytosolic localization of the sG11- vised the phenotypes associated to partial or complete GFP protein. Pictures show GFP fluorescence from the sG11-GFP loss-of-function mutants (Fig. 2). The ggpps11-1 mutant, protein in stomata from 10-d-old seedlings of the indicated geno- m originally named ggps1-1 (Ruppel et al., 2013) and here types (bars, 5 m). referred to as g11-1, harbors a point mutation that

Plant Physiol. Vol. 172, 2016 1395 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Ruiz-Sola et al.

changes a conserved residue (D163R) in G11 (Fig. 2A; (ATG(2)) exists downstream of the T-DNA insertion that Supplemental Fig. S1). The g11-1 allele shows a tem- could potentially act as an alternative translation initi- perature-dependent variegated phenotype that resem- ation point to generate a shorter protein, which we bles that of the chs5 mutant (Araki et al., 2000), later named sG11 (Fig. 2A; Supplemental Fig. S2). We renamed dxs-3 (Phillips et al., 2008a), which harbors a speculated that this shorter protein might not be D627N mutation in DXS. It is therefore likely that the imported into plastids as it lacked the N-terminal phenotype of these mutants might be associated to the plastid-targeting domain. To test this prediction, a temperature sensitivity of the corresponding DXS or DNA sequence encoding sG11 was generated by re- G11 mutant enzymes, both of them involved in the pro- moving the ATG(1) codon. The generated sequence duction of photosynthesis-related isoprenoids (Fig. 1). was then fused to the N terminus of the GFP reporter A second partial loss-of-function allele, ggpps11-5 in the pCAMBIA1302 vector to obtain the 35S:sG11- (SALK_140601, g11-5), shows a pale phenotype and a GFP construct. As shown in Figure 2C and Supplemental developmental delay, likely because a T-DNA insertion Figure S3, green fluorescence corresponding to the sG11- upstream of the predicted ATG translation start codon GFP protein was excluded from plastids and localized in (Fig. 2A; Supplemental Fig. S1) results in a decreased the cytosol of cells from Arabidopsis plants trans- accumulation of G11 transcripts (Ruiz-Sola et al., 2016). formed with the construct. By contrast, transgenic In this mutant, lower levels of G11-encoding transcripts plants expressing a similar construct with the wild- are expected to result in an overall reduction in the type G11 sequence (Ruiz-Sola et al., 2016) showed a accumulation of fully active, wild-type G11 protein predominant association of GFP fluorescence to plas- (Ruiz-Sola et al., 2016). Similarly, a general inhibition of tids (Supplemental Fig. S3). the MEP pathway with sublethal concentrations of the We next evaluated whether sG11 retained the genu- DXS inhibitor clomazone also results in a pale pheno- ine enzymatic activity of the full-length enzyme (Fig. 3). type (Pulido et al., 2013; Perelló et al., 2014). Therefore, Recent in vitro activity assays followed by analysis of the phenotype of g11-1 and g11-5 plants is consistent reaction products by liquid chromatography-mass with the reported role of G11 as the major isoform spectrometry (LC-MS; Nagel et al., 2015) or thin-layer transforming MEP-derived precursors into GGPP for photosynthesis-related isoprenoid products. Further supporting this conclusion, a seedling-lethal albino phenotype visually identical to that of knockout MEP pathway mutants such as dxs-1, also known as cla1 (Phillips et al., 2008a), was observed in the case of the ggpps11-2 line (SALK_015098, ggps1-2 or g11-2), which harbors a T-DNA insertion in the N-terminal end of the protein coding region of the G11 gene (Fig. 2; Supplemental Fig. S1; Ruppel et al., 2013). By contrast, T-DNA insertions interrupting the C-terminal end of the G11 protein in alleles ggpps11-3 (SALK_085914, ggps1-3 or g11-3) and ggpps11-4 (SAIL_712_D06, g11-4) cause an arrest of embryo development (Fig. 2; Supplemental Fig. S1; Ruppel et al., 2013; Ruiz-Sola et al., 2016). This embryo lethal phenotype has never been observed in MEP pathway mutants (Phillips et al., 2008a).

The Distinct Phenotypes of G11 Alleles Correlate with Figure 3. GGPPS activity assays. A, In vitro assays. Protein extracts Differential Subcellular Localization and Activity of the from E. coli cells overproducing similar amounts of the indicated Corresponding Enzymes proteins or transformed with an empty vector (C) were mixed with IPP and DMAPP, and the production of GGPP was quantified by LC-MS. To investigate the molecular basis of the puzzling Levels are represented relative to those in G11 samples. Mean and SD phenotype differences observed between g11-2 (albino, of n = 3 extracts are shown. No GGPP was detected in C samples, and seedling lethal) and g11-3 (embryo lethal) plants (Fig. only traces were identified in G11s extracts. B, In vivo assays. Bacterial 2B), we first validated the position of the T-DNA in the cells were cotransformed with pACCRT-BI (which lacks a functional mutant genomes by PCR amplification and sequencing GGPPS-encoding gene to produce lycopene) together with a plasmid of the insertion sites (Supplemental Fig. S1). Insertion of expressing the indicated G11 isoform or an empty vector (C). Positive transformants were used to measure lycopene levels by normalizing the T-DNA within the predicted plastid targeting se- A472 to bacterial growth (OD 600 nm). Levels are represented rela- quence in the g11-2 allele (Fig. 2A; Supplemental Fig. tive to those in G11 samples. Data correspond to the mean and SD of S1) is expected to prevent the transcription of a full- n = 10 independent transformants. Asterisks mark statistically sig- length G11 cDNA harboring the first ATG codon nificant differences from the C control (P , 0.05, one-tailed Student’s (ATG(1)). However, a second in-frame ATG codon t test assuming equal variances).

1396 Plant Physiol. Vol. 172, 2016 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Dual Targeting and Function of GGPPS11 chromatography (Wang et al., 2016) confirmed that G11 complete lack of G11 activity. This embryo-lethal phe- synthesizes GGPP as the main product. They also notype was complemented by expressing a genomic revealed that other proteins previously believed to be G11 sequence including the promoter and the full true GGPPS isoforms actually belong to a novel type of protein-coding region (Ruiz-Sola et al., 2016). Most in- prenyldiphosphate synthases that mainly produce C25 terestingly, embryo development was also rescued by geranylfarnesyl diphosphate (GFPP) or even longer expressing the cytosolic sG11-GFP protein in g11-3 products (Nagel et al., 2015; Wang et al., 2016). The plants (Fig. 2, B and C). Transgenic g11-3 35S:sG11-GFP sG11 protein lacks 19 residues predicted to be present in plants, however, showed a seedling-lethal (albino) the N-terminal region of the mature G11 enzyme (Fig. phenotype resembling the g11-2 mutant. As expected, 2A; Supplemental Fig. S2). While this N-terminal se- the cytosolic sG11-GFP protein was unable to rescue the quence is not conserved in other GGPPS enzymes and albino phenotype of the g11-2 mutant (Fig. 2B). We does not include residues determining product length therefore concluded that embryo development beyond (Supplemental Fig. S2), we aimed to experimentally the heart stage required the presence of G11 activity in confirm whether its absence in sG11 had any impact on the cytosol (despite two ER-associated GGPPS enzymes the ability of the protein to produce GGPP from IPP and exist in Arabidopsis, GGPPS3 and 4), whereas photo- DMAPP. In vitro activity assays like those described in synthetic seedling development required the activity Nagel et al. (2015) were carried out using protein ex- of G11 in the plastid (despite a second plastidial tracts from Escherichia coli cells overproducing sG11 or enzyme with the same activity, GGPPS2, is found in a pseudomature form of G11 lacking the predicted this plant). plastid-targeting sequence (Supplemental Fig. S4). Analysis of reaction products by LC-MS detected the production of similar amounts of GGPP in both G11 Several Transcription Initiation Sites in the G11 Gene Lead and sG11 extracts (Fig. 3A). No GPP, FPP, or GFPP were to the Production of Isoforms with Different detected in the assays (Supplemental Fig. S4), further N-Terminal Ends indicating that the sG11 protein remains an active GGPPS enzyme. To next determine whether sG11 could A number of Arabidopsis genes encoding isoprenoid also produce GGPP in vivo, we used a heterologous biosynthetic enzymes have been shown to produce system based on carotenoid (lycopene) production in transcripts of different lengths encoding isoforms with E. coli strains carrying the pACCRT-BI vector (Beck or without N-terminal transit peptides for plastids and et al., 2013). Plasmids encoding the full-length G11 or mitochondria (Fig. 1). To determine whether a similar sG11 proteins were used together with pACCRT-BI to alternative transcription initiation mechanism also cotransform E. coli cells. While cells cotransformed with occurs for G11, rapid amplification of cDNA 59 ends pACCRT-BI and an empty plasmid control synthesized (59-RACE) experiments were performed on RNA minor amounts of lycopene due to the presence of only extracted from different tissues to assess the length trace levels of GGPP in the bacteria (Vallon et al., 2008), of G11 transcripts in vivo (Fig. 4). The protocol used those harboring G11 and sG11 constructs showed sig- reverse primers optimized for 59-RACE (see Fig. 4A; nificantly increased levels of the carotenoid (Fig. 3B), Supplemental Table S1) to amplify gene-specific PCR supporting the conclusion that sG11 synthesizes GGPP products while ruling out the possibility of genomic in vivo. Together, our results suggest that the lack of the DNA contamination (see “Materials and Methods”). N-terminal region in the sG11 protein produced by Separation of PCR-amplified products by gel electro- g11-2 plants prevents its targeting to plastids but does phoresis showed the presence of cDNAs of different not override GGPPS activity. sizes (Fig. 4B), suggesting that the G11 gene lacks a In the case of the g11-3 mutant, the T-DNA interrupts strictly defined transcription start site. However, am- the sequence encoding the highly conserved C-terminal plified fragments could be grouped in two major region of G11 (Supplemental Fig. S2), resulting in classes: “long” (approximately 0.5 kb or longer) and a shorter protein that we named G11s (Fig. 2A). “short” (approximately 0.4 kb or shorter). The 59-RACE Sequencing of the T-DNA insertion site in the g11-3 products amplified from siliques were cloned and se- genome confirmed that the last 21 residues of the wild- quenced. Analysis of inserts revealed that all the “long” type G11 protein are replaced by a single Ser residue products included the ATG(1) codon and hence encoded in the G11s protein (Supplemental Fig. S1). To test the full-length G11 protein. While most “short” pro- whether loss of the C-terminal region compromised ducts contained the ATG(1) codon with or without a few GGPPS activity in the G11s protein, the corresponding nucleotides upstream (up to 25), some lacked ATG(1) DNA sequence was amplified from g11-3 seedlings and and so they can only produce the cytosolic sG11 protein cloned into plasmids for E. coli expression. Both in vitro by using the ATG(2) codon (Fig. 4A; Supplemental Fig. (Fig. 3A) and in vivo (Fig. 3B) activity assays showed S1). The similar pattern of “long” and “short” tran- that the recombinant G11s protein is unable to produce scripts detected in seedlings, rosette leaves, and flowers GGPP. These results suggest that the blockage of em- by 59-RACE experiments (Fig. 4B) suggests that both bryo development at the heart stage observed in the types of transcripts are likely produced in all tissues. To g11-3 mutant (Fig. 2B; Supplemental Fig. S5) and the verify whether the relative abundance of transcripts g11-4 allele (Ruiz-Sola et al., 2016) might be due to a either lacking or not the ATG(1) codon was indeed

Plant Physiol. Vol. 172, 2016 1397 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Ruiz-Sola et al.

low abundant but indeed detectable at similar levels in different tissues.

G11 Activity Is Essential to Produce Both Plastidial Isoprenoids and Unidentified Extraplastidial Isoprenoids Required for Embryo Development We next aimed to determine the nature of the iso- prenoids derived from GGPP produced by plastidial and cytosolic forms of G11. Our previous results with the g11-5 allele showed that the pale phenotype of the mutant was due to a decreased expression of the G11 gene, which caused a reduced accumulation of the major groups of MEP-derived isoprenoids produced from GGPP in the plastid, i.e. carotenoids, chlorophylls, tocopherols, phylloquinones, and plastoquinone (Ruiz- Sola et al., 2016). To verify whether the albino pheno- type of g11-2 seedlings was the result of a blockage in the production of plastidial GGPP-derived isoprenoids, we analyzed the levels of carotenoids in the g11-2 mu- tant (Fig. 5). As controls, we used dxs-1, a MEP pathway null mutant with a complete loss of DXS activity (Phillips et al., 2008a), and psy-1, a knockout mutant in which a specific blockage in the carotenoid pathway results in a similar albino phenotype (Pokhilko et al., 2015; Fig. 5A). Analysis of g11-2 seedlings showed low but detectable levels of carotenoids such as lutein, b-carotene, and b,b-xanthophylls (Fig. 5B). The levels of all these metabolites in g11-2 seedlings were similar to those in the dxs-1 mutants but much higher than the amounts detected in psy-1 seedlings. The results sug- gest that loss of G11 or DXS activity do not completely block the production of carotenoids in seedlings (as the loss of PSY activity does). The carotenoids detected in g11-2 seedlings might derive from small amounts of GGPP synthesized from MEP-derived precursors by Figure 4. Transcription and translation start sites in the G11 gene. GGPPS2 (the other plastidial GGPPS enzyme found in A, G11 gene model showing the position of presumed translation Arabidopsis). In the case of the dxs-1 mutant, however, start codons ATG and ATG (in bold). The NcoI site in the ATG (1) (2) (1) the MEP pathway is completely blocked, and hence it is region is underlined. Numbers indicate the position relative to most likely that MVA-derived IPP or DMAPP precur- the first nucleotide of the ATG(1) codon. The position of primers G11-R-R1andR2usedfor59-RACE experiments is also shown. sors are transported to the plastid and used to produce Amplified 59-RACE products (B) were cloned and sequenced to GGPP and downstream products. Alternatively, an determine the position of transcription initiation sites. The graph enhanced import of cytosolic GGPP by nondifferentiated represents the percentage of transcripts found to start at the in- plastids like those found in the albino mutants would dicated position in siliques based on the analysis of 145 clones make DXS and G11 (but not PSY) dispensable to pro- (purple columns). The position of ATG(1) and ATG(2) codons and duce carotenoids. In any case, such a residual production T-DNA insertion sites of the indicated alleles is also shown. B, of plastidial isoprenoids is clearly insufficient to support 9 Agarose gel electrophoresis of 5 -RACE products isolated from photosynthetic development. We therefore conclude seedlings (S), rosette leaves (RL), mature siliques (MS), young that the albino phenotype of g11-2 seedlings is due to a siliques (YS), and flowers (F). defective production of GGPP and downstream isopre- noids in the plastid. similar in different tissues, 59-RACE products from To identify the isoprenoid metabolite required for seedlings were cloned and compared with those from embryo development that is produced from sG11- siliques by digestion with NcoI. As shown in Figure 4A, derived GGPP, it would be necessary to compare the fi a NcoI target site overlaps the ATG(1) codon, and metabolite pro le of g11-2 and g11-3 embryos in the therefore it can be used to rapidly identify clones lack- transition from globular to heart stage (Fig. 2; ing this sequence. In both seedlings and siliques, about Supplemental Fig. S5). Because this is extremely 10% of the clones could not be cleaved by NcoI, con- challenging, we followed an alternative approach firming that transcripts exclusively encoding sG11 are and evaluated whether the levels of extraplastidial

1398 Plant Physiol. Vol. 172, 2016 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Dual Targeting and Function of GGPPS11

Figure 5. Levels of MEP-derived and MVA-derived isoprenoid products in plants with reduced G11 activity. A, Seedlings of the indicated mutants and the parental Columbia wild-type (WT) grown for 1 week under short-day con- ditions. These seedlings were used for the metabolite analyses shown in the corresponding graphs. B, Levels of the indicated carotenoids in albino mutants relative to those in wild-type seedlings. C, Levels of major sterols in wild-type and G11-defective g11-5 seedlings. D, Levels of the ubiquinone UB-9 in seed- lings, flowers, and young siliques of wild-type and g11 -5 plants. The graphs represent mean and SE of at least n =3 independent samples. Italic numbers above the bars indicate P values (Stu- dent’s t test) relative to g11-2 (B) or wild-type (C and D) samples.

isoprenoids were altered in the g11-5 mutant, which is the only GGPPS isoform known to be targeted to mi- expected to produce lower amounts not only of plastid- tochondria (Beck et al., 2013; Nagel et al., 2015). How- localized G11 but also of cytosolic sG11 enzymes. While ever, we found that the T-DNA insertion mutant MVA-derived precursors are used to produce a wide ggpps1-1 (SAIL_559_G01) contains wild-type levels of variety of isoprenoids (Fig. 1), only sterols and ubiqui- UB-9 (Supplemental Fig. S6). Levels of other GGPP- none appear to be required for proper embryo devel- derived isoprenoids were also unaltered in ggpps1- opment (Schrick et al., 2000; Okada et al., 2004). Sterols 1 seedlings, which showed a wild-type phenotype in are not synthesized from GGPP but from FPP (Fig. 1). terms of plant growth and development (Supplemental We therefore expected that reducing sG11 activity (i.e. Fig. S6). Actually, the role of GGPPS1 as a true GGPPS cytosolic GGPP production) in g11-5 seedlings would enzyme still remains controversial as it has not been not cause a decreased sterol accumulation. Consis- conclusively established whether its main product is tently, the levels of sterols (campesterol, stigmasterol, GGPP (Wang et al., 2016) or GFPP (Nagel et al., 2015). and sitosterol) were found to be similar in wild-type In the absence of a mitochondrial source of GGPP, and g11-5 seedlings (Fig. 5C). cytosolic GGPP might be transported to this organelle In the case of ubiquinone, the predominant form in and used for ubiquinone synthesis. Blockage of this cy- Arabidopsis (UB-9) contains a C45 solanesyl moiety tosolic source when sG11 activity is lost could actually synthesized by a mitochondrial polyprenyl diphos- explain why embryo development is arrested at the phate synthase that elongates an initial FPP or GGPP same heart stage in mutants defective in ubiquinone acceptor with IPP units (Hsieh et al., 2011; Ducluzeau synthesis (Okada et al., 2004) and sG11 activity, i.e. g11-3 et al., 2012). Mitochondria import MVA-derived IPP (Supplemental Fig. S5) and g11-4 (Ruiz-Sola et al., from the cytosol, as they lack their own biosynthetic 2016). Analysis of UB-9 contents in seedlings, flowers, pathway (Lütke-Brinkhaus et al., 1984; Disch et al., and young siliques of the g11-5 mutants detected 1998). Then, specificisoformsofFPPSandGGPPS slightly reduced levels compared to wild-type samples, enzymes targeted to mitochondria (in Arabidopsis, but the differences were not found to be statistically FPPS1L, and GGPPS1; Fig. 1) are presumed to produce significant (Fig. 5D). In the case of mutant siliques, FPP and GGPP for ubiquinone synthesis. FPPS1L- however, the observed reduction in ubiquinone levels defective fps1 mutants only showed a limited decrease was close to statistical significance (Student’s t test; P = in UB-9 levels (Closa et al., 2010), suggesting that the 0.051). Together, these results suggest two possibilities. biosynthesis of the ubiquinone solanesyl chain might First, sG11-derived GGPP might be critical for the predominantly rely on the supply of GGPP by GGPPS1, biosynthesis of ubiquinone during embryogenesis,

Plant Physiol. Vol. 172, 2016 1399 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Ruiz-Sola et al. allowing embryo development to progress beyond the (Supplemental Fig. S5; Ruiz-Sola et al., 2016), similar to heart stage. Considering that a ca. 50% reduction of that observed in ubiquinone-defective mutants (Okada G11 transcript levels in g11-5 seedlings only causes a et al., 2004), whereas complete loss of FPPS activity in 20%–30% decrease in plastidial isoprenoid content Arabidopsis fps1 fps2 double mutants blocks embryo- (Ruiz-Sola et al., 2016), the observed 20% reduction of genesis at the earlier globular stage (Closa et al., 2010). UB-9 levels in young siliques of the g11-5 mutant might These results suggest that while FPP-derived isopre- indeed result from partly reduced sG11 activity (and noids are needed for the transition of the embryo from hence GGPP supply) in developing embryos or seeds. globular to heart stages, progression beyond the heart Because other GGPPS isoforms are also expressed in stage requires ubiquinone or/and a different metabo- these tissues at different stages (Beck et al., 2013), it lite produced from sG11-supplied precursors. Besides remains unclear why none of them is able to comple- synthesizing GGPP as a homodimer, the plastidial G11 ment the loss of sG11 activity and hence rescue embryo isoform has been found to produce GPP upon hetero- development in g11-3 and g11-4 mutants. Alternatively, dimerization with another plastidial GGPPS-like pro- sG11 might produce GGPP for another specific class of tein (Wang and Dixon, 2009; Chen et al., 2015). Whether unidentified metabolites required for embryogenesis the cytosolic sG11 protein unveiled here also has al- and, perhaps, with roles in other cells and tissues dur- ternative enzyme activities upon association with other ing the plant life cycle, as deduced from the wide dis- proteins remains unknown. In any case, our results tribution of sG11-encoding transcripts (Fig. 4B). support the conclusion that the production of GGPP required for essential functions in different cell com- partments relies on the activity of G11 isoforms. Other CONCLUSION GGPPS paralogs might be maintained in the Arabidopsis genome for developmental and/or condition-specific Our results support the conclusion that the Arabi- subfunctionalization. Future experiments, including the dopsis G11 gene can produce two enzyme isoforms: high-resolution analysis of isoprenoid profiles in spe- one translated from the ATG(1) codon and carrying a cialized tissues and organs (e.g. embryos) from wild- plastid-targeting peptide (G11) and a shorter version type and GGPPS-defective mutants, should provide fi translated from the downstream ATG(2) codon and additional insights on the biological role of speci c lacking the plastid-targeting peptide (sG11). Mecha- isoforms and their corresponding downstream GGPP- nistically, the production of these two differentially derived products, further allowing to understand the targeted isoforms might rely on both the use of alter- astounding complexity of the mechanisms used by native transcription start sites (resulting in the synthesis plants to produce isoprenoids. of mRNAs with or without a 59-region encoding the plastid transit peptide) or the use of alternative trans- lation start sites (ATG(1) or ATG(2)) in the long tran- MATERIALS AND METHODS script. The NetStart algorithm for the prediction of translation start codons in Arabidopsis (http://www. Plant Material and Constructs cbs.dtu.dk/services/NetStart/) actually gives a similar All the Arabidopsis (Arabidopsis thaliana) lines used in this work are in the score to ATG(1) (0.627) and ATG(2) codon (0.651), sug- Columbia background. The T-DNA insertion alleles g11-3, g11-4, g11-5, dxs-1, gesting that both could be functional in vivo. It is re- and psy-1 were already available in the lab (Pokhilko et al., 2015; Ruiz-Sola et al., markable that a similar situation has been reported to 2016). Homozygous ggpps1-1 mutants were isolated from a segregating pop- occur in other Arabidopsis genes encoding key iso- ulation of the SAIL_559_G01 line supplied by the European Arabidopsis Stock Centre (http://arabidopsis.info/). Primers for PCR-based genotyping of the prenoid biosynthetic enzymes, including HMGR, IDI, mutants and sequencing of T-DNA insertion sites are indicated in Supplemental and FPPS. Unlike these other enzymes, however, no Table S1. The 35S:sG11-GFP construct was generated by deleting the ATG(1) redundancy appears to occur in the case of Arabidopsis codon of the G11 sequence in the pSG11G plasmid (Ruiz-Sola et al., 2016). As GGPPS enzymes, as the loss of G11 cannot be rescued shown in Supplemental Table S2, the pSG11G plasmid was digested with NcoI (which has a target sequence overlapping the ATG(1) codon; Fig. 4A) and by plastidial GGPPS2, ER-localized GGPPS3 and subsequently treated with Mung Bean nuclease (New England Biolabs) to GGPPS4, or mitochondrial GGPPS1. Furthermore, the remove single-stranded extensions and generate blunt ends that were eventu- Met residue encoded by the ATG(2) codon in G11 does ally ligated using T4 ligase enzyme (Roche). After Agrobacterium-mediated not appear to be conserved in the rest of isoforms plant transformation, homozygous lines containing a single T-DNA insertion of confirmed to synthesize GGPP (Supplemental Fig. S2), the 35S:sG11-GFP construct were selected based on the segregation of the re- sistance marker (hygromycin). Seeds were surface-sterilized and germinated in suggesting that G11 might be the only Arabidopsis petri dishes with solid Murashige and Skoog medium without vitamins or Suc. GGPPS-encoding gene producing more than one isoform. After stratification for 3 d at 4°C, plates were incubated in a growth chamber at 22°C and illuminated for 16 h (long-day) or 8 h (short-day) a day with fluo- Whereas G11 activity in the plastid is indispensable 2 2 for the production of plastidial isoprenoids supporting rescent white light at a photosynthetic photon flux density of 60 mmol m 2 s 1. chloroplast development and photosynthesis, sG11 activity in the cytosol supplies the precursors for an GGPPS Activity Assays unidentified isoprenoid metabolite that is essential for Constructs to express different truncated G11 versions were generated as embryo development. Interestingly, loss of sG11 ac- described (Supplemental Table S2). Recombinant proteins were produced in tivity in g11-3 and g11-4 mutants prevents embryo Escherichia coli BL21 pGROE cells using the Overnight Express AutoInduction development to proceed beyond the heart stage System 1 (Merck Millipore). After growth for 72 h at 18°C, bacterial cells were

1400 Plant Physiol. Vol. 172, 2016 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Dual Targeting and Function of GGPPS11 recovered by centrifugation, and pellets were resuspended in reaction buffer Supplemental Data (25 mM HEPES, pH 7.2, 10 mM MgCl2, 10% v/v glycerol) supplemented with 1 mg/mL lysozyme and one tablet of complete protease inhibitor cocktail The following supplemental materials are available. (Roche) for every 10 mL of buffer. The resuspended pellet was incubated at 4°C Supplemental Figure S1. Arabidopsis G11 gene and mutants. for 10 min, and after a brief sonication (five pulses of 20 s at 30 W), the cell lysate was centrifuged at 19,000g at 4°C for 5 min. The supernatant was used for SDS- Supplemental Figure S2. Sequence alignment of Arabidopsis GGPPS iso- PAGE, protein quantification, and GGPP activity assays as described (Nagel forms. et al., 2015). The reaction mix contained 10 mg of total protein from extracts Supplemental Figure S3. Subcellular localization of G11-GFP and sG11- showing similar levels of recombinant protein in 200 mL of reaction buffer, GFP fusion proteins in transgenic Arabidopsis plants. 50 mM IPP, and 50 mM DMAPP. After incubation for 1 h at 30°C, the reaction was stopped by adding 800 mL of methanol. A previously described LC-FTMS Supplemental Figure S4. In vitro activity of truncated G11 isoforms. system (Henneman et al., 2008) was adapted to detect prenyl diphosphate Supplemental Figure S5. products. A Luna C18(2) precolumn (2.0 3 4 mm) and an analytical column Embryogenesis is blocked at the heart stage in (2.0 3 150 mm, 100 nm, particle size 3 mm) from Phenomenex were used for the g11-3 mutant. chromatographic separation at 40°C, using an Acquity UPLC (H-Class), con- Supplemental Figure S6. Developmental and metabolic phenotypes of the nected to an LTQ-Orbitrap XL hybrid mass spectrometry system (Waters) op- ggpps1-1 mutant. erating in negative electrospray ionization mode heated at 300°C with a source voltage of 4.5 kV for full-scan LC-MS in the m/z range 100 to 1300. The injection Supplemental Table S1. Primers used in this work. m volume was 10 L. Compounds were separated by a linear gradient between Supplemental Table S2. Constructs and cloning details. solution A (20 mM NH4HCO3 with 0.1% triethylamine) and solution B (acetoni- trile/H2O, 4:1 with 0.1% triethylamine). The gradient was as follows: 0 to 18 min, 100% A to 80% A; 18 to 23 min, 80% A to 0% A; 23 to 25 min, 0% A; 25 to 30 min, 0% A to 100% A; equilibration with 100% A. Acquisition and visualization of the ACKNOWLEDGMENTS data were performed using Xcalibur software (Thermo Fischer). GPP, FPP, and We are very grateful to Gaétan Glauser (University of Neuchâtel, Switzerland) GGPP standards were obtained from Sigma and used for quantification. for the analysis of prenylquinones. Technical support from M. Rosa Rodríguez- For in vivo activity assays, E. coli TOP10 cells were cotransformed with both Goberna and members of the CRAG Services is greatly appreciated. pACCRT-BI (Beck et al., 2013) and plasmids harboring the corresponding G11 versions generated as described (Supplemental Table S2). Transformants con- Received September 7, 2016; accepted September 30, 2016; published October 5, taining both plasmids were selected on LB medium containing both ampicillin 2016. (100 mg/mL) and chloramphenicol (25 mg/mL). Positive colonies were selected and grown overnight at 37°C in liquid LB. Fresh liquid LB medium supple- mented with the appropriate antibiotics was then inoculated with the overnight LITERATURE CITED culture and incubated for 7 more days at 30°C. Aliquots of 10 mL of grown culture were harvested and used for lycopene extraction and quantification as ArakiN,KusumiK,MasamotoK,NiwaY,IbaK(2000) Temperature- described (Beck et al., 2013). sensitive Arabidopsis mutant defective in 1-deoxy-D-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid bio- synthesis. Physiol Plant 108: 19–24 Microscopy BeckG,ComanD,HerrenE,Ruiz-SolaMA,Rodríguez-ConcepciónM, Gruissem W, Vranová E (2013) Characterization of the GGPP synthase Subcellular localization of the GFP fusion proteins was analyzed by direct ex- gene family in Arabidopsis thaliana. Plant Mol Biol 82: 393–416 amination of plant tissue samples with an Olympus FV 1000 Confocal Laser Scanning Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and Microscope. Green fluorescence corresponding to the fusion proteins was detected plastidial pathways of isoprenoid biosynthesis: unidirectional trans- using an argon laser for excitation with blue light at 488 nm and a 500 to 510-nm filter, port of intermediates across the chloroplast envelope membrane. Arch whereas a 610 to 700-nm filter was used for detection of chlorophyll autofluorescence. Biochem Biophys 415: 146–154 Clearing of Arabidopsis seeds and examination of embryo developmental stages was Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and performed as described (Ruiz-Sola et al., 2016). function of plant isoprenoids. Prog Lipid Res 44: 357–429 Caelles C, Ferrer A, Balcells L, Hegardt FG, Boronat A (1989) Isolation and 59-RACE structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy- 3-methylglutaryl coenzyme A reductase. Plant Mol Biol 13: 627–638 For 59-RACE analysis, total RNA from different organs of wild-type plants Chen Q, Fan D, Wang G (2015) Heteromeric geranyl(geranyl) diphosphate was isolated using an RNA purification kit (Sigma-Aldrich) and used for first- synthase is involved in monoterpene biosynthesis in Arabidopsis flow- strand cDNA synthesis with the SMARTer RACE cDNA amplification kit ers. Mol Plant 8: 1434–1437 (Clontech). High-Fidelity AccuPrime Taq DNA Polymerase (Invitrogen) was Closa M, Vranová E, Bortolotti C, Bigler L, Arró M, Ferrer A, Gruissem W (2010) used with primers provided in the kit and the G11-R-R1 primer (Supplemental The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific Table S1) for 59-RACE reactions, adding an initial denaturation step of 2 min at functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity 94°C to the recommended PCR program to activate the polymerase, and causes early developmental arrest. Plant J 63: 512–525 changing the elongation temperature from 72°C to 68°C. PCR products were Coman D, Altenhoff A, Zoller S, Gruissem W, Vranová E (2014) Distinct cloned into the cloning vector pCRII-TOPO (Invitrogen) for further restriction evolutionary strategies in the GGPPS family from plants. Front Plant Sci enzyme and sequencing analysis using the G11-R-R2 primer (Supplemental 5: 230 Table S1). Cunillera N, Boronat A, Ferrer A (1997) The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl- diphosphate synthase isoform. J Biol Chem 272: 15381–15388 Analysis of Metabolite Levels Disch A, Hemmerlin A, Bach TJ, Rohmer M (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone Published methods were used for the extraction, separation, and quantifi- prenyl side chain in tobacco BY-2 cells. Biochem J 331: 615–621 cation of photosynthetic pigments (chlorophylls and carotenoids; Rodríguez- Ducluzeau AL, Wamboldt Y, Elowsky CG, Mackenzie SA, Schuurink Concepción et al., 2004), sterols (Closa et al., 2010), and prenylquinones, RC, Basset GJ (2012) Gene network reconstruction identifies the au- including ubiquinone (Martinis et al., 2011). thentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Plant J 69: 366–375 Accession Numbers Enjuto M, Balcells L, Campos N, Caelles C, Arró M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed 3-hydroxy- Accessions are deposited in the TAIR database (www.arabidopsis.org): 3-methylglutaryl-CoA reductase genes, which encode microsomal forms At1g49530, GGPPS1; At4g36810, GGPPS11 (here referred to as G11). See also Figure 1. of the enzyme. Proc Natl Acad Sci USA 91: 927–931

Plant Physiol. Vol. 172, 2016 1401 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. Ruiz-Sola et al.

Henneman L, van Cruchten AG, Denis SW, Amolins MW, Placzek AT, Pokhilko A, Bou-Torrent J, Pulido P, Rodríguez-Concepción M, Ebenhöh Gibbs RA, Kulik W, Waterham HR (2008) Detection of nonsterol iso- O (2015) Mathematical modelling of the diurnal regulation of the MEP prenoids by HPLC-MS/MS. Anal Biochem 383: 18–24 pathway in Arabidopsis. New Phytol 206: 1075–1085 Hsieh FL, Chang TH, Ko TP, Wang AH (2011) Structure and mechanism of Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into an Arabidopsis medium/long-chain-length prenyl pyrophosphate syn- plant isoprenoid metabolism. Mol Plant 5: 964–967 thase. Plant Physiol 155: 1079–1090 Pulido P, Toledo-Ortiz G, Phillips MA, Wright LP, Rodríguez-Concepción M Keim V, Manzano D, Fernández FJ, Closa M, Andrade P, Caudepón D, (2013) Arabidopsis J-protein J20 delivers the first enzyme of the plastidial Bortolotti C, Vega MC, Arró M, Ferrer A (2012) Characterization of Ara- isoprenoid pathway to protein quality control. Plant Cell 25: 4183–4194 bidopsis FPS isozymes and FPS gene expression analysis provide insight into Rodríguez-Concepción M, Boronat A (2015) Breaking new ground in the the biosynthesis of isoprenoid precursors in seeds. PLoS One 7: e49109 regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis Plant Biol 25: 17–22 thaliana: a survey for genes involved in isoprenoid and chlorophyll Rodríguez-Concepción M, Forés O, Martinez-García JF, González V, – metabolism. Plant Mol Biol 51: 925 948 Phillips MA, Ferrer A, Boronat A (2004) Distinct light-mediated path- Lumbreras V, Campos N, Boronat A (1995) The use of an alternative ways regulate the biosynthesis and exchange of isoprenoid precursors promoter in the Arabidopsis thaliana HMG1 gene generates an mRNA during Arabidopsis seedling development. Plant Cell 16: 144–156 that encodes a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase Ruiz-SolaMA,ComanD,BeckG,BarjaMV,ColinasM,GrafA,Welsch – isoform with an extended N-terminal region. Plant J 8: 541 549 R, Rütimann P, Bühlmann P, Bigler L, et al (2016) Arabidopsis GER- Lütke-Brinkhaus F, Liedvogel B, Kleinig H (1984) On the biosynthesis of ANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme re- – ubiquinones in plant mitochondria. Eur J Biochem 141: 537 541 quired for the production of most photosynthesis-related isoprenoids. Manzano D, Busquets A, Closa M, Hoyerová K, Schaller H, Kamínek M, New Phytol 209: 252–264 Arró M, Ferrer A (2006) Overexpression of farnesyl diphosphate syn- Ruppel NJ, Kropp KN, Davis PA, Martin AE, Luesse DR, Hangarter RP thase in Arabidopsis mitochondria triggers light-dependent lesion for- (2013) Mutations in GERANYLGERANYL DIPHOSPHATE SYNTHASE mation and alters cytokinin homeostasis. Plant Mol Biol 61: 195–213 1 affect chloroplast development in Arabidopsis thaliana (Brassicaceae). Martinis J, Kessler F, Glauser G (2011) A novel method for prenylquinone Am J Bot 100: 2074–2084 profiling in plant tissues by ultra-high pressure liquid chromatography- Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni mass spectrometry. Plant Methods 7: 23–34 D, Eyal Y (2008) Peroxisomal localization of Arabidopsis isopentenyl Nagel R, Bernholz C, Vranová E, Košuth J, Bergau N, Ludwig S, Wessjohann diphosphateisomerasessuggeststhatpartoftheplantisoprenoidme- L, Gershenzon J, Tissier A, Schmidt A (2015) Arabidopsis thaliana isoprenyl valonic acid pathway is compartmentalized to peroxisomes. Plant diphosphate synthases produce the C25 intermediate geranylfarnesyl di- Physiol 148: 1219–1228 phosphate. Plant J 84: 847–859 Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Okada K, Kasahara H, Yamaguchi S, Kawaide H, Kamiya Y, Nojiri H, Jürgens G Yamane H (2008) Genetic evidence for the role of isopentenyl diphos- (2000) FACKEL is a sterol C-14 reductase required for or- phate in the mevalonate pathway and plant development in ganized cell division and expansion in Arabidopsis embryogenesis. – Arabidopsis. Plant Cell Physiol 49: 604–616 Genes Dev 14: 1471 1484 Okada K, Ohara K, Yazaki K, Nozaki K, Uchida N, Kawamukai M, Nojiri H, Vallon T, Ghanegaonkar S, Vielhauer O, Müller A, Albermann C, Yamane H (2004) The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl Sprenger G, Reuss M, Lemuth K (2008) Quantitative analysis of iso- diphosphate transferase in ubiquinone biosynthesis is required for embryo prenoid diphosphate intermediates in recombinant and wild-type – development in Arabidopsis thaliana. Plant Mol Biol 55: 567–577 Escherichia coli strains. Appl Microbiol Biotechnol 81: 175 182 Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA geranylgeranyl diphosphate synthases expressed in different organs are and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64: – localized into three subcellular compartments in Arabidopsis. Plant Physiol 665 700 122: 1045–1056 Vranová E, Hirsch-Hoffmann M, Gruissem W (2011) AtIPD: a curated Perelló C, Rodríguez-Concepción M, Pulido P (2014) Quantification of plant re- database of Arabidopsis isoprenoid pathway models and genes for sistance to isoprenoid biosynthesis inhibitors. Methods Mol Biol 1153: 273–283 isoprenoid network analysis. Plant Physiol 156: 1655–1660 Phillips MA, D’Auria JC, Gershenzon J, Pichersky E (2008b) The Arabi- WangC,ChenQ,FanD,LiJ,WangG,ZhangP(2016) Structural analyses dopsis thaliana type I Isopentenyl Diphosphate Isomerases are targeted of short-chain prenyltransferases identify an evolutionarily conserved to multiple subcellular compartments and have overlapping functions in GFPPS clade in Brassicaceae plants. Mol Plant 9: 195–204 isoprenoid biosynthesis. Plant Cell 20: 677–696 Zhu XF, Suzuki K, Saito T, Okada K, Tanaka K, Nakagawa T, Matsuda H, Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008a) The Kawamukai M (1997) Geranylgeranyl pyrophosphate synthase encoded plastidial MEP pathway: unified nomenclature and resources. Trends by the newly isolated gene GGPS6 from Arabidopsis thaliana is local- Plant Sci 13: 619–623 ized in mitochondria. Plant Mol Biol 35: 331–341

1402 Plant Physiol. Vol. 172, 2016 Downloaded from on January 2, 2019 - Published by www.plantphysiol.org Copyright © 2016 American Society of Plant Biologists. All rights reserved. ZƵŝnjͲ^ŽůĂĞƚĂů͘

SUPPLEMENTAL FIGURES

A ŐϭϭͲϱ taaaagtgaa gatcgtcatc tccaccacta acaaggccca ttccgtaaca caaccctatc

tgttacttcc tagcttctca ctaatggcca atccaattct ccattcataa ttttgactcc

actttccaaa aaaaacaaaa aaaaataaat actaatataa aaaattctca aatctaaaat

ttcagatttc agaaatcgcc ATGGCTTCAG TGACTCTAGG TTCATGGATT GTTGTTCACC

ACCACAATCA TCATCATCCA TCTTCAATCC TTACCAAATC CAGATCCAGA TCTTGTCCTA ŐϭϭͲϮ TAACTCTTAC TAAACCCATC TCCTTTCGAT CAAAACGCAC CGTTTCATCA TCTTCTTCAA

TCGTTTCTTC TTCCGTTGTT ACAAAAGAAG ACAATCTACG CCAATCTGAA CCATCCTCTT

TCGATTTCAT GTCGTACATC ATCACCAAAG CCGAATTAGT CAACAAAGCT TTAGATTCAG

CTGTTCCTCT CCGTGAGCCA CTCAAGATCC ACGAAGCGAT GCGTTACTCT CTTCTCGCCG

GTGGCAAAAG AGTTAGACCA GTTCTCTGCA TCGCTGCTTG TGAACTCGTC GGAGGTGAAG

AATCAACCGC TATGCCAGCA GCTTGCGCCG TCGAGATGAT TCACACCATG TCGTTGATCC ŐϭϭͲϭ ACGACGATCT CCCTTGTATG GATAACGACG ATCTCCGCCG TGGAAAACCG ACCAACCACA A AAGTGTTTGG TGAAGACGTC GCTGTTTTAG CCGGAGACGC GCTTCTCTCT TTCGCTTTCG

AGCATTTAGC TTCGGCGACG AGTTCTGATG TTGTTTCTCC GGTGAGAGTG GTTCGAGCCG

TTGGAGAATT GGCTAAAGCG ATAGGAACAG AAGGGTTAGT GGCGGGTCAA GTCGTGGATA

TTAGTAGTGA AGGGTTAGAT TTAAACGACG TCGGTTTAGA GCATTTGGAG TTTATCCATT

TGCATAAAAC GGCGGCGTTG CTTGAAGCTT CTGCTGTTTT GGGAGCTATT GTTGGTGGAG ŐϭϭͲϰ GAAGTGATGA TGAGATTGAG AGGTTAAGAA AGTTTGCGAG ATGTATTGGT TTGTTGTTTC

AGGTGGTTGA TGATATCTTG GATGTGACGA AATCGTCGAA AGAGTTAGGG AAAACTGCTG

GGAAAGATTT GATTGCTGAT AAGTTGACGT ATCCTAAGAT TATGGGTTTG GAGAAATCGA ŐϭϭͲϯ GAGAGTTTGC TGAGAAATTG AATAGAGAGG CTCGTGATCA GCTTTTAGGG TTTGATTCTG

ATAAGGTTGC TCCTTTGTTG GCTTTGGCTA ATTACATTGC CTATAGACAG AACTGAtttg

B ... AAT AGA GAG GCT CGT GAT CAG CTT TTA GGG TTT GAT TCT ... td . N R E A R D Q L L G F D S .

... AAT AGA GAG GCT CGT GAT CAG CTT TTA GGC TCG TGA TCA ... ŐϭϭͲϯ . N R E A R D Q L L G S *

Figure S1. Arabidopsis G11 gene and mutants. (A) The protein coding sequence according to TAIR v10 annotation is shown in uppercase (no introns are found). The first ATG codon (ATG(1)) and the translation stop codon are marked in bold. The sequence encoding the plastid-targeting peptide is boxed in green. A second in-frame ATG codon (ATG(2)) is boxed in white. Transcription start sites identified by 5’-RACE in siliques are marked with triangles whose color represents the percentage of transcripts starting at the indicated position (white: <5%; gray: 5-10%; black: >10%). T-DNA insertions are represented with arrows pointing towards the right border. The point mutation in the g11-1 allele is boxed in gray. (B) Comparison of genomic sequences and encoded proteins in wild-type (WT) and g11-3 plants in the region harboring the T- DNA insertion in the mutant. The blue box marks the T-DNA sequence inserted and the corresponding translation. ͳ  ZƵŝnjͲ^ŽůĂĞƚĂů͘

AT1G49530_G1 ------MRPRYSLILSAMRL------I------AT2G18620_G2 ------MTTLNLSIFPSVKISSSASIPGFIKIQPFL---LRRKLSTV-----LSVT AT2G18640_G3 MEAQNIFLYLLIVFLSLHFVFTTLKGRLSPANTRRLIRLLHIPIKSPVAAAIFARKDTRE AT2G23800_G4 MEPQILFLYLSLFILSLNFFFTNLKPR------LVRLFQPSLESRVKTALLSRKEVAA AT4G36810_G11 MASVTLGSWIVVHHHNHHHPSSILTKSRSRSCPITLTKPISFRSKRTVSSSSSIVSSSVV : :

AT1G49530_G1 ------RPSNRRLSSIASSDSEFISYMKNKAKSINKALDNSIPLCNNFVP AT2G18620_G2 ARDEGII------HNHFDFTSYMIGKANAVNEALDSAVSLRE---- AT2G18640_G3 FLDSSIKLVNEED------DFGFSFDFKPYMISKAETINRALDEAIPLIE---- AT2G23800_G4 FLDSPIVEDEEGEEREEEEEGGIVSNANFTFEFDPYMMSKAESVNKALEEAIPVGE---- AT4G36810_G11 TKEDNLRQ------SEPSSFDFMSYIITKAELVNKALDSAVPLRE---- :* *: **: :*.**:.:: : :

AT1G49530_G1 LWEPVLEVHKAMRYTLLPGGKRVRPMLCLVACELVGGQESTAMPAACAVEMIHAASLILD AT2G18620_G2 ----PIKIHEAIRYSLLARGKRVRPVLCIAACELVGGEESVALPAACAVEMIHTMSLIHD AT2G18640_G3 ----PLNIHKAMRYAILAGGKRVRPILCLAACELVGGEERLAIQAACAVEMIHTMSLIKD AT2G23800_G4 ----PLKIHEAMRYAILAAGKRVRPILCLASCELVGGQENAAMPAACAVEMIHTMSLIKD AT4G36810_G11 ----PLKIHEAMRYSLLAGGKRVRPVLCIAACELVGGEESTAMPAACAVEMIHTMSLIHD :::*:*:**::* ******:**:.:******:* *: *********: *** *

AT1G49530_G1 DLPCMDDDSLRRGKPTNHKVFGEKTSILASNALRSLAVKQTLAST-SLGVTSERVLRAVQ AT2G18620_G2 DLPCMDNDDLRRGKPTNHKVFGEDVAVLAGDALISFAFEHLATS---TAVSPARVVRAIG AT2G18640_G3 DLPCMDNDDLRRGKPTTHKVFGESVAILSGGALLALAFEHLTEA----DVSSKKMVRAVK AT2G23800_G4 DLPCMDNDDLRRGKPTTHKVYGEGVAILSGGALLSLAFEHMTTA----EISSERMVWAVR AT4G36810_G11 DLPCMDNDDLRRGKPTNHKVFGEDVAVLAGDALLSFAFEHLASATSSDVVSPVRVVRAVG ******:*.*******.***:** .::*:. ** ::*.:: : :: ::: *:

AT1G49530_G1 EMARAVGTEGLVAGQAADLAGERMSFKNEDDELRYLELMHVHKTAVLVEAAAVVGAIMGG AT2G18620_G2 ELAKAIGSKGLVAGQVVDLTSGGMDQN--DVGLEVLEFIHVHKTAVLLEAATVLGAIVGG AT2G18640_G3 ELAKSIGTKGLVAGQAKDLSSEGLEQN--DVGLEDLEYIHVHKTGSLLEASAVIGAVIGG AT2G23800_G4 ELARSIGTRGLVAGQAMDISSEGLDLN--EVGLEHLEFIHVHKTAVLLETAAVLGAIIGG AT4G36810_G11 ELAKAIGTEGLVAGQVVDISSEGLDLN--DVGLEHLEFIHLHKTAALLEASAVLGAIVGG *:*:::*:.******. *::. :. : : *. ** :*:***. *:*:::*:**::**

AT1G49530_G1 GSDEEIERLKSYARCVGLMFQVMDDVLDETKSSEELGKTAGKDLITGKLTYPKVMGVDNA AT2G18620_G2 GSDEEVEKLRRFARCIGLLFQVVDDILDVTKSSEELGKTAGKDLIADKLTYPKLMGLEKS AT2G18640_G3 GTEKEIEKVRNFARCIGLLFQVVDDILDETKSSEELGKTAGKDKVAGKLTYPKVIGVEKS AT2G23800_G4 GSDEEIESVRKFARCIGLLFQVVDDILDETKSSEELGKTAGKDQLAGKLTYPKLIGLEKS AT4G36810_G11 GSDDEIERLRKFARCIGLLFQVVDDILDVTKSSKELGKTAGKDLIADKLTYPKIMGLEKS *::.*:* :: :***:**:***:**:** ****:********* :: ******::*::::

AT1G49530_G1 REYAKRLNREAQEHLQGFDSDKVVPLLSLADYIVKRQN* AT2G18620_G2 KDFADKLLSDAHEQLHGFDSSRVKPLLALANYIAKRQN* AT2G18640_G3 KEFVEKLKRDAREHLQGFDSDKVKPLIALTNFIANRNH* AT2G23800_G4 KEFVKRLTKDARQHLQGFSSEKVAPLVALTTFIANRNK* AT4G36810_G11 REFAEKLNREARDQLLGFDSDKVAPLLALANYIAYRQN* :::..:* :*:::* **.*.:* **::*: :*. *:.*

Figure S2. Sequence aligment of Arabidopsis GGPPS isoforms. Multiple aligment was performed using Clustal Omega with the default parameters (http://www.ebi.ac.uk/Tools/msa/clustalo/). Red and blue arrowheads mark the position of the T-DNA in the g11-2 and g11-3 mutants, respectively. The methionine encoded by the ATG(2) codon is boxed in black and the predicted plastid-targeting peptide is boxed in green. The conserved FARM (first aspartate-rich motif) and SARM (second aspartate-rich motif) signatures that form the catalytic cavity for allyl substrate binding, are boxed in orange and yellow, respectively. The fifth residue before the FARM motif, shown to be relevant to determine the chain length of the final product, is also indicated with an orange frame. True GGPPS enzymes (i.e. those producing C20 GGPP) have a M residue in this position, whereas the presence of smaller residues (A or S) involves a preferential production of C25 GFPP (Nagel et al., 2015; Wang et al., 2016).

ʹ  ZƵŝnjͲ^ŽůĂĞƚĂů͘

35S:G11-GFP 35S:sG11-GFP

1h

Cotyledon

3h

Leaf

Stomata

Root

Figure S3. Subcellular localization of G11-GFP and sG11-GFP fusion proteins in transgenic Arabidopsis plants. Representative images from cotyledons of etiolated seedlings after 1 or 3 hours of exposure to light and from leaf epidermal and mesophyll cells, stomata, and roots from 10-day-old seedlings grown under long day conditions are shown. The first column shows green fluorescence from GFP, the second shows red autofluorescence from chlorophyll, and the third shows an overlay. All confocal images were scanned using similar laser gain and offset settings.

͵  ZƵŝnjͲ^ŽůĂĞƚĂů͘

 G11 sG11 G11s C

 100 80 G11 60

40

20

0 100 80 sG11 60

40

20

0 100 80 G11s 60

40 Relative Abundance 20

0 100

80 GPP GGPP Standards (C10) FPP 60 (C15) (C20) 40

20

0 4 6 8 10121416182022 Time (min) Figure S4. In vitro activity of truncated G11 isoforms. (A) SDS-PAGE of protein extracts from Escherichia coli BL21 pGROE cells expressing the indicated proteins (see Figure 2A; G11 and G11s correspond to truncated versions lacking the predicted plastid-targeting peptide). C, empty vector control. Arrows mark the position of the recombinant proteins. (B) LC-MS chromatograms showing the results from in vitro enzyme activity assays using extracts like those shown in (A). IPP and DMAPP were used as substrates. Detection of prenyl diphosphates was performed using m/z 518.254 (GFPP), 449.186 (GGPP), 381.123 (FPP), and 313.061 (GPP). Retention time of available standards is also shown.

Ͷ  ZƵŝnjͲ^ŽůĂĞƚĂů͘

,ĞĂƌƚ dŽƌƉĞĚŽ ŽƚLJůĞĚŽŶ

ŐϭϭͲϯ

Figure S5. Embryogenesis is blocked at the heart stage in the g11-3 mutant. Pictures show representative images of embryos in cleared seeds from heterozygous g11-3 plants. Images in the same column correspond to seeds from the same silique that appeared either green (expected to be either azygous or heterozygous; upper row) or white/brown (expected to correspond to homozygous g11-3 mutants; lower row, boxed in blue). Different columns correspond to siliques at different positions in the inflorescence (i.e. seeds at different stages of development). Embryo developmental stage in the green seed of the silique is indicated on the top. Bars, 50 μm.

ͷ  ZƵŝnjͲ^ŽůĂĞƚĂů͘

A ggpps1-1 B LD, 7 days LD, 10 days

WT ggpps1-1 WT ggpps1-1 TGA ATG

...ATCAACAAAGCACTAGAC... I N K A L D C Carotenoids Chlorophylls Tocopherols Prenylquinones 1.4 1.4 1.4 1.4 WT ggpps1-1g1 1.2 1.2 1.2 1.2

1.0 1.0 1.0 1.0

0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4

Relative metabolite levels 0.2 0.2 0.2 0.2

0.0 0.0 0.0 0.0

Figure S6. Developmental and metabolic phenotypes of the ggpps1-1 mutant. (A) Schematic representation of the GGPPS1 (At1g49530) gene according to TAIR v10 annotation. The protein coding sequence (which lacks introns) is shown as a wider box with a purple section corresponding to the mitochondria-targeting peptide predicted with TargetP. Translation start and stop codons are marked. The site of the T-DNA insertion in the ggpps1-1 (SAIL_559_G01) mutant is also shown. The exact insertion site (shown with the encoded amino acid residues) was determined by sequencing the region after PCR amplification with primers annealing on the T-DNA and the neighbouring genomic region. (B) A segregating population of the SAIL_559_G01 line was analyzed by PCR to identify individuals that were azygous (WT) and homozygous (ggpps1-1) for the T-DNA insertion. Images show representative images of these individuals when grown together under long-day conditions (LD) for 7 and 10 days. Bars, 2 mm. (C) Levels of GGPP-derived isoprenoids in WT and ggpps1-1 seedlings. Values are shown relative to those found in WT plants and correspond to mean and standard error of n=3 independent samples. No statistically significant differences (t- test, p<0.05) were found between WT and ggpps1-1 samples.

͸  ZƵŝnjͲ^ŽůĂĞƚĂů͘

SUPPLEMENTAL TABLES

Table S1. Primers used in this work. Use # Name Sequence (5'-3')

1 G11-P5F AGAAGCTTACAAGTTGTTAAATTCG 2 G11-5F CAGATTTCAGAAATCGCCATGG 3 G11-3R ATTCCCGACAAAAGGAATCG 4 LBb1 GCGTGGACCGCTTGCTGCAACT Genotyping 5 G1-LP-F AAACTGGACCTGACCACAGC and 6 G1-RP-R CCTCTGTCCCAACAGCTCTC cloning 7 SAIL LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 8 G11-B1-F-1 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGTCTTCCGTTGTTACAAAAGAAG 9 G11-B2-R-2 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCAGTTCTGTCTATAGGCAATG 10 G11-B1-F-3 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGTCGTACATCATCACCAAAGC 11 G11-B2-R-4 GGGGACCACTTTGTACAAGAAAGCTGGGTGTCAGGACCCTAAAAGCTGATCACGAGC 5'-RACE 12 G11-R-R1 TGCCACCGGCGAGAAGAGAGTAACGC 13 G11-R-R2 TCTTGAGTGGCTCACGGAGAGGAACAGC

Table S2. Constructs and cloning details. Template Primers Sequence Plasmid Use Construct (1) (2) (3) Cloning method backbone Transgenic NcoI / Mung Bean 35S:sG11-GFP pSG11G - - pCAMBIA1302 plants nuclease / T4 ligase

In vitro pET-G11 pSG11G 8+9 G11169-1116 pET32-GW Gateway GGPPS pET-sG11 pSG11G 9+10 G11 pET32-GW Gateway activity 229-1116

assay pET-G11s pSG11G 8+11 G11169-1050 pET32-GW Gateway Genomic pCR2.1 pCR-G11 2+3 G11 TOPO TA cloning DNA (WT) 1-1116 TOPO In vivo Genomic pCR2.1 GGPPS pCR-sG11 DNA (g11- 3+4 G11 TOPO TA cloning 130-1116 TOPO activity 2) assay Genomic pCR2.1 pCR-G11s DNA (g11- 2+4 G11 TOPO TA cloning 1-1049 TOPO 3)

(1) Plasmid pSG11G reported in Ruiz-Sola et al. (2016) (2) See Table S1. (3) Numbers refer to nucleotide positions in the protein coding sequence (positions 1-3 correspond to

ATG(1), 229-231 to ATG(2), and 1114-1116 to the TGA translation stop codon).

͹  







 

,

  ,,,,

             )%#$&*', , , , ,  ", ,   , ,  ",, " ", ," , ,,+ ,"  ',

,

,  (, ,,  ,, ,, ,,!, ,, , !,,  ,!,,  ,,,,',, , , , , ,,  ,,,       , ,,,  ,    ', ,

,

,























iii 





 8% # 88%%*8&"8 %'$8&8&(&*8"8$!* $!* 8#"%#&8

%*!&%8!8"&$8%"$&7!8#$!* &$!%$%%8

N_% 0+.%_.&_* _ *1!(_+ .%#1!6]+* !, %+*_

_

!*0.!_"+._!/!. $_%*_#.% 1(01.(_ !*+)% /_ RS_  ] ]]O_ @HAIC_ . !(+*O_,%*N_ 8

68'!!!88

!0!.)%*0%+*_+"__/5*0$/!_ 0%2%05_

_ 68%&$&8

+/0_ .+0!*+% /_.!_D@_)!0+(%0!/_,.+ 1 ! _".+)_B@_#!.*5(#!.*5(_ %,$+/,$0!_ RSN_ $!_ !*65)!/_ 0$0_ ,.+ 1 !_ 0$%/_ ,.! 1./+.O_ _ /5*0$/!/_RSO_.!_ )!)!./_+"_0$!_/$+.0] $%*_,.!*5(0.*/"!./!_R]S_")%(5N_]/_.!_!*65)!/_0$0_ 0(56!_0$!_/!-1!*0%(_$! ]0+]0%(_ %0%+*_+"_+*!_+._)+.!_E_)+(! 1(!/_+"_%/+,!*0!*5(_ %,$+/,$0!_R S_0+_ %)!0$5(((5(_ %,$+/,$0!_R S_3%0$_0$!_ +* +)%0*0_.!(!/!_ +"_ ,5.+,$+/,$0!_ R%SN_ ]/_ ,.+ 1 !_ (%*!._ %/+,.!*5(_ %,$+/,$0!/_ +"_ 1,_ 0+_ B@_ RS_0$0_/!.2!_/_,.! 1./+./_"+._)*5_#.+1,/_+"_%/+,.!*+% /_3%0$__3% !_.*#!_+"_ !//!*0%(_%+(+#% (_"1* 0%+*/_%*_1 .5O_ 0!.%_* _. $!N_*65)0% _*(5/%/_+"_ ]_ 0%2%05_*+.)((5_.!-1%.!/_ +),(!4O_(+.%+1/_* _!4,!*/%2!_)!0$+ /_/1 $_/_ . %+ 0%2%05]/! _//5/_+._(%-1% _ $.+)0+#.,$5])//_/,! 0.+)!0.5_R ] SN_!.!_ 3!_ !/ .%!_ _ "/0_ * _ %*!4,!*/%2!_ /,! 0.+,$+0+)!0.% _ ,.+0+ +(_ "+._ !0!.)%*%*#_ 0$!_ '%*!0% _,.)!0!./_+"_]/_%*_,1.%"%! _!*65)!_,.!,.0%+*/O_1/%*#_*_ ,0! _//5_ "+._%_-1*0%"% 0%+*N_!_ !2!(+,! _0$!_)!0$+ _1/%*#_0$!_  4 _AA_ !*65)!O_3$% $_,.+ 1 !/_#!.*5(#!.*5(_ %,$+/,$0!_"+._0$!_/5*0$!/%/_+"_ .+0!*+% /_%*_ 0$!_ $(+.+,(/0N_ 8 68 *8"$%8

$+.0] $%*_ ,.!*5(0.*/"!./!/O_ %/+,.!*5(_ %,$+/,$0!_ /5*0$/!/O_ !*65)0% _  0%2%05O_ '%*!0% _ ,.)!0!./O_ *6$! '_ '%0O_ #!.*5(#!.*5(_ %,$+/,$0!_ /5*0$/!O_ O_ %/+,.!*+% /O_ .+0!*+% /N_ 8 -68 !&$"'&"!8

/+,.!*+% /_R(/+_'*+3*_/_0!.,!*+% /S_.!__3% !(5_ %2!./!_#.+1,_+"_*01.(_ )!0+(%0!/O_* _)*5_+"_0$!)_.!_!//!*0%(_%*_((](%2%*#_+.#*%/)/N_.0% 1(.(5O_

  ,(*0_%/+,.!*+% /_/$+3_*_!*+.)+1/_/0.1 01.(_* _"1* 0%+*(_ %2!./%05N_(*0/_ ,.+ 1 !__)5.% _+"_/,! %(%6! _%/+,.!*+% /_%*2+(2! _%*_0$!%._%*0!. 0%+*_3%0$_ 0$!_!*2%.+*)!*0O_10_(/+__*1)!._+"_!//!*0%(_%/+,.!*+% /_0$0_,.0% %,0!_%*_ ,$+0+/5*0$!/%/_ R $(+.+,$5((/O_ .+0!*+% /O_ 0+ +,$!.+(/O_ ,.!*5(-1%*+*!/SO_ .!/,%.0%+*_ R1%-1%*+*!S_ +._ #.+30$_ .!#1(0%+*_ R 50+'%*%*/O_ .//%*+/0!.+% /O_ #%!.!((%*/O_/ %/% _ % O_/0.%#+( 0+*!/S_TAUN_((_%/+,.!*+% /_ !.%2!_".+)_0$!_E_ 1*%0/_%/+,!*0!*5(_ %,$+/,$0!_R S_* _%0/_ +1(!]+* _%/+)!._ %)!0$5(((5(_ %,$+/,$0!_R S_R%#1.!_ASN_+* !*/0%+*_+"_+*!_+._/!2!.(_ _)+(! 1(!/_ 0+_+*!_ _1*%0_ 0(56! _5_%/+,.!*5(_ %,$+/,$0!_/5*0$/!/_R /SO_(/+_ ((! _ ,.!*5(_ 0.*/"!./!/_ R/SO_ ,.+ 1 !/_ (%*!._ %/+,.!*5(_ %,$+/,$0!/_ +"_ %""!.!*0_ $%*_ (!*#0$_ 0$0_ .!,.!/!*0_ 0$!_ "%./0_ %*0!.)! %0!/_ +"_ *!.(5_ ((_ %/+,.!*+% _#.+1,/N_ _!*65)!/_ *_!_ (//%"%! _/_  ]_+._ ]/_ !,!* %*#_ +*_0$!_/0!.!+ $!)%/0.5_+"_0$!_ +1(!_+* /_"+.)! _%*_0$!_/5*0$!/%6! _,.+ 1 0O_ "+.)%*#_03+_!2+(10%+*.5_ %/0%* 0_#.+1,/_+"_,.+0!%*/_TBOCUN_%0$_/+)!_!4 !,0%+*/_ TD^HUO_)+/0_  ]/_#!*!.0!_%/+,.!*5(_ %,$+/,$0!/_+"_1,_0+_E@O_3$!.!/_ ] /_/5*0$!/%6!_)1 $_(+*#!._)+(! 1(!/N__

)+*#_ 0$!_  ]/O_ /$+.0] $%*_ ,.!*5(0.*/"!./!/_ R]/S_ 0(5/!_ 0$!_ /!-1!*0%(_$! ]0+]0%(_ %0%+*_+"_1,_0+_0$.!!_)+(! 1(!/_+"_ _0+_+*!_)+(! 1(!_ +"_ _,.+ 1 %*#_A@_#!.*5(_ %,$+/,$0!_RSO_AE_".*!/5(_ %,$+/,$0!_ RS_+._B@_#!.*5(#!.*5(_ %,$+/,$0!_RS_TBOCU_R%#1.!_ASN_$%/_!*65)0% _ .! 0%+*_.!-1%.!/_03+_$%#$(5_ +*/!.2! _ +)%*/O_.!"!..! _0+_/_%./0_/,.00!]

% $_ +0%"_R O_4B]DS_* _! +* _/,.00!]% $_ +0%"_R O_4BSO_ 0$0_.!_%*2+(2! _%*_/1/0.0!_%* %*#_TI^ADU_* _ 0(5/%/_1/%*#_ #BK_/_ +" 0+._ TAEUN_ $!_ /!-1!*0%(_  %0%+*_ +"_ _ )+(! 1(!/_ 0+_ 0$!_ %/+,.!*5(_ %,$+/,$0!_ ,.+ 1 0_ .!(!/!/_ _ ,5.+,$+/,$0!_ R%S_ )+(! 1(!_ ,!._ _ 1*%0_  ! N_ $%/_ ,.+ !//_0'!/_,( !_%*_0$!_!(+*#0%+*_,+ '!0_+"_0$!_]O__$5 .+,$+% _ 2%05_ 0$0_ +*0.+(/_0$!_$5 .+ .+*_0%(_(!*#0$_5_0$!_/%6!_+"_0$!_/% !_ $%*_+"_/+)!_ )%*+_ % _.!/% 1!/_(+ 0! _+*_0$!_]0!.)%*(_/% !_+"_0$!_ N_ *_)+/0_ /!/O_ 0$!_"%"0$_)%*+_ % _1,/0.!)_0+_0$%/_)+0%"_%/_0$!_.!/,+*/%(!_+"_0$!_%/+,.!*5(_ ,.+ 1 0_ $%*_ (!*#0$_ TAF^BBUN_ +3!2!.O_ +0$!._ .!/% 1!/_ +1( _ (/+_ ,(5_ _ .+(!_ +*0.+((%*#_0$!_*1)!._+"_ _ +* !*/0%+*/_ 1.%*#_,.+ 1 0_!(+*#0%+*_TCUN_

!/,%0!_ ((_ 0$!_ /01 %!/_ $%#$(%#$0%*#_ 0$!_ .+(!_ +"_ 0$!_ !(+*#0%+*_ ,+ '!0_ +*_ "%*(_ ,.+ 1 0_(!*#0$O_,.! % 0%+*/_.!_ %""% 1(0_* _$%#$(5_/!*/%0%2!_*(50% (_)!0$+ /_ .!_ /0%((_ .!-1%.! _ 0+_ !0!.)%*!_ 0$!_  01(_ ,.+ 1 0_ +"_ 1* $. 0!.%6! _ ]/N_  %+ 0%2!_!*65)0% _//5/_"+((+3! _5_0$!_$5 .+(5/%/_+"_0$!_,.+ 1 0/_.!-1%.!_ /,! %(%6! _!-1%,)!*0_"+._0$!_)!/1.!)!*0/_/1 $_/_. %+]#/_ $.+)0+#.,$5_ R. %+]SO_. %+]$%#$],!."+.)* !_(%-1% _ $.+)0+#.,$5_R. %+] SO_0$%*_

  (5!._ $.+)0+#.,$5_R SO_+._(%-1% _/ %*0%((0%+*_ +1*0%*#_R S_TBB^BHUN_$!/!_ )!0$+ /O_$+3!2!.O_+"0!*_"%(_0+_ +* (1/%2!(5_ !)+*/0.0!_0$!_ $%*_(!*#0$_R%N!N_ % !*0%05S_ +"_ 0$!_ ,.+ 1 0N_ +.!+2!.O_ 0$!5_ .!_ !40.!)!(5_ 0%)!] +*/1)%*#_ 3$!*_ 1/! _ 0+_ ( 1(0!_ 0$!_ !*65)0% _ '%*!0% /_ +"_ 0$!_ 0!/0! _ ]N_ +*. %+ 0%2!_ )!0$+ /_ /! _ +*_ (%-1% _ $.+)0+#.,$5_ +1,(! _ 3%0$_ 0* !)_ )//_ /,! 0.+)!0.5_ R ^ \ S_ $2!_ !!*_ !2!(+,! _ 0+_  1.0!(5_ !0!.)%*!_ %/+,.!*5(_ %,$+/,$0!_)!0+(%0!/_%*__)1 $_)+.!_,.! %/!_* _"/0!._35_TBI^ CAUN_ +3!2!.O_ 0$!5_ .!_ /0%((_ +),(!4_ * _ !4,!*/%2!_ "+._ 0$!_ !*65)0% _ $. 0!.%60%+*_+"_]/_R%N!N_"+._0$!_ ( 1(0%+*_+"_0$!%._+,0%)(_,_+._'%*!0% _ ,.)!0!./_/1 $_/_)4_* _ )SN_

!.!_ 3!_ !/ .%!_ *_ !/5_ * _ %*!4,!*/%2!_ /,! 0.+,$+0+)!0.% _ ,.+0+ +(_ 0+_ !*65)0% ((5_ $. 0!.%6!_,.!2%+1/(5_% !*0%"%! _]/_1/%*#_,1.%"%! _!*65)!_ ,.!,.0%+*/N_$!_ !/ .%! _)!0$+ _%/_*_ ,00%+*_+"_0$!_ +))!. %(_%4 $  4 $4 413,,*+2O_0$0_((+3/_0$!_ !0! 0%+*_+"_0$!_%_.!(!/! _5_ _%+ $!)% (_.! 0%+*N_$!_%_,.+ 1 ! _%*_0$!_.! 0%+*_)%4_%/_ +*2!.0! _%*0+_ 03+_)+(! 1(!/_+"_%*+.#*% _,$+/,$0!_R%S_5_*_%*+.#*% _,5.+,$+/,$0/!N_$!_ %_ 0$!*_ .! 0/_ 3%0$_ 0$!_ /1/0.0!_ B])%*+]F])!. ,0+]G])!0$5(,1.%*!_ .%+*1 (!+/% !_R S_5__,1.%*!_*1 (!+/% !_,$+/,$+.5(/!_RS_,.+ 1 %*#_ .%+/!_ A],$+/,$0!_ * _ B])%*+]F])!. ,0+]G])!0$5(],1.%*!O_ 3$% $_ *_ !_ )!/1.! _0_CF@_*)O_$!* !_((+3%*#_0$!_-1*0%"% 0%+*_+"_0$!_%_.!(!/! _ 1.%*#_ 0$!_!*65)0% _.! 0%+*N_

*_ 0$%/_ .0% (!O_ 0$!_ )!0$+ _ %/_ 1/! _ 0+_ )!/1.!_ 0$!_  0%2%05_ +"_ 0$!_   4 _ AA_ ,.+0!%*_ R0D#CFHA@SO_ _ _ /5*0$/!_ R_ BNENANBIS_ 0$0_ /1,,(%!/__"+._0$!_,.+ 1 0%+*_+"_ .+0!*+% /_* _+0$!._#.+1,/_+"_,(/0% %(_ %/+,.!*+% /_TCBUN_$%/_!*65)!_$/_!!*_3!((_ $. 0!.%6! _%*_,.!2%+1/_/01 %!/_ TBAOCAOCCUO_3$% $_/!.2! _/__.!"!.!* !_0+_2(% 0!_0$!_.!/1(0/_+0%*! _3%0$_0$!_ .!,+.0! _//5N__

_

.68 &$ %8

AN ! 0%+*_1""!._RB@SP_A_ _.%/] O_B@_) _ #(BO_,_GNE_R _ "&8-SN__

BN +(% _.%/_/!N_.%/R$5 .+45)!0$5(S)%*+)!0$*!N_

CN 5 .+#!*_ $(+.% !_R(S_CGJ_

DN +(% _)#*!/%1)_ % $(+.% !_R #(BSN_

EN B])%*+]F])!. ,0+]G])!0$5(,1.%*!_.%+*1 (!+/% !_R SP_A_) _%*_)%((%]_

  30!._R/0+.!_0_]B@_?S_R _ "&8.SN__

FN 1.%*!_*1 (!+/% !_,$+/,$+.5(/!_RSP_A@@_\) _%*_)%((%]_30!._R/0+.!_0_D_

?S_R _ "&8/SN__

GN *+.#*% _,5.+,$+/,$0/!P_C_\) _%*_A_! 0%+*_1""!._R/0+.!_0_D_?S_R _

"&80SN_

HN %_/0* . P_E@@_d _%*_)%((%]_30!._R _ "&81SN_

IN _* _ _R $!(+*_%+/ %!* !/_ * NSP_A_) _%*_)%((%]_30!._R/0+.!_0_]

H@_?S_R _ "&82SN__

A@N ,,!* +."_"!] + '_1!/ _+"_ANE_* _B_) _ , %05N_

AAN 0!.%(!_,+(5/05.!*!_IF_3!((],(0!/_R +/0.[S_3%0$_(+3_!2,+.0%+*_(% _* _

"(0_+00+)N_

ABN ,! 0. 4_ C_)1(0%])+ !_)% .+,(0!_.! !._R +(! 1(._!2% !/SN_

ACN .,$ _.%/)_+"03.!_

_ /68 &"%88

/6-68&!$8 8&(&*8%%*8

((_B@@_d _!*65)!_.! 0%+*/_/$+1( _!_ ..%! _+10_%*_IF]3!((_,(0!/_R%#1.!_BSN_

$!_ !),05_ 3!((/_ *_ !_ .!1/! _ "+._ /1/!-1!*0_ !4,!.%)!*0/N_ (35/_ ,!."+.)_

0$.!!_ 0! $*% (_ .!,(% 0!/_ ,!._ +* %0%+*_ * _ 0_ (!/0_ 03+_ %* !,!* !*0_

!4,!.%)!*0/N_

AN .!,.!_0$!_.! 0%+*_)%401.!_R(!_AS_5_ %*#_A@_d _+"_B@4_.! 0%+*_1""!._

R _ "&83SO_D@_d _+"_A_) _ _/1/0.0!O_B_d _+"_A@@_\) __* _B_d _

+"_0$!_C_\) _%*+.#*% _,5.+,$+/,$0/!_R _ "&84SN_ _!*+1#$_30!._0+_

.! $__"%*(_0+0(_2+(1)!_+"_B@@_d _)%*1/_0$!_2+(1)!/_+"_0$!_!*65)!O_ _* _

 _0$0_3%((_!_ ! _(0!._R(!_ASN_

BN  _ E_ d#_ +"_ 0$!_ ,1.%"%! _ !*65)!_ R _ "&8 58 * 8 "&8 -,S_ 0+_ 0$!_ .! 0%+*_

)%401.!_* _)%4_3!((_5_1,_* _ +3*_,%,!00%*#N_

CN .!]%* 10!_0_.++)_0!),!.01.!_"+._A@_)%*_R _ "&8--SN_

DN  _ 0$!_ !*65)!_ /1/0.0!/_ _ * _  _ /_ /$+3*_ %*_ (!_ A_ "+.__

   /0* . _.! 0%+*_R _ "&8-.S_* _)%4_3!((_5_1,_* _ +3*_,%,!00%*#N_ 0_%/_

2!.5_%),+.0*0_0+_(35/_,!."+.)__ +*0.+(_//5_%*_,.((!(_%*_3$% $_/+(2!*0_

1""!._ 3%((_ !_  ! _ %*/0! _ +"_ 0$!_ !4,!.%)!*0(_ /1/0.0!/_ R3 !  4

 O_/!!_ "&8-/O_%#1.!_BSN_

EN ))! %0!(5_%*0.+ 1 !_0$!_,(0!_%*_0$!_/,! 0.+,$+0+)!0!.O_/$'!_%0_* _/0.0_

)!/1.%*#_0$!_/+.* !_0_CF@_*)_/__"1* 0%+*_+"_0%)!_ 1.%*#_A_$_0_BE?N_

! %*#_0$!_/+.* !_!2!.5_B_)%*_/$+1( _!_!*+1#$_0+_1%( _0$!_ 0%2%05_

1.2!_R _ "&8-0SN_

FN $!*_*(56%*#_0$!_ 0O_.!)!)!._/10. 0%*#_0$!_3 !  4 _2(1!/_

".+)_0$!_ +..!/,+* %*#_!4,!.%)!*0(_/),(!/_R _ "&8-1SN_

GN ( 1(0!_0$!_!*65)!_ 0%2%05_+0%*! _"+._! $_ +* %0%+*_/_0$!_%* .!/!_+"_

%_,.+ 1 0%+*_,!._)%*10!_* _d#_+"_!*65)!_Rd _%_)%*]A_d#]AS_R/!!_ "&8

-2SN_ /!_ 0$!)_ 0+_ 1%( _ _ ,_ 1.2!_ R _ "&8 -3S_ +._ 0+_ +0%*_ 0$!_ '%*!0% _

,.)!0!./_+"_0$!_!*65)!_R)4_* _ )S_".+)_0$!_ % $!(%/] !*0!*_ 1.2!_

1/%*#_0$!_.,$ _.%/)_/+"03.!_R _ "&8-4SN_

_

 8-6_!#!*0/_* _2+(1)!/_0+_,.!,.!__/0* . _B@@_d _/%*#(!__!*65)!_.! 0%+*_

!&8 &"8"!!&$&"!8 %%*8"!!&$&"!8 " 688 .,8&"!8'$_A_ _.%/] _ E@_) _.%/] _ A@_d _

B@_) _ #(B_ A_) _ #(B_ ,_GNE_ ,_GNE_ _ A_) _ @NB_) _ D@_d _ _ A@@_\) _ A_\) _ B_d _ !"$!8 C_\) _ @N@C_\) _ B_d _ #*$"#"%#&%_  _ A_) _ I@_d _ AH_d _   _ A_) _ C@_d _ I_d _ !+* __ _ C]E_d#_ &$_ _ _ ,_0+_B@@_d _ +(1)!_+"_! 0%+*_1""!._1/! _ !,!* /_+*_0$!_/0+ '_/+(10%+*_ +* !*0.0%+*_R _ "&83S_ +(1)!_+"_ _* _ _3%((_ $*#!_3$!*_,!."+.)%*#_0$!_//5/_"+._0$!_ !0!.)%*0%+*_+"_0$!_'%*!0% _,.)!0!./_ R _ "&8-.S_ +(1)!_+"_!*65)!_3%((_ !,!* _+*_0$!_ +* !*0.0%+*_+"_0$!_,1.%"%! _!*65)!__ _ _

_

   /6.68&!$8'$(8"$8 8'!&&"!8

$!_(%*!._.*#!_"+._0$!_-1*0%"% 0%+*_+"_%_1/%*#_0$!_*6$!'_ %0_%/_".+)_A_d _

0+_GE_d N_

AN_+((+3_0$!_/0* . _.! 0%+*_R(!_AS_ %*#_%* .!/%*#_)+1*0/_+"_0$!_E@@_ d _ %_ /0* . _ /+(10%+*_ R _ "&8 -5S_ * _ +)%00%*#_ 0$!_ 2+(1)!/_ +"_ 0$!_

/1/0.0!/_R _* _ S_* _0$!_!4,!.%)!*0(_!*65)!N_

BN_.!,.!__3 4 _3%0$+10_%_R@_d _,+%*0O_ _ "&8-5SN_(/+O_%* (1 !__

3$   4  _ /_ _ (*'_ 3%0$_ *+_ %_ * _ *+_ %*+.#*% _

,5.+,$/,$0/!_R _ "&8--SN__

CN_"0!._)%4%*#_((_0$!_.!#!*0/O_%* 10!_0$!_,(0!_0_BE_?_"+._F@_)%*_R _ "&8

.,SN_

DN_ !/1.!_0$!_/+.* !_0_CF@_*)N_

EN_ 10. 0_ 0$!_ 3$   4  _ /+.* !_ 2(1!_ ".+)_ ! $_

!4,!.%)!*0(_.! 0%+*_* _1%( _0$!_%_/0* . _ 1.2!_,(+00%*#_0$!_/+.* !_

0_CF@_*)_/__"1* 0%+*_+"_%_ +* !*0.0%+*N_

_

068 "&%8

AN $!_ B@_ ! 0%+*_ 1""!._ ,.+2% ! _ %*_ 0$!_ %_ %0_ +*0%*/_ B_ ) _ +"_ /+ %1)_ 6% !O_ 0$0_  0/_ /_ _ ,.!/!.20%2!N_ $!_ %0_ ((+3/_ 0+_ ,!."+.)_ 0$!_  0%2%05_//5_+2!.__,_.*#!_+"_FNE_0+_HNEO_10_%*_0$%/_ /!_0$!_1""!._)1/0_!_ ,.!,.! _3%0$_0$!_,_+"_%*0!.!/0_R$!.!O_/+ %1)_6% !_ *_!_+)%00! SN_+_ #!*!.0!__,_ 1.2!O_3!_.! +))!* _0+_,.!,.!__B@4_/0+ '_+"_! 0%+*_1""!._ 0_,_INEN_$!*O_ %/0.%10!_%0_%*_E_)(_(%-1+0/_R/_)*5_/_,_2(1!/_0+_!_ 0!/0! SN_ &1/0_0$!_,_+"_!2!.5_(%-1+0_0+_0$!_ !/%.! _2(1!_3%0$_CGJ_(_ * _ 0$!*_  _ )%((%]_ 30!._ 1,_ 0+_ A@_ ) _ 0+_ #!0_ A@_ (%-1+0/_ +"_ ! $_ ,N_ !)!)!._0$0_0$!_2+(1)!_+"_0$!/!_A@_(%-1+0/_ ! _,!._ 0%2%05_.! 0%+*_ )1/0_!_ +1(! _R/_0$!_.! %,!_%*_(!_A_ +*0%*/__B@_! 0%+*_1""!.SN__ BN $!_ %0_%* (1 !/_FNC_)#_RB@_d)+(!/S_+"_ N_ _B@_) _+"_)%((%]_30!._ %.! 0(5_0+_0$!_ +*0%*!._0+_,.!,.!__A_) _/0+ 'N_ ))! %0!(5O_(%-1+0_0$!_ $+)+#!*%6! _ _ /+(10%+*_ * _ /0+.!_ 0$!_ (%-1+0/_ 0_ ]B@_ ?N_ /_ ! $_ %* %2% 1(_ .! 0%+*_ .!-1%.!/_ D@_ d _ +"_ _ /1/0.0!O_ * _ *+.)((5_ 0.%,(% 0!/_3%((_!_,!."+.)! _,!._ +* %0%+*O_3!_.! +))!* _0+_,.!,.!_+0$_

   B@@_ d _ * _ E@@_ d _ (%-1+0/N_ ))! %0!(5_ !"+.!_ 1/!O_ 0$3_ 0$!_ .!-1%.! _ (%-1+0_+"_ _0_CG_?_R*+_)+.!_0$*_E_)%*SO_2+.0!4_/0.+*#(5_* _,( !_+*_ % !N_ "_)+.!_0$*_+*!_(%-1+0_%/_*!! ! O_3!_.! +))!* _0+_)%4_((_+"_0$!)_ 0+#!0$!._ * _ 1/!_ 0$!_ /)!_ /+(10%+*_ "+._ ((_ .! 0%+*/N_ /_ !/ .%! _ %*_ 0$!_ )*1" 01.!.W/_%*/0.1 0%+*/O_ _/+(10%+*_%/_/0(!_+*_% !_0_(!/0_"+._D$_0_ ,_GNEN_!_3.!_0$0_0$!_$("](%"!_+"_0$%/_/1/0.0!_)5_ $*#!_%*_ %""!.!*0_ +* %0%+*/N_ 0_%/_*+0_.! +))!* ! _0+_".!!6!_* _.!1/!_ _(!"0+2!./N_ CN $!_ %0_,.+2% !/_03+_2%(/_+"_E@__+"_".!!6!] .%! _N_+_,.!,.!__A@@_ \) _/0+ '_/+(10%+*_ _@NE_) _+"_)%((%]_30!._0+_+*!_+"_0$!_2%(/N_$%/_ /+(10%+*_ *_!_/0+.! _0_D_?_"+._0_(!/0_+*!_)+*0$N_$!_*+*].! +*/0%010! _ _2%(_)5_!_/0+.! _0_]B@_?N_ DN $!_ %0_ +*0%*/_+*!_2%(_+"_F__+"_(5+,$%(%6! _%*+.#*% _,5.+,$+/,$0/!N_  _B@@_d _+"_)%((%]_30!._0+_0$!_2%(_0+_,.!,.!__/0+ '_+"_C@_\) _* _ /0+.!_%0_0_D_?N_!"+.!_,!."+.)%*#_0$!_ 0%2%05_//5O_,.!,.!__C_\) _(%-1+0_ 5_ %(10%*#_A@]"+( _0$!_C@_\) _/0+ '_%*0+_A_! 0%+*_1""!._R,.!2%+1/(5_ %(10! _ ".+)_ B@_ ! 0%+*_ 1""!.SN_ !2!._ %(10!_ 0$!_ %*+.#*% _ ,5.+,$+/,$0/!_%*0+_B@_.! 0%+*_1""!.N_ !"0+2!._C_\) _/+(10%+*_ *_!_ /0+.! _0_D?_"+._+*!_3!!'N__

EN $!_ %0_,.+2% !/_E@@_d _+"_E@_) _DBG_R3%0$_B_) _/+ %1)_6% !S_/__ /+1. !_+"_%N_.!,.!__E@@_d _3+.'%*#_/+(10%+*_+"_%_/0* . _5_ %(10%*#_ A@@]"+( __,+.0%+*_+"_0$!_#%2!*_/0+ '_%*_)%((%]_30!.N_.!,.%*#_E@@_d _+"_ 3+.'%*#_/+(10%+*_/$+1( _!_!*+1#$_"+.__.!#1(._/0* . _ 1.2!_R/!!_ "&8 -5SN_ FN _ * _  _ .!_ ,.+2% ! _ 5_  $!(+*_ %+/ %!* !/_ * N_ /_ .%/] ))+*%1)_/(0/N_.!,.!_D_) _/0+ '_/+(10%+*/_%*_)%((%]_30!.O_ %/,!*/!_%*_ E@_d _(%-1+0/_* _/0+.!_0_]H@_?N_.%+._0+_1/!O_ %(10!_*_(%-1+0_+"_0$!/!_ /1/0.0!/_ %*_ 30!._ 0+_ ,.!,.!_ A_ ) _ 3+.'%*#_ /+(10%+*/N_ !"0+2!._ A) _ /+(10%+*/_ *_!_".+6!*_#%*_* _/0+.! _0_]H@_?N_ GN $%/_2+(1)!_ *_ $*#!_3$!*_0!/0%*#_ %""!.!*0_,_.! 0%+*_1""!./N_ "_A@_ 1""!./_.!_1/! _%*/0! _+"_B@O_B@_d _/$+1( _!_ ! N_ HN !,!* %*#_+*_0$!_*1)!._+"_.! 0%+*/O__)%4_+"_0$!_"%./0_"+1._.!#!*0/_ *_!_ ,.!,.! N_ IN $!_ )+1*0_ +"_ ,1.%"%! _ !*65)!_  ! _ 0+_ 0$!_ .! 0%+*_ )%401.!_ /$+1( _ !_ !0!.)%*! _!),%.% ((5N_ 0_%/_%),+.0*0_0$0_0$!_.!(!/!_+"_%_5_0$!_!*65)!_ 0!/0! _ +!/_*+0_/1.,//_0$!_ 0%2%05_+"_0$!_%*+.#*% _,5.+,$+,$0/!N_ *_+1._ /!O_C_d#_+"_0$!_  _AA_!*65)!_(/+_3+.'! _3!((_%*_0$!_//5/N_ A@N   _AA_3/_,1.%"%! _1/%*#_0$!_,]AA_ +*/0.1 0_TCAUO_3$% $_

   $.+./__2!./%+*_+"_0$!_!*65)!_( '%*#_0$!_,(/0% _0.#!0%*#_,!,0% !_* _ "1/! _ 0+_ *_ ]0!.)%*(_ F4]$%/0% %*!_ 0#N_ $!_ .! +)%**0_ ,.+0!%*_ 3/_ ,.+ 1 ! _ %*_ 0$!_ 04 _ +//!00_ B_ RS_ /0.%*_ R+2#!*O_ !. '_ O_ .)/0 0O_ !.)*5SN_ $!_ !((/_ 3!.!_ #.+3*_ 0_ CG?_ %*_ A@@_ ) _ +"_ B4_ )! %1)_ /1,,(!)!*0! _ 3%0$_ 0$!_ +..!/,+* %*#_ *0%%+0% /N_ $!*_ 0$!5_

.! $! _*_F@@_+"_@NE]@NHO_A_) _ _3/_ ! N_"0!._0$!_%* 1 0%+*O_0$!_ 1(01.!_ 3/_ %* 10! _ +2!._ *%#$0_ 0_ AH_ ?_ * _  0!.%(_ !((/_ 3!.!_ 0$!*_ .! +2!.! _5_ !*0.%"1#0%+*N_$!_,!((!0_3/_.!/1/,!* ! _%*_A@_) _+"_1""!._ _RA@@_) _.%/](_,GNEO_A@@_) _(O_A@J_#(% !.+(S_/1,,(!)!*0! _3%0$_ A_) _O_A_)#\) _(5/+65)!_* _+*!_0(!0_+"_ +),(!0!_,.+0!/!_%*$%%0+._ + '0%(_R+ $!SO_* _%* 10! _%*_% !_"+._B@_)%*N_"0!.__.%!"_/+*% 0%+*_R"%2!_ ,1(/!/_+"_C@_/O_AGJSO_0$!_ !((_(5/0!_3/_ !*0.%"1#! _0_ABOE@@_.,)_0_DM_"+._ B@_)%*N_$!*_B_d#\)(_/!_ _* _A@_d#\)(_/!__3!.!_ ! _ %.! 0(5_0+_ 0$!_01!_* _#!*0(5_)%4! N_$!_)%401.!_3/_%* 10! _B@_)%*_%*_% !_* _0$!*_ !*0.%"1#! _ #%*_ 0_ AGOE@@_ .,)_ 0_ D_ ?_ "+._ E@_ )%*N_ $!_ /1,!.*0*0_ 3/_ "%(0!.! _ 1/%*#_ _ @NB_ d)_ "%(0!._ * _ %* 10! _ "+._ B_ $_ 3%0$_ B_ ) _ +"_ *% '!(] *%0.%(+0.% !0% _ % _R%]S_! /_R%#!*S_,.!2%+1/(5_!-1%(%.0! _3%0$_ 3/$%*#_ 1""!._ R1""!._ _ K_ B@_ ) _ %)% 6+(!SN_ "0!._ 0$!_ %* 10%+*O_ 0$!_ )%401.!_3/_,( ! _%*0+__"%(0!._ +(1)*_3$!.!_0$!_"(+30$.+1#$_%/_ %/ . ! _ * _0$!_%]_! /_.!_/0 '! _3%0$_0$!_.! +)%**0_,.+0!%*_00 $! N_ +_.!)+2!_0$!_1*/,! %"% _,.+0!%*/_.!0%*! _%*_0$!_ +(1)*_"%2!_3/$!/_+"_A_ ) _+"_3/$%*#_1""!._3!.!_,!."+.)! O_* _"%*((5_0$!_,.+0!%*_3/_.! +2!.! _ %*_+*!_01!_5_"%2!_!(10%+*/_3%0$_AE@_d _+"_!(10%+*_1""!._R1""!.__K_AE@_) _ %)% 6+(!SN_$!_!(10! _/),(!_3/_ !/(0! _5_$!.)+_ %!*0%"%  _! _ !/(0%*#_ +(1)*/_ 1/%*#_ 1""!._ _ /_ !4 $*#!_ 1""!._ * _ 0$!_ ,1.%"%! _ ,.+0!%*_3/_-1*0%"%! O_(%-1+0! _3%0$_#(5 !.+(_D@J_* _"%*((5_/0+.! _0_]B@_ ?N__ AAN !#!*0/_ * _ !*65)!/_ )5_ !_ +*0)%*0! _ 3%0$_ %_ 3$% $_ 3%((_ %*0!."!.!_ 3%0$_0$!_)!/1.!)!*0/N_$!_.!#!*0/_/$+1( _!_0!/0! _%*__/0* . _.! 0%+*_ R(!_AS_3%0$_*+_%*+.#*% _,5.+,$+/,$0/!_R3$   4 SN_ "_ ,.!/!*0O_ +*0)%*0%*#_%_/$+1( _!_/10. 0! _+10_".+)_0$!_!4,!.%)!*0(_ .! 0%+*_)!/1.!)!*0/N_ *_ %0%+*_0+_0$!_.!#!*0/O_0$!_,1.%"%! _!*65)!_)5_ (/+_/$+3_%_ +*0)%*0%+*_0$0_ +1( _,.!2!*0_0$!_+0%*)!*0_+"_ +* (1/%2!_ 0N_ +_ .! 1 !_ 0$!_ +*0)%*0%*#_ %O_ 0$!_ !*65)!_ /),(!_ *_ !_ ,.!] %* 10! _ "+._ A@_ )%*_ !"+.!_ 0$!_  %0%+*_ +"_ 0$!_ /1/0.0!/_ R!N#N_ _ * _  SN_ *_0$%/_,.!]%* 10%+*_/0!,O_0$!_.! 0%+*_ 0(5/! _5_0$!__ *_  0_/__X%_)+,Y_(+3!.%*#_0$!_ +*0)%*0%*#_%_0+_/1)% .+)+(._(!2!(/N_ 0_

   %/_ .! +))!* ! _ 0+_ (35/_ ..5_ +10_ 0$%/_ /0!,_ 0+_ 2+% _ *5_ ,+//%(!_ %_ %*0!."!.!* !N__ ABN $!_ +* !*0.0%+*_+"_ _* _ _3/_!),%.% ((5_ ( 1(0! _0+_+/!.2!_ *_%* .!/!_+"_!*65)0% _ 0%2%05_0$.+1#$+10_0$!_0%)!_1/%*#_C_d#_+"_!*65)!N_ !_ _C]"+( _)+.!_ _0$*_ _/%* !_!2!.5__)+(! 1(!/_%/_"+.)! _ ".+)_ C_ )+(! 1(!/_ +"_ _ * _ +*(5_ +*!_ +"_  N_ $!_ +* !*0.0%+*_ * _ ,.+,+.0%+*_+"_0$!_/1/0.0!/_)5_!_ !0!.)%*! _!),%.% ((5_"+._+0$!._]/N_ +._0$!_#!*!.0%+*_+"_#8'$(%_3!_1/! _0$!_)+1*0_+"_/1/0.0!/_/,! %"%! _ %*_(!_AN_ +._ !&8 #$ &$%8 &$ !&"!8 %%*%O_ 0$!_ +* !*0.0%+*_ +"_ 0$!_ /1/0.0!/_3%((_ $*#!_* _/+_3%((_0$!%._.!-1%.! _2+(1)!/N_!_ ( 1(0! _0$!_ /% _ '%*!0% _ ,.)!0!./_ R)4_ * _ )S_ "+._ ! $_ /1/0.0!_ /!,.0! (5O_ !/%#*%*#_0$!_,(0!_0+_0!/0_ %""!.!*0_ +* !*0.0%+*/_+"_+*!_+"_0$!_/1/0.0!/_ "%4%*#_0$!_+0$!._+*!_%*_A@@_d _R%#1.!_BSN_$!_.*#!_+"_ +* !*0.0%+*/_1/! _ 0+_ ( 1(0!_0$!_'%*!0% /_+"_0$!_!*65)!_"+._! $_/1/0.0!_3/P_EO_A@O_B@O_E@O_GEO_ A@@_* _B@@_d N_ ACN $!_ 3 !  4  _ )1/0_ !_ +*!_ 3$!*!2!._ _ .!#!*0_ +"_ 0$!_ 4  _ $*#!N_+._!4),(!O_3$!*_0!/0%*#_0$!_ 0%2%05_+"_0$!_!4,!.%)!*0(_ !*65)!_%*_0$!_,.!/!* !_+"_ %""!.!*0_,_)! %O__3 !  4 _)1/0_!_ %* (1 ! _"+._! $_,_R +(1)*_D_+"_0$!_%#1.!_BO_(%#$0_#.!5SN_+3!2!.O_"+._ '%*!0% _ ,.)!0!./_ !0!.)%*0%+*_ //5/O_ +*(5_ +*!_ 3 !  4  _ %/_ *!! ! _ R3!((_ D_ +"_ 0$!_ %#1.!_ BS_ /%* !_ +*(5_ 0$!_ 2+(1)!_ +"_ 0$!_ /1/0.0!/_ $*#!/N__ ADN $!_//5_)5_.!-1%.!_0+_/!0_1,_0$!_)!/1.%*#_0%)!_,+%*0/_0+_/0(%/$_0$!_ (%*!.%05_.!#%+*_+"_%_,.+ 1 0%+*_" ! _0%)!N_ AEN $!_3 !  4 _/+.* !_2(1!_/$+1( _*+0_%* .!/!_ 1.%*#_0$!_+*!] $+1._ //5O_ /_ *_ %* % 0%+*_ 0$0_ 0$!.!_ %/_ *+0_ 0++_ )1 $_ %_ +._ %_ +*0)%*0%+*_ 0$0_ +1( _ !_ 0.*/"+.)! _ "0!._ 0$!_ A@_ )%*_ X%])+,Y_ ,.!] %* 10%+*N_$!*_0$!_/+.* !_+"_0$!_3 !  4 _%/_/0(!O_0$!_)!*_ +"_0$!_2(1!/_+0%*! _%*_! $_0%)!_,+%*0_ *_!_ ( 1(0! _* _/10. 0! _ ".+)_0$!_2(1!/_+"_0$!_!4,!.%)!*0(_.! 0%+*/N_ AFN /!_0$!_(%*!._!-10%+*_".+)__%_/0* . _ 1.2!_R _&"!8/6.S_0+_-1*0%"5_ 0$!_%_,.+ 1 ! _%*_! $_0%)!_,+%*0_* O_"0!._,(+00%*#_%0O_/!(! 0_0$!_(%*!._ .*#!_+"_%_,.+ 1 0%+*_0+_ ( 1(0!_0+_ ( 1(0!_0$!_!*65)!_ 0%2%05_Rd _%_ )%*]A_d#]AS_"+._! $_ +* %0%+*N_ AGN +_1%( _0$!_,_ 1.2!_.!,.!/!*0_0$!_!*65)!_ 0%2%0%!/_" ! _0$!_,N_!(0%2!_ 2(1!/_ *_!_ ( 1(0! _"0!._#%2%*#__A@@J_0+_0$!_+,0%)(_,!."+.)* !N__

  AHN 0$!._ /+"03.!/_ )5_ !_ 1/! _ 0+_ 1%( _ 0$!_ % $!(%/] !*0!*_ 1.2!_ * _ ( 1(0!_0$!_!*65)!_'%*!0% /N_/%*#_.%/)O_3!_ .!0! _*__0(!_/!(! 0%*#_ X*65)!_ '%*!0% /_ ^_ % $!(%/] !*0!*Y_ /_ /),(!_ 0_ * _  ! _ 0$!_ 0.%,(% 0!/_+"_0$!_!*65)!_ 0%2%0%!/_+0%*! _"+._! $_/1/0.0!_ +* !*0.0%+*N_ +_+0%*_0$!_.!#.!//%+*_ 1.2!_* _0$!_'%*!0% _,.)!0!./_".+)_0$!_#!*!.0! _ #.,$_3!_,!."+.)! __X+*(%*!._.!#.!//%+*Y_*(5/%/_/!(! 0%*#_X*65)!_ %*!0% /_ ^_ 1/0.0!_ 2/_ !(+ %05Y_ * _ X % $!(%/] !*0!*_ !-10%+*YN_ /_ _ .!/1(0_+"_0$!_*(5/%/O_0$!_.!#.!//%+*_ 1.2!_%/_/1,!.%),+/! _+*_0$!_#.,$_* _ _ 0(!_ 3%0$_ 0$!_ 2(1!/_ +"_ )4_ * _ )_ 0+#!0$!._ 3%0$_ 0$!_ /00%/0% (_ ,.)!0!./_%/_.!0.%!2! N__ AIN _/0* . _ 1.2!_3%0$_I_ %""!.!*0_%_ +* !*0.0%+*/_R@O_EO_A@O_B@O_C@O_D@O_E@O_ F@O_GE_d S_%/_!*+1#$_0+_+0%*_0$!_(%*!._.!#.!//%+*_!-10%+*_3%0$__/-1.!_ +"_ 0$!_ !./+*_ +..!(0%+*_ +!""% %!*0_ RBS_ L_ @NIIN_ .!,.!_ 0_ (!/0_ 0$.!!_ .!,(% 0!/_,!._%_ +* !*0.0%+*_0+_1%( _0$!_/0* . _ 1.2!N_ B@N $!_)*1" 01.!.W/_%*/0.1 0%+*/_%* % 0!_*_%* 10%+*_+"_C@]F@_)%*O_!*+1#$_ 0%)!_ 0+_ 0.*/"+.)_ ((_ 0$!_ %_ %*_ 0$!_ .! 0%+*_ )%401.!_ %*0+_ B])%*+]F] )!. ,0+]G])!0$5(,1.%*!N_!_%* 10! _0$!_ 4!"_F@_)%*_ &1/0%*#_ 0$!_0%)!_0+_0$!_ 4  _"+.__ 0%2%05_)!/1.!)!*0N_.+1* _ *_$+1._%/_*!! ! _0+_RAS_/5*0$!/%6!_0$!__* _.!(!/!_0$!_%_)+(! 1(!/_ * _0$!*_0+_RBS_ +*/1)!_0$!_%_5_0$!_'%0_!*65)!/N_ _

168$!%8

AN + .:#1!6]+* !, %<*O_ NQ_+.+*0O_N_.!'%*#_*!3_#.+1* _%*_0$!_.!#1(0%+*_+"_0$!_ !.(5_ /0!,/_ +"_ ,(*0_ %/+,.!*+% _ %+/5*0$!/%/N_ !04 04  4 0_ .,-1O_ (+O_ AG^BBO_ +%PA@NA@AF\&N,%NB@AEN@DN@@AN_ BN__ %*#O_ N_ NQ_ +O_ N_ NQ_ *#O_ N_ N_ N_ 0.1 01.!O_ )! $*%/)_ * _ "1* 0%+*_ +"_ ,.!*5(0.*/"!./!/N_ !04 04 0_ .,,.O_ (,/O_ CCCI^CCEDO_ +%PA@NA@DF\&NADCB] A@CCNB@@BN@C@ADN4N_ CN__* !.)+0!*O_ NQ_ 1.1#!O_ NQ_ 1//+*O_ N_ !3_ %*/%#$0/_ %*0+_/$+.0] $%*_ ,.!*5(0.*/"!./!/P_0.1 01.(_"!01.!/O_!2+(10%+*.5_$%/0+.5_* _,+0!*0%(_"+._/!(! 0%2!_ %*$%%0%+*N_04044 0_.,,5O_,,O_CFHE^CFIEO_ +%PA@NA@@G\/@@@AH]@@I]@A@@]IN_ DN__)+O_NQ_+%'!O_ NQ_ 1.+'3O_NQ_ +5)O_N_(+*%*#_* _"1* 0%+*(_*(5/%/_+"_*+2!(_ /$+.0] $%*_ %/],.!*5(0.*/"!./!/N_ 04 $ 04  04 !0_ .,,4O_ )-+O_ ECF^ED@O_ +%PA@NA@AF\&N. NB@@HN@HN@EGN_ EN__((1 O_ NQ_ +*0!%*O_ NQ_ *%((+*O_ NQ_ !/O_ NQ_ 1""!O_ NQ_ % (+*!O_ NQ_ $+.2(O_ NQ_ / +""%!.O_NQ_!.!00!O_NQ_ !+*$. 0O_NQ_1//!O_ NQ_%//%!.O_N__+2!(_0$35_"+._ !/-1%0!.,!*!_ %+/5*0$!/%/_ ".+)_ O].*!/5(_ 5.+,$+/,$0!_ %*_ 0$!_%( _+)0+_ +(*1)_$.+ $%0!/N_  44 _.,,5O_('O_C@A^CAGO_ +%PA@NAA@E\0, NA@GN@EGHHEN_ FN__  $%()%((!.O_N_ NQ_ $12%*$+( O_ NQ_ ./+*O_ NQ_1O_NQ_$.+**!1O_N_ NQ_ $)% 0O_NQ_ %('!./+*O_ NQ_ /0O_ N_ NQ_ % $!./'5O_ N_ +*+0!.,!*!/_ %*_ 0$!_ #(* 1(._ 0.% $+)!/_ +"_ 0+)0+_ .!_ /5*0$!/%6! _ ".+)_ _ *!.5(_ %,$+/,$0!_ ,.! 1./+._ .0$!._ 0$*_ #!.*5(_

  %,$+/,$0!N_ 04  0404 0_.,,5O_'&,O_A@HFE^A@HG@O_ +%PA@NA@GC\,*/N@I@DAACA@FN_ GN__ /%!$O_ N] NQ_ $*#O_ N]NQ_ +O_ N]NQ_ *#O_ N_ N] N_ 0.1 01.!_ * _ )! $*%/)_ +"_ *_ .% +,/%/_)! %1)\(+*#] $%*](!*#0$_,.!*5(_,5.+,$+/,$0!_/5*0$/!N_  4 $ 0_ .,--O_'++O_A@GI^I@O_ +%PA@NAA@D\,,NAA@NAFHGIIN_ HN__ '$0.O_N_NQ_ 0/1O_NQ_ $12%*$+( O_ NQ_1O_NQ_ !!/O_N_NQ_ (!%*O_N_NQ_% $!./'5O_ N_ $!_ 0+)0+_ %/],.!*5(0.*/"!./!_ #!*!_ ")%(5N_  4 0_ .,-/O_ -)O_ FD@^FEBO_ +%PA@NAAAA\0,&NAB@FCN_ IN__ ..!.+O_N_NQ_+1(0!.O_N_NQ_ 3. /O_N_N_""! 0/_+"_/%0!] %.! 0! _)10#!*!/%/_+"_0$!_ $%#$(5_ +*/!.2! _/,.00!_.!/% 1!/_%*_ +)%*_ _+"_".*!/5(_ %,$+/,$0!_ /5*0$/!_  0%2%05N_04040_-55.O_(,-O_BAHGC^HN_ A@N__ +(5O_NQ_ 3. /O_N_N_""! 0_+"_/%0!] %.! 0! _)10#!*!/%/_+"_ +*/!.2! _/,.00!_* _ .#%*%*!_.!/% 1!/_1,+*_".*!/5(_ %,$+/,$0!_/5*0$/!_ 0%2%05N_04040_-55/O_(,.O_ BFIHC^IN_ AAN__./$%/O_ N_NQ_*O_ NQ_+1(0!.O_N_NQ_ $!00%*%O_ N_N_.5/0(_0.1 01.!_+"_! +)%**0_ .*!/5(_%,$+/,$0!_5*0$/!_0_BNF]NN_!/+(10%+*N_ $_-550O_))O_A@HGA^ A@HGGO_ +%PA@NA@BA\%@@B@B@@DN_ ABN__+*#O_ NQ_+1(0!.O_N_N_!/0_".*!/5(] %,$+/,$0!_/5*0$/!P_/%0!] %.! 0! _)10#!*!/%/_ +"_.!/% 1!/_%*_$%#$(5_ +*/!.2! _,.!*5(0.*/"!./!_ +)%*/_ _* _ N_ 04  0404 04 04 040_-550O_/'O_C@DD^HN_ ACN__ +5)O_NQ_&%)O_ NQ_*+O_NQ_+%O_NQ_ +%'!]'!/$%0O_NQ_0O_NQ_%/$%*+O_NQ_ #1.O_ N_ !*0%"% 0%+*_+"_/%#*%"% *0_.!/% 1!/_%*_0$!_/1/0.0!_%* %*#_/%0!_+"_ %((1/_ /0!.+0$!.)+,$%(1/_ ".*!/5(_ %,$+/,$0!_ /5*0$/!N_  $_ -552O_ )+O_ IECC^HO_ +%PA@NA@BA\%IF@ACG2N_ ADN__ +5)O_ NQ_ +0+$O_ NQ_ %/$%*+O_ N_ *0!./11*%0_ (+ 0%+*_ +"_ 0$!_  0%2!_ /%0!_ +"_ ".*!/5(_ %,$+/,$0!_ /5*0$/!P_ .! +*/0.1 0%+*_ +"_  0%2!_ !*65)!/_ 5_ $5.% ]05,!_ $!0!.+)!.% _ %)!./_+"_/%0!] %.! 0! _)10*0/N_ $_.,,,O_)/O_DFC^IN_ AEN__.+*O_ N_NQ_$.%/0%*/+*O_N_N_.%*1 (!._ !0(_(1/0!./_%*_0(5/%/_5_!.,!*+% _ 5*0$/!/N_ !4040_.,-,O_.(O_AEHE^AEIGO_ +%PA@NACEA\]]@I]@I]CGN_ AFN__$*1)O_ NQ_ %.++'O_ NQ_ !))%O_ NQ_ /$% O_ NQ_ $0+O_ NQ_ %/$%*+O_N_+*2!./%+*_+"_ .+ 1 0_ ,! %"% %05_ +"_ . $! 0!.%(_ !.*5(#!.*5(] %,$+/,$0!_ 5*0$/!N_ 04 04 0_-552O_(-'O_AHHCA^AHHCGO_ +%PA@NA@GD\& NBGANCANAHHCAN_ AGN__$*1)O_N_%Q_.%0O_ NQ_'63O_NQ_ /$% O_NQ_'!1 $%O_NQ_$0+O_NQ_%/$%*+O_N__ .+(!_+"_0$!_)%*+_ % _.!/% 1!_(+ 0! _+*_0$!_"%"0$_,+/%0%+*_!"+.!_0$!_"%./0_/,.00!].% $_ )+0%"_ +"_ ".*!/5(_ %,$+/,$0!_ /5*0$/!_ +*_ !0!.)%*0%+*_ +"_ 0$!_ "%*(_ ,.+ 1 0N_ 04 04 0_-552O_(-'O_C@GDH^EDN_ AHN__./$%/O_ N_NQ_.+0!1O_N_ NQ_ !((+##O_N_NQ_ $!00%*%O_ N_NQ_+1(0!.O_N_N_!#1(0%+*_+"_ ,.+ 1 0_ $%*_(!*#0$_5_%/+,.!*5(_ %,$+/,$0!_/5*0$/!/N_ 04  0404 0_-552O_/)O_ AE@AH^AE@BCO_ +%PA@NA@GC\,*/NICNBFNAE@AHN_ AIN__*#O_ NQ_$*1)O_N_$%*](!*#0$_ !0!.)%*0%+*_)! $*%/)_+"_%/+,.!*5(_ %,$+/,$0!_ /5*0$/!/_* _%),(% 0%+*/_"+._)+(! 1(._!2+(10%+*N_ 404 0_-555O_(*O_DDE^EAN_ B@N__0*(!5_!.** !6O_N_ NQ_ !((+##O_N_NQ_+1(0!.O_N_N_.*!/5(_ %,$+/,$0!_/5*0$/!N_ (0!.%*#_0$!_ 0(50% _/%0!_0+_/!(! 0_"+._#!.*5(_ %,$+/,$0!_ 0%2%05N_ $_.,,,O_)/O_ AECAF^BAN_ BAN__#!(O_NQ_!.*$+(6O_NQ_.*+27O_NQ_ +=10$O_ NQ_!.#1O_NQ_ 1 3%#O_NQ_!//&+$**O_ NQ_ !./$!*6+*O_ NQ_ %//%!.O_ NQ_  $)% 0O_ N_ .% +,/%/_ 0$(%*_ %/+,.!*5(_ %,$+/,$0!_ /5*0$/!/_,.+ 1 !_0$!__BE_%*0!.)! %0!O_#!.*5(".*!/5(_ %,$+/,$0!N_  40_.,-1O_.*O_ HDG^HEIO_ +%PA@NAAAA\0,&NAC@FDN_ BBN__*#O_NQ_$!*O_NQ_*O_NQ_ %O_ NQ_*#O_NQ_$*#O_N_0.1 01.(_*(5/!/_+"_$+.0] $%*_ .!*5(0.*/"!./!/_ !*0%"5_ *_ 2+(10%+*.%(5_ +*/!.2! _ _ ( !_ %*_

  .//%  !!_(*0/N_04  _.,-2O_/O_AIE^B@DO_ +%PA@NA@AF\&N)+(,NB@AENA@N@A@N_ BCN__1*%((!.O_ NQ_ ..0%)**O_ NQ_ >$()**O_ NQ_ %#(!.O_ NQ_ .1%//!)O_ NQ_ + .:#1!6]+* !, %<*O_ NQ_ .*+27O_N_.% +,/%/_  _ __AA_%/__$1_ %/+65)!_.!-1%.! _"+._0$!_,.+ 1 0%+*_+"_)+/0_,$+0+/5*0$!/%/].!(0! _%/+,.!*+% /N_ #4 $ 0_.,-2O_(&/O_BEB^BFDO_ +%PA@NAAAA\*,$NACEH@N_ CCN__*#O_NQ_%4+*O_N__!0!.+ %)!.% _#!.*5(R#!.*5(S %,$+/,$0!_/5*0$/!_".+)_$+,_ R1)1(1/_(1,1(1/S_* _0$!_!2+(10%+*_+"_)+*+0!.,!*!_%+/5*0$!/%/N_ 04  0404 04 04 040_.,,5O_'&,O_IIAD^IIAIO_ +%PA@NA@GC\,*/N@I@D@FIA@FN_ 8

8

8

8

  8

268'$%8

8

DMAPP IPP (C5) (C5)

GPP synthase

PPi

GPP (C10) FPP synthase

PPi

FPP (C15) GGPP synthase

PPi

GGPP (C20)

CAROTENOIDS (C40)

'$8 -68 "%*!&%%8 "8 %"$&7!8 #$!* 8 #"%#&%8 *8 %"$&7!8 #$!* &$!%$%%68  $_ _ +* !*/0%+*_ %*2+(2!/_ 0$!_ !(+*#0%+*_ +"_ 0$!_ ,.!*5(_ %,$+/,$0!_)+(! 1(!_3%0$_0$!_/1/!-1!*0_.!(!/!_+"_+*!_%_)+(! 1(!_R /$! _ %. (!SN_+(% _ ..+3/_.!,.!/!*0_+*!_!*65)0% _/0!,_* _ /$! _..+3/_%* % 0!_)1(0%,(!_!*65)0% _/0!,/N_ .!2%0%+*/P_  O_ %)!0$5(((5(_ %,$+/,$0!Q_ O_ %/+,!*0!*5(_ %,$+/,$0!Q_ %O_ %*+.#*% _ ,5.+,$+/,0!Q_ O_ #!.*5(_ %,$+/,$0!Q_ O_ ".*!/5(_ %,$+/,$0!Q_ O_ #!.*5(#!.*5(_ %,$+/,$0!Q_ O_ #!.*5(_ %,$+/,$0!_ /5*0$/!Q_O_".*!/5(_ %,$+/,$0!_/5*0$/!Q_O_#!.*5(#!.*5(_ %,$+/,$0!_/5*0$/!N8 _

_

_

_

  _

_ '$8.68527) 8# &8%!68( '_0.%*#(!_%* % 0!_%* .!/%*#_,_+._/1/0.0!_ +* !*0.0%+*_ ".+)_0+,_0+_+00+)N_.'_#.!5_/-1.!/_.!,.!/!*0_/0* . _!*65)0% _.! 0%+*/_%*_0.%,(% 0!/_ ,!._ +* %0%+*N_ %#$0_#.!5_/-1.!/_R +(1)*_DS_%* % 0!_3 !  4 N_!."+.)__3 !  4  _3$!*!2!.__.!#!*0_%/_ $*#! _)+*#_ +* %0%+*/N_ "_+*(5_0$!_ +* !*0.0%+*_+"__.!#!*0_ $*#!/_10_0$!_.!#!*0_/+(10%+*_%/_0$!_/)!O_+*(5_+*!_3 !  4 _%/_*!! ! _R /$! _ /-1.!S68

  



7

   77 77777

   4/-.0517(  $7!  7 "7$7 %"7"$"*$ 7 7$"#7 $#17

7

7 37 #7 #7 $7 7 $##7 427 "7 7 7 "%57 "#$7 )7 7 %#7 +&"7$ 7 $7#7"77 $  )7)7$7&"#$$77" 177 7 $7 #7 $7 ( "$#27 " &7 $7   7 $"#27 #% "&#7 $7 ( "$7 ' "7 7 $7 7 $7 7 $7 27 7 $ $"7 '$7 $7 7 "$ "7 6#% "&#7$7)##7 7$7$77$7'"$7 7$77 %$7 # '7"17 7

7

7

iv 

Final degree project

Exploiting qPCR for the molecular characterization of transgenic plants Jean Luis Alcívar Zambrano CRAG director: Dr. Manuel Rodriguez-Concepción Co-director: M. Victoria Barja University director: Dr. Sandra Heras

July, 2018

Abstract Since the Green Revolution, plant research has been increasingly growing, fostering new methodologies of genetic engineering. One of the best-known procedures in plant biotechnology is the use of Agrobacterium strains to generate transgenic organisms. These soil bacteria are capable of transferring and integrating a DNA segment called T-DNA into the genome of an infected plant cell. Notwithstanding the integration is stable, Agrobacterium can insert more than one copy of T-DNA per genome. To select for positive insertion events, the engineered T-DNA normally carries a marker gene providing resistance to an herbicide that allows growth of primary transgenic individuals (T1 generation) on herbicide-supplemented medium. Self-crossing of T1 plants generates T2 individuals with a segregating presence of the resistance marker gene that is normally used to deduce T-DNA number (one or more per genome). The analysis of the resistance segregation in the following T3 generation then serves to estimate zygosity (azygosis, hemizygosis, or homozygosis). Hence, it normally takes three generations to get a homozygous line by performing segregation experiments. Selecting the most appropriate line also requires to analyze the expression of the transgene in the selected line.

All this work can be laborious apart from being a lingering process. Therefore, we aimed to develop a quantitative PCR (qPCR) method to estimate T-DNA copy number in the genome of transgenic plants. As a model, we used tomato (Solanum lycopersicum), a diploid (2n) species with a huge economic interest. Before the start of this project, tomato plants had been transformed with constructs to overproduce enzymes involved in the biosynthesis of carotenoids, which are health-promoting natural pigments that naturally accumulate in tomato ripe fruits. Our method assigned a value of 0.5 when only 1 T-DNA copy was present in the 2n genome of transformed lines, a value of 1 when 2 copies were present, 1.5 to 3 copies, etc. Identifying T1 plants with a value of 0.5 rapidly allowed to select transgenic lines with a single T-DNA insertion. Homozygous individuals could then be identified in the next (T2) generation as those showing a value of 1. Our method hence reduces the number of T1 lines to propagate and allows to start working with homozygous individuals in the T2 generation. The last part of the project used qPCR to estimate transgene expression levels in selected tomato lines.

i

Resum Des de la Revolució Verda, la investigació en plantes ha anat creixent, promovent noves metodologies d’enginyeria genètica. Una de les més conegudes a la biotecnologia vegetal és l’ús de soques d’Agrobacterium, el quals són capaços de transferir i integrar un fragments de DNA anomenat T-DNA al genoma de la cèl·lula vegetal infectada. Tot i ésser una integració estable, pot inserir més d’una copia de T-DNA per genoma. Per seleccionar aquests esdeveniments de transformació, normalment el T-DNA porta un gen de resistència a un herbicida que permet el creixement d’individus transgènics primaris (generació T1) en un medi selectiu. L’autocreuament de plantes T1 genera individus T2 que presenten una segregació al marcador de resistència normalment emprat per deduir el número de T-DNA (un o més per genoma). L’anàlisi en la segregació de la resistència a la següent línia T3 serveix per estimar la zigositat (azigosis, hemizigosi, o homozigosis). Conseqüentment, es triguen tres generacions per aconseguir una línia homozigòtica mitjançant experiments de segregació. A més, seleccionar la línia més adient requereix l’anàlisi en l’expressió del transgen a la línia homozigòtica identificada.

Tota aquesta feina pot ésser molt laboriosa apart d’un procés perllongat. Per aquest motiu, el nostre objectiu va ser desenvolupar un mètode basat en PCR quantitativa (qPCR) per estimar el número de còpies del T-DNA al genoma de plantes transgèniques. El model que vam utilitzar va ser Solanum lycopersicum, una espècie diploide de gran interès econòmic. Aquestes plantes de tomàquet van ser transformades amb una construcció per la sobreproducció d’enzims involucrats en la biosíntesi de carotenoides, pigments naturals i beneficiosos per la salut. El nostre mètode assignava un valor de 0.5 per aquell T-DNA present en 1 còpia en genomes diploides de les línies transformants, un valor d’1 per dues còpies presents, 1.5 per 3 còpies, etc. La identificació de plantes T1 amb valors de 0.5 ens va permetre seleccionar les línies transgèniques amb una sola inserció de T-DNA. De manera que els individus homozigòtics de la següent generació (T2) es van poder seleccionar gràcies a que mostraven un valor 1. Així mateix, el nostre mètode permet reduir el nombre de línies T1 per reproduir i permet començar a treballar amb individus homozigòtics a la generació T2. En l´última part del projecte es va utilitzar la qPCR per estimar els nivells d’expressió de les línies seleccionades.

ii

Resumen Desde la Revolución Verde, la investigación en plantas ha ido creciendo, promoviendo nuevas metodologías de ingeniería genética. Una de las más conocidas en biotecnología vegetal es el uso de cepas de Agrobacterium, bacterias capaces de transferir e integrar fragmentos de DNA llamados T-DNA en el genoma de la célula vegetal infectada. Aunque la integración es estable, Agrobacterium puede insertar más de una copia de T-DNA por genoma. Para la selección de los eventos de transformación positivos, normalmente el T-DNA contiene un gen de resistencia a un herbicida que permite el crecimiento de individuos transgénicos primarios (generación T1) en medio selectivo. El autocruzamiento de las plantas T1 genera los individuos T2 que presentan una segregación del gen de resistencia que normalmente se usa para deducir el número de T-DNAs (uno o más por genoma). El análisis de la segregación de la resistencia en la siguiente generación T3 sirve para estimar la cigosidad (acigosis, hemicigosis, o homocigosis). Consecuentemente, se tardan tres generaciones en conseguir una línea homocigótica mediante experimentos de segregación. Finalmente, se analizan los niveles de expresión del transgén en la línea homocigota identificada.

Todo este trabajo puede ser laborioso además de prolongado. Por ende, nuestro objetivo era desarrollar un método de PCR cuantitativa (qPCR) para estimar el número de copias de T-DNA en plantas transgénicas. Como modelo, usamos el tomate (Solanum lycopersicum), una especia diploide (2n) de gran interés económico. Las plantas de tomate habían sido transformadas con construcciones para sobreproducir unas enzimas involucradas en la biosíntesis de carotenoides, pigmentos naturales con beneficios para la salud. Nuestro método consistía en asignar un valor 0.5 cuando solo había 1 copia de T-DNA presente en un genoma 2n de líneas transformantes, un valor de 1 cuando había 2 copias, 1.5 para 3 copias, etc. La identificación de individuos con 0.5 en plantas T1 nos permitió seleccionar líneas transgénicas con una sola inserción de T-DNA. De esta manera, los individuos homocigóticos se pudieron identificar en la siguiente generación T2 como aquellos que mostraban un valor de 1. Así mismo, nuestro método reduce el número de líneas T1 a propagar y permite empezar a trabajar con individuos homocigóticos en la generación T2. En la última parte del proyecto se usó la qPCR para estimar los niveles de expresión en las líneas de transgénicas seleccionadas.

iii

Contents Introduction ...... 1 Agrobacterium: from tumor to tool ...... 1 Transformation by means of Agrobacterium tumefaciens...... 2 The classical method for transgenic plant selection ...... 3 Beyond qPCR technology ...... 4 Carotenoids: a practical case ...... 6 Objectives ...... 7 Materials and methods ...... 7 Plant material and growth conditions ...... 7 Sample collection and treatment ...... 7 Total genomic DNA extraction from leaf tissue ...... 7 Quantification of nucleic acids ...... 8 Genotyping PCR ...... 8 Genotyping qPCR ...... 9 Transcript levels analysis ...... 10 Method validation experiment ...... 11 Sustainability and ethical criteria ...... 12 Results ...... 12 Determination of T-DNA number copy in transgenic plants by qPCR ...... 12 T1 generation ...... 12 T2 generation ...... 15 T3 generation ...... 16 Validation of the method ...... 18

Determination of transgene expression levels in selected transgenic plants ...... 20 T1 generation ...... 20

T3 generation ...... 22

Discussion ...... 24 Determination of T-DNA number copy ...... 24 Validation of the method ...... 26 Expression levels ...... 26 Conclusions ...... 27 Acknowledgment ...... 28 Bibliography ...... 28

Introduction

Agrobacterium: from tumor to tool Agrobacterium was reported for the first time in 1897 by Fridiano Cavara, who described galls formed at the base of grapevines (Kado, 2014). This Gram-negative soil bacterium has the conspicuous ability of introducing foreign genes into plant cells. Thanks to this property, today, is one of the most powerful molecular tools for genetic engineering in plants, giving us the opportunity not only to introduce exogenous genes but also to generate loss- of-function mutants.

All members of the Agrobacterium genus have been described to cause cortical hypertrophy, Agrobacterium rhizogenes, Agrobacterium tumefaciens and Agrobacterium rubi can induce an abnormal root growth. The only species that doesn’t cause tumor-like growth is Agrobacterium radiobacter (Sawada et al., 1993). This genus has a wide range of tumorigenic host plant species to infect, both dicotyledonous plants and gymnosperms (Gelvin, 2012). Despite the existence of several species in the wild, the most studied has been A. tumefaciens, becoming the most used for genetic engineering in plants.

The detailed infection mechanism of A. tumefaciens is not fully understood yet, but the main aspects of this process are fairly well-known. This bacterium possesses a large plasmid called Ti (tumor inducing)-plasmid that contains two important regions: vir (virulence) genes and T(transferred)-DNA. The vir genes comprise six groups of operons (virA, virB, virC, virD, virE, virG) that are essential for the transfer of T-DNA to plant cells. The T- 1a. Specific attachment of 1b. Plant-derived signals are recognized via DNA, i.e. the DNA region bacterium to plant cell wall. ChvE/Vir A that is transferred from the 2b. VirG-P 6. T-DNA integration into activates vir genes. the host chromosome. bacteria to the eukaryotic plant cell, harbors gene sequences that encode enzymes for the production of opines (amino acid derivatives used by A. 5. T-DNA complex assembles and moves into the nucleus. 3.Production of transported tumefacies as carbon and substrates and VirB complex. 4. Substrates are recognized by VirB energy source) and complex and transported to the plant cell. hormones (such as auxins and cytokines) responsible for the uncontrolled growth Figure 1. General model of Agrobacterium-mediated transformation. Adapted from McCullen & Binns, 2006. that generates the typical

1 crown gall tumors associated with the bacterial infection. The T-DNA is flanked by short sequence repeats on each end. Transfer starts at the right border (RB) and ends at the left border (LB), but sometimes the insertion is not complete and the resulting genome insertion lacks the LB sequence (Figure 1) (Nester, 2015).

The infection mechanism starts when a plant cell is wounded. As a consequence, three signals are released: phenolic compounds, a variety of monosaccharides coming from plant cell walls and acidic conditions required for several steps in the induction process. These signals induce the expression of the vir genes which will process and transport the T-DNA from Agrobacterium to the wounded cell cytoplasm. The T-DNA will finally enter into the nucleus as a single-strand molecule, and by illegitimate recombination it will be integrated randomly in the genome of the infected plant cell (Gelvin, 2000; Nester, 2015).

This process, schematically represented in Figure 1, can occur more than once. As a result, a mutant plant cell may end up having one or several copies of the T-DNA inserted in different locations of its genome (Nester, 2015). In some cases, several copies of the T-DNAs are inserted in tandem in the same position of the genome.

Transformation by means of Agrobacterium tumefaciens The current way of using A. tumefaciens for biotechnological purposes is by replacing the genes located in the T-DNA region (responsible for the tumor formation) with the gene of interest (GOI) combined with a selectable marker. Plant transformation is normally performed using two separate plasmids as a binary system. One of them (known as the binary plasmid) harbors the engineered T-DNA and the other one (known as helper plasmid) contains the vir genes (Hoekema et al., 1983).

Standard procedures for Agrobacterium-mediated transformation at plant biotechnology labs worldwide are basically two. For the model plant Arabidopsis thaliana the most common method is floral dip. This is a fast an efficient method based on dipping developing flowers into a solution carrying the Agrobacterium strain of interest (Zhang et al., 2006). In this case, only female gametes are transformed. After pollination, the resulting seeds are used to select for primary (T1) transformants based on the herbicide resistance provided by the marker gene in the T-DNA. For other species such as tomato (Solanum lycopersicum), the transformation procedure involves tissue culture. Plant tissue (e.g. cut cotyledons) is incubated in a solution containing Agrobacterium and then placed into callus induction medium supplemented with selection herbicide to only allow the growth of cells that have incorporated the T-DNA in their genome. The resulting transgenic (T1) calli are subsequently transferred to media containing hormone mixtures that allow the development of shoots and roots. The generated T1 plantlets are eventually transferred to soil for normal growth in the greenhouse (Dan et al., 2006).

Since Agrobacterium inserts the T-DNA in an illegitimate (random) location in the genome, it is important to work with more than just one line. Differences in transgene expression levels are expected depending on the transcriptional activity of the genomic region where the T-DNA is inserted. Also, insertion of the T-DNA disrupting or affecting an endogenous gene can have unanticipated effects for the plant, jeopardizing the viability of the

2 cell or giving a phenotype that could mask the function of the GOI. Importantly, transgenic lines with a single T- DNA insertion are preferred because (1) the described insertional effects are less likely, (2) their genetic analysis is easier, and (3) the generation of homozygous lines is faster.

The classical method for transgenic plant selection As it is explained above, T1 plants come from callus (or transformed seeds in the case of Arabidopsis). The fact that T1 plants grow in selective medium means that they carry the transgene, more specifically in hemizygosis (as it is almost impossible that 2 copies are inserted in the same location of the maternal and the paternal chromosome generating homozygous plants). When T1 plants are in adult stage they are self-pollinated giving rise to many seeds. The classical method to select transgenic lines with a single T-DNA copy consists on sowing seeds from T1 lines in a selective medium, referring them as T2 plants (Figure 2). In case of a single T-DNA insertion in a T1 plant, the transgene is expected to segregate in a Mendelian way in the T2 offspring (25% azygous plants –without the transgene-, 50% hemizygous and 25% homozygous for the transgene). Therefore, it is also expected that 75% (3:1 proportion) of the T2 seedlings will grow in selective medium, since they harbor the T-DNA insertion with the GOI and the selectable marker (conferring the herbicide resistance). The remaining 25% plants will die due to the lack of the transgene under selective conditions (Figure 2). Usually, T2 plants are also used to assess transgene expression so only those lines with an active transgene will be used for subsequent steps. Thus, several herbicide-resistant T2 plants from lines Figure 2. Conventional method of selection for homozygous transgenic plants. expressing the transgene from a single T-DNA

3 locus (based on the segregation of the resistance marker) are typically transferred to soil and grown to obtain the T3 generation (Figure 2). The seeds of each T2 resistant plant are collected and subsequently sown again in selective medium, where 2 situations can occur: (1) if the T2 resistant plant is hemizygous, its T3 offspring will segregate again in a 3:1 (resistant:sensitive) proportion; (2) if the T2 plant is homozygous (expected in 1/3 of the resistant T2 plants), all of its offspring will grow in selective medium. Since we want the transgene in homozygosis, T3 plants derived from the homozygous T2 plant will be selected and propagated for further experiments.

Selection of transgenic homozygous lines using this method, based on analyzing the segregation of the herbicide resistance provided by the marker gene in the T-DNA, works reasonably well for Arabidopsis but it involves a huge amount of work and plant growth facility (e.g. greenhouse) space for other plant species, including tomato. First, because this selection process must be done for each T1 plant and for many T2 resistant plants coming from each T1 line. Second, because herbicide selection is difficult to implement at large scale in plant species with seedlings that do not develop well on plates. And third, because as a consequence of the number of lines and the life cycle of the plant species, obtaining the final homozygous lines can take several months or even years in case of plant with long reproductive cycles. Due to these inconveniences, faster and more precise methods must be used or developed to reduce the time and costs needed to identify the final transgenic lines of interest. Taking this into account, this project arose to set up a new method in the lab for the selection of tomato transgenic lines with a single T-DNA insertion. This method is based on a technology routinely used in the lab for the analysis of transgene expression: quantitative Polymerase Chain Reaction (qPCR).

Beyond classic qPCR The qPCR (quantitative PCR) technology is based on PCR (polymerase chain reaction) that allows to determine the exact amount of amplified DNA by labelling it with a fluorescent dye. For this project SYBER Green I Dye was used, this dye is capable of intercalating between dsDNA formed during the PCR reaction leading to an increase of fluorescence signal compared to the unbound dye. After elongation, all the replicon is amplified and the maximum amount of SYBR Green is intercalated, and finally the fluorescence is measured at 530 nm (Bustin, 2000).

The signal coming from the intercalated SYBER Green allows to monitor the amount of dsDNA amplified during every PCR cycle. When the signal reaches a predetermined fluorescent threshold, it is detected by the thermal cycler. The cycle number when this occurs is called Ct (cycle of threshold) or Cp (crossing point). In this way, the lower abundant is the target the more cycles will require to be detected and the higher Ct value will be obtained (Bustin, 2000).

Besides template abundance (Ct), qPCR also informs about the specific melting curve of each amplicon. Each DNA fragment has a characteristic melting temperature (Tm) and it depends on the size and nucleotide composition

4 of the fragment. The melting curves allow to identify the desired amplified products and to distinguish them from unspecific amplifications or primer dimer events. These melting peaks are analogous to the bands on an electrophoresis gel (Nolan et al., 2006).

Real-time qPCR is commonly used to quantify gene expression, procedure known as RT-qPCR (reverse transcription quantitative polymerase chain reaction). This procedure consists of a reversed transcription of mRNA into cDNA, followed by cDNA amplification by PCR, and finally the detection and quantification of amplified cDNA in real time. (Livak & Schmittgen, 2001).

Although qPCR is most frequently used for quantification of gene expression levels (i.e. mRNA or transcript abundance), in this project we propose another method of using qPCR, as a main objective of genotyping transgenic plants.

First, we extracted gDNA and performed PCR in order to check the absence or the presence of at least one T- DNA. Since PCR doesn’t specify the number of copies of T-DNA, we next performed genotyping qPCR on plants confirmed to contain the T-DNA. For genotyping qPCR, we used LAT52 as the reference endogenous gene since it was reported to be specific for tomato plant (Yang et al., 2005). LAT52 is a single copy gene in homozygosis, which is what we need to perform our method. The gene associated with the T-DNA selected for qPCR was nptII but we could have also targeted the T-DNA gene encoding GFP, since this is another gene that is not present in the plant and therefore will not amplify in non-transgenic tomato lines.

In order to determine the T-DNA copy number from each line we used the formula as follows:

۵ሻ where *E1= Primer efficiency of reference gene܀ሺܜ۳૚ ۱

۷ሻ۽ሺ۵ܜ۳૛۱ *E2= Primer efficiency of T-DNA gene

Ct(RG)= Ct value of reference gene Ct(GOI)= Ct value of T-DNA gene *E-method was used for primer efficiency whose arithmetic formula is given by: E=10-1/slope.

Taking into account the ploidy of the organism we are working with, in our case a diploid plant (2n), the reference gene (LAT52) is present in 2 copies in the genome or 1 per each set of chromosomes. Hence, we can obtain different values that represent different T-DNA copy number; 0.5 value for 1 copy, 1 value for 2 copies, 1.5 value for three copies and so on (Ingham et al., 2001).

Since the insertion of T-DNA is illegitimate, the likelihood that different T-DNA got integrated in homozygosis is remote. Thus, when more than one T-DNA is integrated in the T1 plant genome we assume that each of them will be in hemizygosis (i.e. present in just one set of chromosomes) in that generation.

5 Carotenoids: a practical case The research group where this project was carried out is focused on studying the biosynthesis of carotenoids and its regulation. Carotenoids are isoprenoid molecules that function as natural pigments in the range from yellow to red. Carotenoids can be synthesized by all photosynthetic organisms and some non-photosynthetic bacteria and fungi. These metabolites have a great impact on human health. They protect against chronic and degenerative diseases and they also have anticancer and anti-inflammatory effects. However, their most important function is that they are essential precursors of retinoids (including vitamin A). Thanks to their properties, carotenoids are highly demanded as health promoting nutrients and food and feed additives. (Jaswir et al., 2012). In order to reduce their chemical synthesis in the industry and sustainably produce them using natural platforms, such as plants, we first need to decipher the regulation of the biosynthetic pathway.

Carotenoids have important functions in plants. Besides acting as pigments in many flowers and fruits, they are essential for photoprotection of green tissues (against the excess of light) and for growth regulation (being the precursors of important phytohormones such as abscisic acid or strigolactones) (Ruiz-Sola & Rodríguez- Concepción, 2012).

Figure 3. A global view of GGPPS role in plants.

GAP, glyceraldehid 3-phosphate; MEP, 2-C-methyl-D-erythriol 4-phosphate; GGPP, geranylgeranyl diphosphate; GGPPS, GGPP synthase.

Tomato fruits accumulate high amounts of carotenoids such as lycopene (the red pigment of ripe tomatoes) and beta-carotene (the main precursor of vitamin A). Because of this, tomato has become a model species for the study of carotenoid biosynthesis. Carotenoids are synthesized in plastids from geranylgeranyl diphosphate (GGPP). GGPP is also the precursor for many other isoprenoid metabolites in different cell compartments and it is produced by a family of enzymes called GGPP synthases (Rodriguez-Concepcion et al., 2018) (Figure 3). Previous work in the lab demonstrated that tomato has 3 GGPP synthases in plastids (G1, G2 and G3), where carotenoids are produced. To better elucidate the physiological role of these enzymes for carotenoid production, transgenic plants were generated to express versions of G1, G2 and G3 fused to the Green Fluorescent Protein (GFP) under the control of a constitutive and strong promoter (35S::G1-GFP, 35S::G2-GFP and 35S::G3-GFP). Tomato lines overexpressing the GFP reporter fused to an N-terminal plastid targeting peptide (35S::pGFP) were also generated to serve as a control for possible interferences of the GFP in plastids.

6 To analyze whether increasing the levels of G1, G2 or G3 has an impact on the carotenoid content and the nutritional quality of transgenic tomato fruits, we first needed to select individual lines with a single T-DNA insertion per haploid (2n) genome and take them to homozygosis. In this context, we decided to develop the current project to reduce the time and costs needed for this aim, moving on to the molecular characterization of transgenic plants and leaving behind the classical selection methods. Objectives The generation of transgenic plants is an incredibly useful tool for metabolic engineering and molecular biology research. In order to make the genetic characterization of transgenic lines more precise, faster and cheaper, this project aims to accomplish the following objectives.

x Develop a genomic qPCR technique for the determination of the T-DNA copy number in the genome of transgenic tomato plants. x Determine the transgene expression level in selected tomato lines. Material and Methods

Plant material and growth conditions Tomato (Solanum lycopersicum var. MicroTom) plants were grown under standard greenhouse long day (LD) conditions, (16 h light at 24-28 ºC, 8 h dark at 22-24 ºC, and at 50-70% of relative humidity). WT and transgenic tomato plants overexpressing SlG1 (p35S::SlG1-GFP), SlG2 (p35S::SlG2-GFP), SlG3 (p35S::SlG3-GFP) and pGFP (p35S::AtpHDS-GFP)were used in this project. All the constructions also harbored the ntp II for kanamycin resistance.

Sample collection and treatment Leaf was the tomato tissue chosen for the molecular characterization of the transgenic plants. The leaf samples must be collected in the same life stage and localized in the upper part of the plant, so that obtain homogeneous data further on. Leaves were cut and placed into 2 mL Eppendorf tubes. Immediately, the samples were frozen using liquid N2 and lyophilized using the Freeze Dryer ALPHA 2-4 LD PLUS (Martin Christ®) during at least 24h. After lyophilizing, the samples were stored at -80ºC until next treatment.

Total genomic DNA extraction from leaf tissue Once the samples were lyophilized, the DNA extraction was performed using CTAB protocol. The lyophilized leaf tissue is grinded to a fine powder with the TissueLysser II (Qiagen®), during 1 minute at 30 s-1. Then, 600 μl of ice-cold extraction buffer (50 mM Tris·HCl pH 8.0 and 20 mM EDTA pH 8.0) is added to the tissue and it is vortexed for several seconds until there is no powder on the lid. 80 μl of 10% SDS were added, it was vortexed for 4 minutes and the mix was incubated at room temperature for 15 minutes. Then, the mix is vortex for 2 min and

7 then 180 μl of 3M NaAc pH 5.2 were added and it is incubated in ice for 30 minutes. Afterwards, the tissue-debris is spun down at 10K rpm for 15 minutes at 4 ᵒC. Then, the supernatant is transferred to a new tube of 2 ml (700 or 650 μl). An equal volume of isopropanol is added and is mixed by inverting the Eppendorf at least 3 times, and incubated in ice for 0.5 h. (or more at -20 ᵒC). After that, gDNA was spun down at 10K rpm for 10 minutes, the supernatant was poured into waste using a pippete. The pellet is then resuspended in 375 μl of 10 mM Tris·HCl pH 8.0, vortexed for several seconds. An equal volume of CTAB buffer (2% CTAB, 2M NaCl, 0.2 M Tris-HCl pH 8.0, 0,05M EDTA) was added and incubated for 15 min at 65 ᵒC. In the fume hood, an equal volume of chloroform was added, it is mixed by inverting the Eppendorf, and spun for 5 min at max speed (13K rpm). Afterwards, the aquatic phase is rescued and the DNA is precipitated with equal volume of isopropanol, it is incubated at least 1.5 h. at -20 ᵒC or overnight at same temperature. Then mixture is spun down at 10K rpm for 10 minutes, and the supernatant is carefully removed. Afterwards the Eppenderf is left drying inverted on top of paper with the lid open, and incubated at 37 ᵒC until is completely dried. Finally, the pellet is suspended with 100 μl of H2Odd.

Quantification of nucleic acids The quantity and quality (Table 1) of isolated DNA and RNA was measured with the NanoDrop® ND-8000 spectrophotometer (Thermo Scientific™), using the same solvent as blanking reagent.

Table 1. The ideal values for each ratio and its meaning in terms of sample purity. Ratio Determines Ideal value

260/280 Presence of proteins, phenol or other contaminants 1.8 (DNA), 2.0 (RNA) 260/230 Presence of EDTA, phenol or other organic solvents. 2.0-2.2 (both)

Genotyping PCR Genotyping PCR (Polymerase Chain Reaction) was performed after genomic DNA extraction in order ensure whether the transgene was integrated. In addition to the specific transgene, ACTIN4 was also amplified for all samples as an internal control of the extraction. The primer pairs used for genotyping are showed in Table 2.

Table 2. Sequence of primers used for genotyping PCR.

Amplified Primer pair Sequence (5’Æ3’) product G1-GFP SlG1-qPCR-F GGCCTTTGAACATGTGGCTACC eGFP_R_qPCR2 TCTCGTTGGGGTCTTTGCTC G2-GFP SlG2-qPCR-F AAAGTCATCGTCGGAGCTCG eGFP_R_qPCR2 TCTCGTTGGGGTCTTTGCTC G3-GFP SlG3-qPCR-F AGGAGGTGCACCAGATGAAG eGFP_R_qPCR2 TCTCGTTGGGGTCTTTGCTC p-GFP UnivF-attB1short F GGGGACAAGTTTGTACAAAAAAGCAGGCT eGFP_R_qPCR2 TCTCGTTGGGGTCTTTGCTC Actin Actin-genot-F GTGAAAAGATGACCCAGATTATG Actin-genot-R CACGCTCGGTCAGGATCTTCATC

8 The PCR was performed using the NZY Taq 2× Green Master Mix, which contains: Taq DNA Polymerase, dNTP's, reaction buffer and MgCl2. The reaction mix is specified in Table 3 and the thermal cycler program is described in Table 4. Table 3. Volumes used in genotyping PCR.

Reagent Volume NZYTaq 2× Green 5 μL Master Mix Forward primer 0.5 μL Reverse primer 0.5 μL Nuclease free-water 3 μL Template DNA 1 μL Total volume 10

Table 4. PCR program performed for genotyping PCR. Tm and annealing temperature are specific for each primer.

Step Temperature Time Cycles Initial Denaturation 95ºC 5 min. 1 Denaturation 95ºC 1 min. Annealing Tm 30 sec. 30 Elongation 72ºC 1Kb/min. Final elongation 72 ºC 5 min. 1 Cooling 16 ºC ∞ -

Genotyping qPCR The number of copies and the zygosity of the T-DNA inserted in the transgenic lines was evaluated using total genomic DNA as template. The abundance of the transgene was determined by quantitative PCR on a LightCycler® 480 II real-time PCR system (Roche) using LightCycler® 480 SYBR Green I Master Mix 2x (Roche) which contains: FastStart Taq DNA polymerase, reaction buffer, dNTPs (with dUTP instead of dTTP), SYBER Green

I dye and MgCl2. The other reagents added to the mix are specified in Table 5, and the qPCR conditions in Table 6. Three technical replicates of each biological replicate were performed. Normalized number of copies were calculated as it is described as described in introduction , measuring the abundance of the kanamycin resistance gene (ntpII) present in the T-DNA and using LAT52 (Gene ID: 101261755) as a endogenous reference gene (Yang et al., 2005). Further details of these primers are shown in Table 7. In this case, the efficiency of both primer pairs was considered as 2, value considered to be the best efficiency for a primer pair.

9 Table 5. Reagents used for mix in qPCR.

Reagent Volume Syber Green 10 μL

F primer 0.6 μL R primer 0.6 μL Nuclease free-water 3,8 μL Template cDNA 5 μL Total volume 20

Table 6. qPCR program.

Step Temperature Ramp Rate Time Cycles Taq Activation 95ºC 4.4ºC/s 10 min. 1 Denaturation 95ºC 4.4ºC/s 10 sec. Annealing and 60ºC 2.2ºC/s 30 sec. 40 Elongation Cooling 40ºC 2.2ºC/s 30 sec. 1

Table 7. Primers utilized for genotyping qPCR.

Amplified product Primer Pair Sequence (5’Æ3’)

ntpII npt1-5'-F GACAGGTCGGTCTTGACAAAAAG npt1-3'-R GAACAAGATGGATTGCACGC LAT51 Lat1-F AGACCACGAGAACGATATTTGC Lat2.1-R GCCTTTTCATATCCAGACACAC

Transcript levels analysis Two step RT-qPCR (quantitative reverse transcription) protocol was used (RNA was first transformed into cDNA, and then cDNA was used as a template for qPCR). RNA extraction was performed using Maxwell® RSC Plant RNA purification kit (Promega) following the manufacturer’s instructions. Isolated RNA was quantified by a NanoDrop® ND-8000 spectrophotometer (Thermo Scientific™), and its integrity was checked through 1% agarose gel electrophoresis. Afterwards, the synthesis of cDNA was performed using a First-Strand cDNA Synthesis Kit (Roche). The conditions of cDNA synthesis and the reaction volumes utilized are in Table 8 and Table 9 respectively. The resulting cDNA was then diluted 1:10 and 5 μL of it was used for qPCR.

Table 8. Program performed for cDNA synthesis.

Step Temperature Time Initial Denaturation 65ºC 5 min. Annealing 55 ºC 30 min. Elongation 70ºC 30 sec. Cooling 16 ºC ∞

10

Table 9. Volumes of the reagents used for cDNA synthesis.

Reagent Volume dNTP 2 μL Buffer 5x 4 μL RNase INH 0.5 μL RT enzyme 0.5 μL

OdT 1 μL Water Up to 20 μL Template RNA 500 ng Total volume 20 μL

Relative mRNA abundance was evaluated via quantitative PCR using the same real-time PCR system as described in the “Genotyping qPCR” section, including the same conditions and volumes explained before in Tables 5 and 6. Primers and their efficiency are given in Table 10. At least two technical replicates of each biological replicate were performed. Normalized transcript abundances were calculated as described in Simon (2003) using tomato ACT4 (Solyc04g011500) as endogenous reference gene.

Table 10. Primer pair used for qPCR and its efficiency so that calculate expression levels.

Amplified Primer Pair Sequence (5’Æ3’) Efficiency product GFP eGFP_F_qPCR2 CACTACCAGCAGAACACCCC 1.95 eGFP_R_qPCR2 TCTCGTTGGGGTCTTTGCTC ACT ACT_genot_F GTGAAAAGATGACCCAGATTATG 1.91 ACT_genot_R CACGCTCGGTCAGGATCTTCATC

Segregation experiments Three different lines were selected:

¾ p-GFP T1 line #32.1 (nptII/LAT52 ratio of 0.4): a transgenic line that is supposed to contain one T- DNA insertion per diploid (2n) genome and hence hemizygous for the ntpII gene that confers resistance to kanamycin. ¾ WT line: wild-type tomato line without the nptII gene ¾ ntpII line: A transgenic line that contains the ntpII gene in homozygosis.

The experiment was performed with control (MS) medium without kanamycin, and MS medium with two different concentrations of kanamycin (100 μg/mL and 150 μg/mL) to test the resistance of the selected lines.

Tomato seeds were surface-sterilized with bleach 40%. The seeds were placed into a 15 mL Falcon tube (20-30 seeds/Falcon tube). Afterwards, in a laminar air flow 10 mL of sterilization solution (40 % bleach, 2 drops of

11 Tween per 50 ml of solution) was added to the Falcon tube and the seeds were incubated 15 minutes in agitation. Then, seed sterilization solution was discarded and three washes of 10 mL of milli-Q water were performed during 20 minutes per wash in agitation.

The sterile seeds were sown on sterile Murashige and Skoog (MS) medium (salts (2,2g/L), MES (250mg/L), Bacto- Agar (8g/L) and no sucrose, with a final pH of 5.7) supplemented with kanamycin when required. After sowing, plates were kept at 4ºC in dark during 3 days (stratification process) so as to synchronize the timing of germination. Finally, the plates were placed in in vitro chambers with LD conditions (16h of light/8h of dark) and controlled temperature (24 ºC) and relative humidity (60%) during 10 days.

Pictures used to differentiate sensitive and resistant seedlings were taken with Camera Nikon D700 with micro nikkor 105 mm. lens. Sustainability and ethical criteria

The classical method to identify one T-DNA insertion homozygous lines is a process that normally takes at least 3 generations. As far as we are concerned, for plants with relatively long reproductive cycles each generation involves a huge amount of time, but foremost a vast amount of resources like water, energy, materials and such. Bearing in mind that each generation of Microtom tomatoes requires about 3 months to reach their adult stage and bear viable seeds, at least 9 months as a minimum would be needed to obtain the T3 generation, hence wasting water and energy. By using genotyping qPCR, the use of resources and materials would decrease up to 30%, since we just need two generations to select the proper transgenic candidates.

Regarding the waste generated during this project, since we were working with transgenic plants and other hazardous materials it was indispensable to treat them correctly. Thereby, all waste generated was deposited in its corresponding bin according to the current law on waste treatment in CRAG. In addition, when new incorporations arrive to CRAG we are all required to attend to a “Waste management and lab safety” course to learn about good laboratory practices. Results

Determination of T-DNA copy number in transgenic tomato plants by qPCR G1-GFP, G3-GFP and p-GFP (control) plants were molecularly analyzed in the T1 generation, whereas G2-GFP lines were analyzed both in T2 and T3 generations since this project started when G2-GFP T2 plants were already in adult stage.

ƒ T1 Generation After in vitro transformation with the G1-GFP construct we obtained 24 kanamycin resistant T1 plants. After genomic DNA extraction from leaves we measured the presence of the transgene by regular PCR and we

12 observed that most of the lines had integrated the transgene (Figure 4). A few of them (#15.1, #6.2 and #11.1 lines, with a circle in Figure 4) seemed not to be actually transformed since the transgene was not detected, whereas the endogenous ACT4 gene was perfectly amplified (indicative of the presence of sufficient gDNA in the sample). As mentioned before, this method is useful to identify transgenic plants but it does not inform us about the number of T-DNA insertions. To determine the transgene copy number, we next measured nptII and LAT52 genes by qPCR in each line.

Those lines that did not show any amplification in the PCR, in fact showed a low number of ntpII copies by qPCR. However, there were some lines (#11.1, #12.1 and #19.1) that also show a low ntpII/LAT52 ratio of transgene copies despite having shown to contain the transgene, resulting in inconclusive results (Figure 4). Therefore, these lines were not used for further analyses. On the other hand, the rest of the plants that seemed to be transformed can be grouped in three clusters. First of all, those that presented quite clear ntpII/LAT52 value of 0.5, meaning 1 copy in hemizygosis (#5.1, #14.1, #14.2, #18.1 and #24.1 lines). Then, those plants that showed clearly more than one copy (#9.1, 3 copies; #16.1, 6 copies; #17.1, 2 copies and #20.3, 2 copies). And finally those that showed an intermediate ratio at around 0.5 which are the rest, such as #8.2 and #25.1 lines (Figure 4). We considered one-insertion transgenic lines when the ratio was between 0.3 and 0.7, something that of course must be checked in the next generation.

G1-GFP (T1 generation) 4 ) 3,5

LAT52) 3

2,5

2

1,5

copies (realtive to 1

0,5 ntp II ntp 0 3 4 #6.2 #2.1 #5.1 #3.1 #7.1 #8.1 #8.2 #8.3 #8.4 #9.1 #1.1 #11.1 #12.1 #14.1 #14.2 #15.1 #16.1 #17.1 #18.1 #19.1 #24.1 #11.1 #20.3 #25.1 G1-GFP Actin WT G1-GFP Figure 4. Number of ntp II copies relative to LAT52 for G1-GFP plants in T1 generation. Results from genotyping PCR are also shown below each line. Black circles correspond to transgenic plants that did not show amplification. The dotted line in 0.5 value suggests 1 ntp II copy.

Regarding the G3-GFP tomato transformation, we obtained 13 kanamycin resistant plants. All the T1 lines showed a positive amplification by PCR (Figure 5). Some of them showed 0.5 ratio, therefore 1 copy (#4.1, #23.1

13 and #17.1 lines). Then, those that presented more than 1 copy (#2.1, #3.1, and #4.2), and finally the rest of the lines that seem to be ambiguous or confusing about the number of copies (Figure 5). However, again were considered as one-insertion lines when the ratio was from 0.3 to 0.7.

G3-GFP (T1 generation)

4

) 3,5

3 LAT51

2,5

2

1,5

copies (realtive (realtive copies to 1

ntp II ntp 0,5

0 1 2 #1.1 #2.1 #3.1 #4.1 #4.2 #6.1 #8.1 #10.1 #12.1 #13.1 #14.1 #23.1 #17.1 G3-GFP

Actin

WT G3-GFP Figure 5. Number of ntp II copies relative to LAT52 for G3-GFP lines in T1 generation. Results from genotyping PCR are also shown below each line. The dotted line in 0.5 value suggest 1 ntp II copy.

In the case of plants transformed with p-GFP, we had 25 kanamycin resistant lines. Three of them were negative for regular genotyping PCR (#1.2, #22.1 and #36.1 lines) indicating that the transformation may have not occurred (Figure 6). When performing the genotyping qPCR we observed that the ratio was close to 0 in these plants, except in line #22.1.

p-GFP (T1 generation)

4

) 3,5

LAT52 3 2,5 2 1,5

cipes cipes (relative to 1

0,5 ntp II ntp 0 1 2

#1.1 #1.2 #2.1 #3.1 #4.1 #5.1 #5.2 #6.1 #10.2 #11.1 #13.1 #17.1 #19.1 #22.1 #24.1 #25.1 #26.1 #28.1 #29.1 #29.3 #30.1 #30.3 #32.1 #35.1 #36.1 #10.1 p-GFP Actin

WT p-GFP Figure 6. Number of ntp II copies relative to LAT52 for p-GFP lines in T1 generation. Black circles correspond to transgenic plants that didn’t show amplification. Results from genotyping PCR are also shown below each line. The dotted line in 0.5 value suggest 1 ntp II copy.

14

The rest of the lines showed a clear band for the transgene after the PCR, showing most of them a ratio close to 0.5 in the genotyping qPCR. There were some lines that showed more than one T-DNA copy or more than 0.5 ratio (#2.1, #5.1, #5.2 and #13.1), and two lines that are unclear whether they have one (ratio 0.5) or two (ratio 1) copies (#11.1 and 35.1 lines respectively) (Figure 6).

ƒ T2 generation Regarding the G2-GFP transgenic lines, it is important to highlight here that they correspond to the first tomato transformation performed. When the T1 generation was first obtained (10 kanamycin resistant plants), the genotyping qPCR technique was not available in the lab. Because of this, the T1 plants were selected according to the levels of transgene expression. The expression data analyzed showed that only two T1 lines had high levels of G2-GFP expression: #3.1 and #11.1. These were the only lines propagated to the next generations. Thus, only the T2 and T3 generations of these two lines were studied in this project. T-DNA copy number in different T2 plants of the G2-GFP #3.1 line showed a complex profile (Figure 7). Some plants seemed not to have the transgene (plants #3.1-4 and -14) as they showed a 0 ratio and did not show amplification by PCR. Other plants showed ratios of 0.5 (#3.1-12) or lower (#3.1-2 and -5), 1 (#3.1-1, -8, -10, and -13) and more than 1 (rest of the plants). It therefore seemed that the G2-GFP #3.1 line was a high copy number line since its offspring showed a segregation with wide range of different values (Figure 7).

G2-GFP #3.1 (T2 generation)

4

3,5

LAT52) 3

2,5 2

1,5

copies (relative to 1

0,5 ntp II ntp 0 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 G1-GFP Actin

WT G2-GFP #3.1 Figure 7. Number of ntp II copies relative to LAT52 for G2-GFP #3.1 plants in T2 generation. Results from genotyping PCR are also shown below each line. Black circles correspond to transgenic plants that did not show amplification. The dotted line in 0.5 value suggests 1 ntp II copy.

15 Line G2-GFP #11.1 T2 segregation, by contrast, was consistent with a single T-DNA insertion. In this case we can see that plant #11.1-7 did not seem to have any copy. The other plants of the T2 generation showed values around 0.35 (#11.1-2, -3, and -5) and 0.8 (#11.1-4 and -6), but no values of 0.5 or 1 (Figure 8). We interpret this result as 1 T-DNA copy per 2n genome in the first group (hemizygotes) and 2 copies per 2n genome in plants #3.1-4 and -6 (homozygotes). However, it was also possible that line G2-GFP #11.1 had 2 T-DNA insertions and hence plants #3.1-4 and -6 would be double hemizygotes (Figure 8).

For T3 generation we selected 3.1-1 line (ratio 1) to propagate in order to know if its 2 copies of T-DNA were in hemizygous or homozygosis; and #11.1-2 line (Figure 8), in order to check whether it actually has one copy and whether Mendelian segregation (1:2:1) is accomplished, reinforcing that it is possible to detect this by qPCR.

G2-GFP #11.1 (T2 generation) 4

3,5

LAT52) 3

2,5

2

1,5

copies (relative to 1

ntp II ntp 0,5

0 12234567 G1-GFP Actin

WT G1-GFP #11.1 Figure 8. Number of ntp II copies relative to LAT52 for G2-GFP #11.1 plants in T2 generation. Results from genotyping PCR are also shown below each line. The dotted line in 0.5 value suggests 1 ntp II copy.

ƒ T3 Generation To obtain individual plants of lines G2-GFP #3.1 and #11.1 with a single T-DNA insertion site in their genome, we analyzed the T3 offspring of plants #3.1-1 and #11.1-2. When we analyzed the T3 generation of G2-GFP #3.1-1 by PCR we found that all plants presented the transgene, whereas WT plants, as expected, didn’t show a band for the transgene. By genotyping qPCR we observed that the T3 offspring showed a wide range of T-DNA copies per plant, which means that the T2 mother of these plants didn’t have one insertion in homozygosis but more than one copy in hemizygosis, which in fact are segregating among the T3 individuals. However, we did obtain three T3 plants (#3.1-1-5, -8 and -9) with a ratio of 0.5, meaning that, after segregation, they only contain in their

16 genome one of the copies (in hemizygosis). We can now keep these lines as one-insertion transgenic plants (Figure 9).

G2-GFP #3.1-1 (T3 generation) 4,0

) 3,5 3,0 LAT52

to 2,5

2,0 (raltive 1,5

cpies

II 1,0

ntp 0,5 0,0 121234567891011 G2-GFP Actin

WT #3.1-1 Figure 9. Number of ntp II copies relative to LAT52 for G2-GFP #3.1-.1 plants in T3 generation. Results from genotyping PCR are also shown below each line. The dotted line in 0.5 and in 1 value suggest 1 and 2 ntp II copies respectively.

The T3 offspring of plant G2-GFP #11.1-2 only showed ratios close to 1 (plants #11.1-2-1, -2, -6 and -7), and 0.5 (the rest) (Figure 10). Taking into account that the T2 mother plant had a ratio of 0.5, the data obtained in the T3 generation strongly suggests that we have a single T-DNA insertion in this line. Among the T3 offspring we would have hemizygous plants (ratio 0.5) and homozygous plants for the transgene (ratio 1). We were also expecting to find azygous plants among the T3 generation, since a Mendelian segregation should be taking place. However, we did not obtain any plant lacking the transgene, which could be due to the low number of T3 plants tested. G2-GFP #11.1-2 (T3 generation)

4 ) 3,5

LAT52 3

to 2,5 2 (raltive 1,5

cpies 1 II 0,5 ntp 0 121234567891011 G2-GFP Actin

WT #11.1-2 Figure 10. Number of ntp II copies relative to LAT52 for G2-GFP #11.1-2 plants in T3 generation. Results from genotyping PCR are also shown below each line. The dotted line in 0.5 and in 1 value suggest 1 and 2 ntp II copies respectively.

17 ƒ Validation of the genotyping qPCR technique using the classical method for transgenic plants selection In order to confirm whether our qPCR method is actually informing us about the right T-DNA copy number, we performed a segregation experiment in kanamycin supplemented media. For this experiment we select three different lines described in Material and Methods.

As we can observe in Table 11, the percentage of germination in control medium (MS) for WT (without the kanamycin resistance gene), ntp II line (with the kanamycin resistance gene in homozygosis) and p-GFP #32.1 (ratio 0.5) are 60%, 87% and 77% respectively. When germination rate is taken into account, no WT seeds grew in kanamycin, as expected. In the case of ntp II line, 92% of them grow in 100 μg/mL kanamycin +MS, and 107% of them grow in MS + kanamycin (relative to the germination in rate in MS), confirming that the resistance gene is not segregating. Finally, p-GFP #32.1 line showed a 78% of seeds that grew in MS + Kanamycin (100 μg/ml), whereas the 61% of the seeds grew in MS + Kanamycin (150 μg/ml). These kanamycin resistant rates are close to a Mendelian segregation for one T-DNA insertion (75% of resistance), validating that a line with a ratio of 0.5 actually harbors one copy of the transgene in its (2n) genome.

Table 11. Red row corresponds to the germination rate for each line in different mediums. Orange rows correspond to the percentage of plants that survived taking into account the germination rate for each line and medium. (n= number of seeds sown per line).

WT (n=15) ntp II line (n=15) p-GFP #32.1 (n=30) MS (9/15) (13/15) (23/30)

60% 87% 77%

MS + Kanamycin 0% (12/13) (18/23) (100 μg/ml) 92% 78% MS + Kanamycin 0% (14/13) (14/23)

(150 μg/ml) 108% 61%

As shown in Figure 11, sensitive plants were not able to develop a proper root and most of them showed pale or albino leaves. We bear in mind these two characteristics when deciding which plants were resistant or sensitive.

18

A B

1 cm 1 cm

C D

1 cm 1 cm

E F

1 cm

1 cm

Figure 11. Kanamycin sensitive or resistant tomato seedlings. For each picture, seedlings located on the right were considered resistant whereas the ones located on the left were considered sensitive to kanamycin. (A-B) The seedlings located on the left show two examples of albino phenotype as a consequence of kanamycin, these type of seedlings are not viable. (C-F) They show different stages of development from the less developed to the most developed (10 days’ seedlings) despite stratification process. In all of them we can notice that the differentiation area of the root is well-developed for the plants on the right, on the contrary this area is not well-developed or not even developed for the plants on the left side.

19 Determination of transgene expression levels in selected transgenic plants After validating the genotyping qPCR method, we preferentially selected transgenic plants harboring only one T- DNA insertion (ratio 0.5) for further molecular characterization. Sometimes, although the T-DNA is inserted in the plant genome, the transgene is not actually expressing due to some events more detailed in the discussion. Because of this, it is important to measure the transcript levels of the transgene in each selected transgenic line.

ƒ T1 Generation Among the G1-GFP T1 generation, we selected 9 plants showing a ratio close to 0.5 (meaning one T-DNA insertion) to further analyze the expression level of the transgene. Firstly, we can observe in Figure 12 that WT lines did not express GFP. In contrast, the selected G1-GFP lines showed GFP expression, although the levels varied among plants. The line whose expression is the highest is #3.1, while #24.1 line showed the lowest expression.

MT + G1-GFP (T1 lines) 3

2,5

2

1,5 GFP/ACT 1 (arbitrary units)

0,5

0 1 2 #2.1 #5.1 #3.1 #8.2 #11.1 #14.1 #14.2 #18.1 #24.1 WT G1-GFP

Figure 12. GFP expression levels of G1-GFP and WT plants in T1 generation expressed in arbitrary units. WT plants were used as a control.

Regarding the G3-GFP T1 transgenic lines, we selected 8 plants, again, with a ratio around 0.5 to analyze the transcript levels of the transgene. As we can see in Figure 13, the control plants (WT) didn’t show GFP expression, while the transgenic lines showed a wide variety of GFP expression values. Plants #6.1, #8.1, #23.1, and #17.1 showed the greatest expression among all lines. However, #12.1 showed a very low expression level.

20 G3-GFP (T1 generation) 3

2,5

2

1,5 GFP/ACT

(Arbitrary units) 1

0,5

0 1 2 #4.1 #6.1 #8.1 #10.1 #12.1 #13.1 #23.1 #17.1 WT G3-GFP

Figure 13. GFP expression levels of G3-GFP and WT plants in T1 generation expressed in arbitrary units. WT plants were used as a control.

From p-GFP T1 generation we selected 11 independent one-insertion plants. Among them, #6.1 line showed huge GFP expression levels Figure 14. These GFP transcript levels were also much higher than the previous transgenic lines described in Figures 12 and 13. In order to better compare GFP expression of the rest of the plants, the data from #6.1 line was removed in Figure 14.

p-GFP (T1 generation) 30

25

20

15

GFP/ACT 10 (Arbitrary units) 5

0 1 2 #3.1 #4.1 #6.1 #10.1 #10.2 #17.1 #19.1 #24.1 #25.1 #26.1 WT p-GFP

Figure 14. GFP expression levels of p-GFP and WT plants in T1 generation expressed in arbitrary units. WT plants were used a control.

Once the line #6.1 line was removed, we can observe in Figure 15 that WT lines didn’t show any GFP expression, as expected. Apart from #6.1 line, #17.1 and #19.1 plants showed the highest GFP expression levels, which were

21 more similar to those obtained in G1-GFP and G3-GFP transgenic lines. We also found some lines with very low levels of GFP expression (#3.1 and #4.1)

p-GFP (T1 generation) 3

2,5

2

1,5

GFP/ACT 1 (Arbitrary units)

0,5

0 1 2 #3.1 #4.1 #10.1 #10.2 #17.1 #19.1 #24.1 #25.1 #26.1

WT p-GFP

Figure 15. GFP expression levels of p-GFP and WT plants in T1 generation expressed in arbitrary units where #6.1 line was removed. WT plants were used as a control.

From all these results, we were able to select 3 independent T1 transgenic lines for each transgene to propagate to the T2 generation based on (a) the existence of a single T-DNA insertion in their genome, and (b) their capacity to express the transgene. We chose G1-GFP #5.1, #11.1 and # 14.2 lines, G3-GFP #6.1, #8.1 and #23.1 lines, and pGFP #10.1, #10.2 and #19.1 lines. Sowing their seeds, we will be able to identify homozygous plants directly in the T2 generation by genotyping qPCR and to use them for future studies regarding the biosynthesis of carotenoids in plants.

ƒ T3 generation As for the G2-GFP lines we analyzed the expression of the T3 offspring, regardless of the number of copies. Control plants (WT) didn’t show any GFP expression (Figure 16). Plant #3.1-1-9 showed the highest expression despite having a low copy number ratio (0.7), confirming that transgene expression levels do not depend on the number of T-DNA insertions but mainly on the genome area where the integration occurs (Figure 16).

For the T2 line #11.1-2 we only selected three T3 candidates, two homozygous and one hemizygous plants (Figure 17). The three of them showed similar levels of expression.

22

G2-GFP #3.1-1 (T3 generation)

7

6

5

4

3 GFP/ACT

(Arbitrary units) 2

1

0 121234567891011 WT #3.1-1

Figure 16. GFP expression levels of G2-GFP # 3.1-1 and WT plants in T3 generation expressed in arbitrary units. WT plants were used as a control.

G2-GFP #11.1-2 (T3 generation) 6

5

4

3 GFP/ACT 2 (Arbitrary units)

1

0 1 2 23 26 28 WT #11.1-2

Figure 17. GFP expression levels of G2-GFP and WT plants in T1 generation expressed in arbitrary units. WT plants were used as a control.

From the G2-GFP #3.1-1 transgenic plants we chose #3.1-1-8 and -9, hoping that they harbor only 1 of the insertions, something that we will check in the T4 generation. Among #11.1-2 offspring we decided to sow seeds coming from #11.1-2-2 and -7 homozygous plants.

23 Discussion

Determination of T-DNA copy number The results of this project have proved that the T-DNA copy number can be determined by means of genotyping qPCR. However, this method can have a few drawbacks, for instance, when values are obtained that are not clear-cut. In some of the genotyped lines there were some values that showed a ratio much lower than 0.5 such as G1-GFP #11.1 T1 (Figure 4), G3-GFP #6.1 T1 (Figure 5), p-GFP #26.1 T1 (Figure 6), among others. Taking into account that the T-DNA is integrated since they were PCR-positive and the ratio didn’t exceed 0.5 led to the suggestion that those plants could just have 1 T-DNA copy per 2n genome (i.e., they are likely single hemizygotes). Furthermore, there were other values between 0.5 and 1, such as G3-GFP #4.2 T1 (Figure 5), or p-GFP #35.1 T1 (Figure 6). In these cases, we were not able to ensure if the plant had one or more T-DNA insertions. Therefore, we could either discard them for future experiments or propagate them to confirm the copy number in the next generation. Sometimes we obtained some contradictory results. We found that some lines showed an absence of the transgene by PCR and a positive amplification by genotyping qPCR (G1-GFP #6.2, #11.1 and #15.1 T1 plants (Figure 5); and pGFP #22.1 and #36.1 T1 (Figure 6). For regular PCR, we detected the presence of the transgene using a primer pair that specifically detects the GOI and the GFP: the forward primer anneals in the GOI (G1, G2 or G3) while the reverse primer is specific for the GFP tag. Thus, we ensure that the integration of our transgene in the plant has taken place. However, for the qPCR genotyping experiment we used a primer pair to detect the kanamycin resistant gene (nptII), which is also integrated as part of the T-DNA. Assuming that qPCR has a low error-prone as is a very sensitive technique, and controls (WT plants) were negative in qPCR and PCR, led us to the hypothesis that T-DNA was somehow wrongly or partially inserted. In this way, only a fragment of the T-DNA (harboring the nptII gene) might have been integrated in the genome, whereas the rest was lost, thus being undetectable by PCR with the primers we used. Some studies have suggested that both ssDNA (single-strand DNA) and dsDNA (double-strand) T-DNA integration can occur in plants (Chilton & Que, 2003). However, the way how it is actually integrated in the plant genome remains unknown (Gelvin, 2017). Therefore, it is not easy to set up a possible scenario of how T-DNA could be wrongly or partially inserted, but is still a possibility we cannot discard. To simply overcome this contradictory results, we could use a qPCR primer pair to amplify GFP instead of nptII, which would give us closer results to the genotyping PCR. If the transgene or the GFP are lost during the T-DNA integration we shouldn’t detect it neither by PCR nor by qPCR (or RT-qPCR). Agrobacterium mediated T-DNA integration is illegitimate or random and, as a consequence, the probability that the T-DNA was inserted two times in the same location on both chromosomes is very scarce. Hence, when transformation occurs, either 1 or more copies are considered to be in hemizygosis in the very first transgenic generation (T1). Using genotyping qPCR not only allows us to select the best T1 lines to propagate (according to their copy number), but also to know whether the T-DNA of the T2 plants is in homozygosis or hemizygosis. By

24 contrast, the classical method requires to analyze the segregation of the T3 generation, which is a much longer process, especially in tomato. When the copy number is determined in the next generations, instead of measuring it in the T1, it is much more difficult to obtain conclusions (Figure 7). A T2 plant with a ratio of 0.5 clearly informs that it contains 1 T-DNA insertion in hemizygosis (#3.1-2, #3.1-5 and #3.1-12 lines) (Figure 7). However, sister plants with ratios higher than 1 only inform that the mother had multiple T-DNA insertions. In this case, for instance, a plant with a ratio of 1 (e.g. #3.1-1) informs that it has 2 copies. However, it is impossible to know if the plant has one insertion in homozygosis or two independent insertions in hemizygosis. This should be determined propagating its offspring (T3 generation). The best situation we can find in the offspring of an unknown copy-number T1 line, is that all the daughters show ratios of 0, 0.5 and 1, preferably in Mendelian proportions. This would mean that the mother only had one T-DNA insertion in its genome, and now, in its offspring homozygous plants can be identified (those showing a ratio of 1). We obtained something similar to this situation in the T2 generation of the G2-GFP #11.1 line (Figure 8). We obtained 1 azygous plant (ratio 0), 3 hemizygous plants (ratio 0.5) and 2 homozygous plants (ratio 1), clearly suggesting that we have one-insertion transgenic line. We were also interested in checking the distribution of the T-DNA in the T3 offspring of the T2 plant G2-GFP #3.1- 1 (nptII/LAT52 ratio of 1) (Figure 7). Since we don’t know the ratio of the parental #3.1 line, different possibilities could have occurred. The simplest one would have been that the two copies from #3.1-1 line were in homozygosis (meaning one T-DNA insertion, AA) resulting in an entire homozygous offspring, which did not occur. The other possibility, is that the 2 copies were in hemizygosis (AaBb). According to the Punnet Table A2, we would obtain:

x 1/16 (AABB) Æ Ratio=2 (4 copies, two T-DNA insertions in homozygosis) x 4/16 (AABb + AaBB) Æ Ratio=1.5 (3 copies, one insertion in homozygosis and the other in hemizygosis) x 6/16 (AaBb + AAbb + aaBB) Æ Ratio=1 (2 copies, many possibilities) x 4/16 (Aabb + aaBb) Æ Ratio= 0.5 (1 copy in hemizygosis) x 1/16 (aabb) Æ Ratio=0 (0 copies, azygous)

Table 12. Punnet table showing the Mendelian segregation for two different insertions. Capital letters mean the presence of T-DNA, where the different letters (A or B) mean different T-DNA loci.

gametes AB Ab aB Ab

AB AABB AABb AaBB AaBb

Ab AABb AAbb AaBb Aabb

aB AaBB AaBb aaBB aaBb

ab AaBb Aabb aaBb Aabb

25 Proportions obtained from the Punnet table are hardly consistent with the values showed in Figure 8 (G2-GFP #3.1-1 T3 generation). The use of this method for multiple-insertion lines can hinder the determination of the real copy number. Foremost the small quantity of samples is not representative to know whether the obtained proportions accomplish the Mendelian segregation proposed in Table 2. In addition, in Figure 8, some plants show 2.5 values, meaning 5 copies, a number of copies that is not consistent with a parent with 2 copies in hemizygosis, but it does for 3 or more T-DNA insertions. This could have happened, since other sisters of the parental line #3.1-1 showed ratios up to 3 (meaning up to 6 insertions). Copy number of 3 (in hemizygosis) for parent #3.1-1 could be proposed, but its ratio was far from 1.5 value (ratio=1.06). Despite the inconclusive result, we reinforce the importance of genotyping the very first generation by qPCR. This will facilitate the determination of the copy number of the T1 generation and the T-DNA zygosity of the T2 generation. When we analyzed the offspring of the G2-GFP #11.1-2 line (nptII/LAT52 ratio of 0.5) we didn’t obtain any azygous plant but we found that all the plants showed ratios close to 0.5 (7, 64%) and 1 (4, 36%), confirming again the presence of only one T-DNA insertion in the T1 #11.1 line (Figure 9). The absence of azygous plants could be due to the low number of individuals tested; however, these proportions remain somehow a Mendelian segregation (25% azygous, 50% hemizygous and 25% homozygous).

ƒ Validation of the method Before performing the experiment, we assumed that p-GFP #32.1 line with 0.4 ratio has 1 T-DNA insertion since its ratio is close to 0.5. First, even though WT seedlings seemed to have a low germination rate in MS medium, none of them grew in the presence of kanamycin, which means that the medium was actually selective. Furthermore, ntpII lines grew in selective medium as expected for plants resistant to kanamycin. The p-GFP line showed a germination rate of 77% (23/30) in MS medium. Assuming that this line has a similar germination rate in the selective medium, we can consider that approximately 78% (18/23) and 61%(14/23) of the viable offspring is actually resistant to kanamycin, strongly suggesting that the transgene is segregating according to Mendelian proportions for only one insertion (only the hemizygous - 50% - and homozygous - 25% - plants should be resistant to kanamycin). Due to the 3:1 ratio suggested by the viable offspring from p-GFP line under selective medium (78% and 61%), we can conclude that p-GFP with 0.4 ratio has 1 copy of T-DNA in hemizygosis (Table 11). This experiment, eventually validated the use of qPCR for the determination of the copy number in transgenic plants.

Expression level As it is explained in the Results section, the transgenic lines analyzed showed a different level of GFP expression. We found that the expression level does not correlate either directly or indirectly with the T-DNA copy number.

26 The actual variable that determines T-DNA expression level depends on chromosome packaging, the nucleotide sequence where it is inserted, methylations, posttranscriptional regulations and silencing (Ziemienowicz et al., 2008). Apart from natural processes or regulations from the plant itself, the fact of inserting more genes already harbored in the plant can trigger RNA silencing and interfere with the expression pattern (Schubert et al., 2004), which could be occurring in those lines with really poor levels of transgene expression. To verify if this is happening we should further analyze the expression levels of the endogenous genes (G1, G2 and G3) in the transgenic lines comparing the values with the those obtained from wild-type and pGFP plants. These analyses would confirm the overexpression of these genes in some transgenic plants together with the GFP expression measurement, but also they would show if some of the lines are silencing even the endogenous tomato gene, especially in those that showed such a low GFP transcript levels.

Taking into account the T-DNA copy number and the transgene expression level of the tested tomato transgenic plants, we were able to select the best ones to propagate and eventually obtain the homozygous lines to study the biological processes in which the overexpressed genes are involved. As specified in Results, we selected G1- GFP #5.1, #11.1 and # 14.2 lines (Figure 11); G3-GFP #6.1, #8.1 and #23.1 lines (Figure 12); and pGFP #10.1, #10.2 and #19.1 (Figure 14) lines from the T1 generation of transgenic plants. From the T3 G2-GFP generation we chose #3.1-1-8, #3.1-1-9 (Figure 15), #11.1-2-2 and #11.1-2-7 (Figure 16). Although some single T-DNA insertion plants showed higher levels of GFP expression (e.g. G1-GFP #3.1 or pGFP#19.1) we could not propagate them because their fruits were seedless, something that can happen because of the in vitro plant regeneration or the T-DNA genomic insertion area. Moreover, we decided to select independent transgenic plants overexpressing similar levels of the gene of interest, in order to compare further physiological and molecular experiments. This will allow us to better determine the biological function of the three genes selected (G1, G2 and G3) in tomato carotenoid biosynthesis, using the pGFP lines as control. Conclusions

The results obtained during the development of this project allowed to deduce the following conclusions:

- Genotyping qPCR it is a method that works to assess T-DNA copy number in transgenic tomato plants. Results obtained with this method for the p-GFP #32.1 were in agreement with the results obtained by classical marker segregation assays. - If the genotyping qPCR analysis is applied from the T1 generation, a homozygous line with a single T-DNA insertion per genome could be obtained in the next generation (T2). - Analysis of transgene expression by RT-qPCR demonstrate that there is no direct or inverse correlation between T-DNA copy number and transgene expression levels.

27 Acknowledgment

First of all, I would like to thank Manuel Rodriguez-Concepción for opening his lab doors for me and for the good treat during my stay, not to mention everything I learnt from him. I also want to thank all my lab mates for making me feel at home as well as their kind and selfless help whenever I needed it. I would like to mention “Sci-hub” because they have allowed me, as well as other students, to support this project in a scientific and proven way breaking down barriers in order to make this whole science world wider and accessible. I want to thank very very much to Victoria Barja for her patience, attention, assistance, kindness, support, among many others. In addition, not only for having transmitted such rich knowledge in me, but also for teach and strengthen me important values and attitudes in the research world that I will never forget, being one of the best teachers I have ever had. Last but not least, I would like to acknowledge to my family and my friends for their support and help.

Bibliography

Bustin, S. A. (2000). Absolute quantification of mRNA 51(1), annurev-genet-120215-035320. doi: using real-time reverse transcription polymerase https://doi.org/10.1146/annurev-genet-120215- chain reaction assays. Journal of Molecular 035320 Endocrinology, 25(2), 169–193. doi: https://doi.org/10.1677/jme.0.0250169 Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., & Schilperoort, R. A. (1983). A binary plant vector Chilton, M.-D., & Que, Q. (2003). Targeted Integration of strategy based on separation of vir- and T-region of T-DNA into the Tobacco Genome at Double- the Agrobacterium tumefaciens Ti-plasmid. Nature, Stranded Breaks: New Insights on the Mechanism 303, 179. doi: http://dx.doi.org/10.1038/303179a0 of T-DNA Integration. Plant Physiology, 133(3), 956–965. doi: Ingham, D. J., Beer, S., Money, S., & Hansen, G. (2001). https://doi.org/10.1104/pp.103.026104 Quantitative Real-Time PCR Assay for Determining Transgene Copy Number in. BioTechniques, 31(1), Dan, Y., Yan, H., Munyikwa, T., Dong, J., Zhang, Y., & 132–140. Retrieved from Armstrong, C. L. (2006). MicroTom — a high- https://www.ncbi.nlm.nih.gov/pubmed/11464506 throughput model transformation system for functional genomics. Plant Cell Reports, 25(5), 432– 441. doi: https://doi.org/10.1007/s00299-005- Jaswir, I., Noviendri, D., Fitri, R., & Octavianti, F. (2011). 0084-3 Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. Journal of Medicinal Plants Research, 5(33), 7119– Gelvin, S. B. (2000). Agrobacterium and plant genes 7131. doi: https://doi.org/10.5897/JMPRX11.011 involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Kado, C. I. (2014). Historical account on gaining insights Biology, 51(1), 223–256. doi: on the mechanism of crown gall tumorigenesis https://doi.org/10.1146/annurev.arplant.51.1.223 induced by Agrobacterium tumefaciens. Frontiers in Microbiology, 5(340), 1–15. doi: Gelvin, S. B. (2012). Traversing the Cell: Agrobacterium T- https://doi.org/10.3389/fmicb.2014.00340 DNA’s Journey to the Host Genome. Frontiers in Plant Science, 3(March), 1–11. doi: Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative https://doi.org/10.3389/fpls.2012.00052 gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, Gelvin, S. B. (2017). Integration of Agrobacterium T-DNA 25(4), 402–408. doi: into the Plant Genome. Annual Review of Genetics, https://doi.org/10.1006/meth.2001.1262

28 McCullen, C. A., & Binns, A. N. (2006). Agrobacterium biotechnology, and benefits for nutrition and tumefaciens and Plant Cell Interactions and health. Progress in Lipid Research, 70, 62–93. doi: Activities Required for Interkingdom https://doi.org/10.1016/J.PLIPRES.2018.04.004 Macromolecular Transfer. Annual Review of Cell and Developmental Biology, doi: 22(1), 101–127. Ruiz-sola, M. Á., & Rodríguez-Concepción, M. (2012). doi: Carotenoid Biosynthesis in Arabidopsis : A Colorful https://doi.org/10.1146/annurev.cellbio.22.01110 Pathway. The Arabidopsis Book / American Society 5.102022 of Plant Biologists, 10(e0158), 1–28. doi: https://doi.org/10.1199/tab.0158 Nester, E. W. (2015). Agrobacterium: nature’s genetic engineer. Frontiers in Plant Science, 5(730), 1–16. Sawada, H., Ieki, H., Oyaizu, H., & Matsumoto, S. (1993). doi: https://doi.org/10.3389/fpls.2014.00730 Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Agrobacterium and for Agrobacterium radiobacter Quantification of mRNA using real-time RT-PCR. and Agrobacterium rhizogenes. International Nature Protocols, 1(3), 1559–1582. doi: Journal of Systematic Bacteriology, 43(4), 694–702. https://doi.org/10.1038/nprot.2006.236 doi: https://doi.org/10.1099/00207713-43-4-694

Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Simon, P. (2003). Q-Gene: Processing quantitative real- Boronat, A., Gomez-Gomez, L., Hornero-Mendez, time RT-PCR data. Bioinformatics, 19(11), 1439– D., Limon M. C., Meléndez-Martínez, A. J., 1440. doi: Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, https://doi.org/10.1093/bioinformatics/btg157 M. J., Zacarias, & L., Zhu, C. (2018). A global perspective on carotenoids: Metabolism, Chemistry, 53(2), 183–190. doi: https://doi.org/10.1021/jf0493730Ingha Schubert, D., Lechtenberg, B., Forsbach, A., Gils, M., Bahadur, S., & Schmidt, R. (2004). Silencing in Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., & Chua, N.- Arabidopsis T-DNA Transformants: The H. (2006). Agrobacterium-mediated transformation Predominant Role of a Gene-Specific RNA Sensing of Arabidopsis thaliana using the floral dip method. Mechanism versus Position Effects. The Plant Cell Nature Protocols, 1(2), 641–646. doi: Online, 16(10), 2561–2572. doi: http://dx.doi.org/10.1038/nprot.2006.97 https://doi.org/10.1105/tpc.104.024547 Ziemienowicz, A., Tzfira, T., & Hohn, B. (2008). Yang, L., Pan, A., Jia, J., Ding, J., Chen, J., Cheng, H., Zang, Mechanisms of T-DNA integration BT - C., & Zhang, D. (2005). Validation of a tomato- Agrobacterium: From Biology to Biotechnology. In specific gene, LAT52, used as an endogenous T. Tzfira & V. Citovsky (Eds.) (pp. 395–440). New reference gene in qualitative and real-time York, NY: Springer New York. doi: quantitative PCR detection of transgenic https://doi.org/10.1007/978-0-387-72290-0_11 tomatoes. Journal of Agricultural and Food

29