High Efficiency Spectral Analysis and BLAS-3 Randomized QRCP With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conjugate Gradient Method (Part 4) Pre-Conditioning Nonlinear Conjugate Gradient Method
18-660: Numerical Methods for Engineering Design and Optimization Xin Li Department of ECE Carnegie Mellon University Pittsburgh, PA 15213 Slide 1 Overview Conjugate Gradient Method (Part 4) Pre-conditioning Nonlinear conjugate gradient method Slide 2 Conjugate Gradient Method Step 1: start from an initial guess X(0), and set k = 0 Step 2: calculate ( ) ( ) ( ) D 0 = R 0 = B − AX 0 Step 3: update solution D(k )T R(k ) X (k +1) = X (k ) + µ (k )D(k ) where µ (k ) = D(k )T AD(k ) Step 4: calculate residual ( + ) ( ) ( ) ( ) R k 1 = R k − µ k AD k Step 5: determine search direction R(k +1)T R(k +1) (k +1) = (k +1) + β (k ) β = D R k +1,k D where k +1,k (k )T (k ) D R Step 6: set k = k + 1 and go to Step 3 Slide 3 Convergence Rate k ( + ) κ(A) −1 ( ) X k 1 − X ≤ ⋅ X 0 − X κ(A) +1 Conjugate gradient method has slow convergence if κ(A) is large I.e., AX = B is ill-conditioned In this case, we want to improve convergence rate by pre- conditioning Slide 4 Pre-Conditioning Key idea Convert AX = B to another equivalent equation ÃX̃ = B̃ Solve ÃX̃ = B̃ by conjugate gradient method Important constraints to construct ÃX̃ = B̃ à is symmetric and positive definite – so that we can solve it by conjugate gradient method à has a small condition number – so that we can achieve fast convergence Slide 5 Pre-Conditioning AX = B −1 −1 L A⋅ X = L B L−1 AL−T ⋅ LT X = L−1B A X B ̃ ̃ ̃ L−1AL−T is symmetric and positive definite, if A is symmetric and positive definite T (L−1 AL−T ) = L−1 AL−T T X T L−1 AL−T X = (L−T X ) ⋅ A⋅(L−T X )> 0 Slide -
Arxiv:1911.09220V2 [Cs.MS] 13 Jul 2020
MFEM: A MODULAR FINITE ELEMENT METHODS LIBRARY ROBERT ANDERSON, JULIAN ANDREJ, ANDREW BARKER, JAMIE BRAMWELL, JEAN- SYLVAIN CAMIER, JAKUB CERVENY, VESELIN DOBREV, YOHANN DUDOUIT, AARON FISHER, TZANIO KOLEV, WILL PAZNER, MARK STOWELL, VLADIMIR TOMOV Lawrence Livermore National Laboratory, Livermore, USA IDO AKKERMAN Delft University of Technology, Netherlands JOHANN DAHM IBM Research { Almaden, Almaden, USA DAVID MEDINA Occalytics, LLC, Houston, USA STEFANO ZAMPINI King Abdullah University of Science and Technology, Thuwal, Saudi Arabia Abstract. MFEM is an open-source, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of dis- cretization approaches and emphasis on usability, portability, and high-performance computing efficiency. MFEM's goal is to provide application scientists with access to cutting-edge algorithms for high-order finite element mesh- ing, discretizations and linear solvers, while enabling researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel and GPU-accelerated settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. arXiv:1911.09220v2 [cs.MS] 13 Jul 2020 1. Introduction The Finite Element Method (FEM) is a powerful discretization technique that uses general unstructured grids to approximate the solutions of many partial differential equations (PDEs). It has been exhaustively studied, both theoretically and in practice, in the past several decades [1, 2, 3, 4, 5, 6, 7, 8]. MFEM is an open-source, lightweight, modular and scalable software library for finite elements, featuring arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing (HPC) efficiency [9]. -
Singular Value Decomposition (SVD)
San José State University Math 253: Mathematical Methods for Data Visualization Lecture 5: Singular Value Decomposition (SVD) Dr. Guangliang Chen Outline • Matrix SVD Singular Value Decomposition (SVD) Introduction We have seen that symmetric matrices are always (orthogonally) diagonalizable. That is, for any symmetric matrix A ∈ Rn×n, there exist an orthogonal matrix Q = [q1 ... qn] and a diagonal matrix Λ = diag(λ1, . , λn), both real and square, such that A = QΛQT . We have pointed out that λi’s are the eigenvalues of A and qi’s the corresponding eigenvectors (which are orthogonal to each other and have unit norm). Thus, such a factorization is called the eigendecomposition of A, also called the spectral decomposition of A. What about general rectangular matrices? Dr. Guangliang Chen | Mathematics & Statistics, San José State University3/22 Singular Value Decomposition (SVD) Existence of the SVD for general matrices Theorem: For any matrix X ∈ Rn×d, there exist two orthogonal matrices U ∈ Rn×n, V ∈ Rd×d and a nonnegative, “diagonal” matrix Σ ∈ Rn×d (of the same size as X) such that T Xn×d = Un×nΣn×dVd×d. Remark. This is called the Singular Value Decomposition (SVD) of X: • The diagonals of Σ are called the singular values of X (often sorted in decreasing order). • The columns of U are called the left singular vectors of X. • The columns of V are called the right singular vectors of X. Dr. Guangliang Chen | Mathematics & Statistics, San José State University4/22 Singular Value Decomposition (SVD) * * b * b (n>d) b b b * b = * * = b b b * (n<d) * b * * b b Dr. -
Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases
Week 11 Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 11.1 Opening Remarks 11.1.1 Low Rank Approximation * View at edX 463 Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 464 11.1.2 Outline 11.1. Opening Remarks..................................... 463 11.1.1. Low Rank Approximation............................. 463 11.1.2. Outline....................................... 464 11.1.3. What You Will Learn................................ 465 11.2. Projecting a Vector onto a Subspace........................... 466 11.2.1. Component in the Direction of ............................ 466 11.2.2. An Application: Rank-1 Approximation...................... 470 11.2.3. Projection onto a Subspace............................. 474 11.2.4. An Application: Rank-2 Approximation...................... 476 11.2.5. An Application: Rank-k Approximation...................... 478 11.3. Orthonormal Bases.................................... 481 11.3.1. The Unit Basis Vectors, Again........................... 481 11.3.2. Orthonormal Vectors................................ 482 11.3.3. Orthogonal Bases.................................. 485 11.3.4. Orthogonal Bases (Alternative Explanation).................... 488 11.3.5. The QR Factorization................................ 492 11.3.6. Solving the Linear Least-Squares Problem via QR Factorization......... 493 11.3.7. The QR Factorization (Again)........................... 494 11.4. Change of Basis...................................... 498 11.4.1. The Unit Basis Vectors, -
Eigen Values and Vectors Matrices and Eigen Vectors
EIGEN VALUES AND VECTORS MATRICES AND EIGEN VECTORS 2 3 1 11 × = [2 1] [3] [ 5 ] 2 3 3 12 3 × = = 4 × [2 1] [2] [ 8 ] [2] • Scale 3 6 2 × = [2] [4] 2 3 6 24 6 × = = 4 × [2 1] [4] [16] [4] 2 EIGEN VECTOR - PROPERTIES • Eigen vectors can only be found for square matrices • Not every square matrix has eigen vectors. • Given an n x n matrix that does have eigenvectors, there are n of them for example, given a 3 x 3 matrix, there are 3 eigenvectors. • Even if we scale the vector by some amount, we still get the same multiple 3 EIGEN VECTOR - PROPERTIES • Even if we scale the vector by some amount, we still get the same multiple • Because all you’re doing is making it longer, not changing its direction. • All the eigenvectors of a matrix are perpendicular or orthogonal. • This means you can express the data in terms of these perpendicular eigenvectors. • Also, when we find eigenvectors we usually normalize them to length one. 4 EIGEN VALUES - PROPERTIES • Eigenvalues are closely related to eigenvectors. • These scale the eigenvectors • eigenvalues and eigenvectors always come in pairs. 2 3 6 24 6 × = = 4 × [2 1] [4] [16] [4] 5 SPECTRAL THEOREM Theorem: If A ∈ ℝm×n is symmetric matrix (meaning AT = A), then, there exist real numbers (the eigenvalues) λ1, …, λn and orthogonal, non-zero real vectors ϕ1, ϕ2, …, ϕn (the eigenvectors) such that for each i = 1,2,…, n : Aϕi = λiϕi 6 EXAMPLE 30 28 A = [28 30] From spectral theorem: Aϕ = λϕ 7 EXAMPLE 30 28 A = [28 30] From spectral theorem: Aϕ = λϕ ⟹ Aϕ − λIϕ = 0 (A − λI)ϕ = 0 30 − λ 28 = 0 ⟹ λ = 58 and -
Accelerating the LOBPCG Method on Gpus Using a Blocked Sparse Matrix Vector Product
Accelerating the LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product Hartwig Anzt and Stanimire Tomov and Jack Dongarra Innovative Computing Lab University of Tennessee Knoxville, USA Email: [email protected], [email protected], [email protected] Abstract— the computing power of today’s supercomputers, often accel- erated by coprocessors like graphics processing units (GPUs), This paper presents a heterogeneous CPU-GPU algorithm design and optimized implementation for an entire sparse iter- becomes challenging. ative eigensolver – the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) – starting from low-level GPU While there exist numerous efforts to adapt iterative lin- data structures and kernels to the higher-level algorithmic choices ear solvers like Krylov subspace methods to coprocessor and overall heterogeneous design. Most notably, the eigensolver technology, sparse eigensolvers have so far remained out- leverages the high-performance of a new GPU kernel developed side the main focus. A possible explanation is that many for the simultaneous multiplication of a sparse matrix and a of those combine sparse and dense linear algebra routines, set of vectors (SpMM). This is a building block that serves which makes porting them to accelerators more difficult. Aside as a backbone for not only block-Krylov, but also for other from the power method, algorithms based on the Krylov methods relying on blocking for acceleration in general. The subspace idea are among the most commonly used general heterogeneous LOBPCG developed here reveals the potential of eigensolvers [1]. When targeting symmetric positive definite this type of eigensolver by highly optimizing all of its components, eigenvalue problems, the recently developed Locally Optimal and can be viewed as a benchmark for other SpMM-dependent applications. -
Hybrid Algorithms for Efficient Cholesky Decomposition And
Hybrid Algorithms for Efficient Cholesky Decomposition and Matrix Inverse using Multicore CPUs with GPU Accelerators Gary Macindoe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of UCL. 2013 ii I, Gary Macindoe, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signature : Abstract The use of linear algebra routines is fundamental to many areas of computational science, yet their implementation in software still forms the main computational bottleneck in many widely used algorithms. In machine learning and computational statistics, for example, the use of Gaussian distributions is ubiquitous, and routines for calculating the Cholesky decomposition, matrix inverse and matrix determinant must often be called many thousands of times for com- mon algorithms, such as Markov chain Monte Carlo. These linear algebra routines consume most of the total computational time of a wide range of statistical methods, and any improve- ments in this area will therefore greatly increase the overall efficiency of algorithms used in many scientific application areas. The importance of linear algebra algorithms is clear from the substantial effort that has been invested over the last 25 years in producing low-level software libraries such as LAPACK, which generally optimise these linear algebra routines by breaking up a large problem into smaller problems that may be computed independently. The performance of such libraries is however strongly dependent on the specific hardware available. LAPACK was originally de- veloped for single core processors with a memory hierarchy, whereas modern day computers often consist of mixed architectures, with large numbers of parallel cores and graphics process- ing units (GPU) being used alongside traditional CPUs. -
Singular Value Decomposition (SVD) 2 1.1 Singular Vectors
Contents 1 Singular Value Decomposition (SVD) 2 1.1 Singular Vectors . .3 1.2 Singular Value Decomposition (SVD) . .7 1.3 Best Rank k Approximations . .8 1.4 Power Method for Computing the Singular Value Decomposition . 11 1.5 Applications of Singular Value Decomposition . 16 1.5.1 Principal Component Analysis . 16 1.5.2 Clustering a Mixture of Spherical Gaussians . 16 1.5.3 An Application of SVD to a Discrete Optimization Problem . 22 1.5.4 SVD as a Compression Algorithm . 24 1.5.5 Spectral Decomposition . 24 1.5.6 Singular Vectors and ranking documents . 25 1.6 Bibliographic Notes . 27 1.7 Exercises . 28 1 1 Singular Value Decomposition (SVD) The singular value decomposition of a matrix A is the factorization of A into the product of three matrices A = UDV T where the columns of U and V are orthonormal and the matrix D is diagonal with positive real entries. The SVD is useful in many tasks. Here we mention some examples. First, in many applications, the data matrix A is close to a matrix of low rank and it is useful to find a low rank matrix which is a good approximation to the data matrix . We will show that from the singular value decomposition of A, we can get the matrix B of rank k which best approximates A; in fact we can do this for every k. Also, singular value decomposition is defined for all matrices (rectangular or square) unlike the more commonly used spectral decomposition in Linear Algebra. The reader familiar with eigenvectors and eigenvalues (we do not assume familiarity here) will also realize that we need conditions on the matrix to ensure orthogonality of eigenvectors. -
A Singularly Valuable Decomposition: the SVD of a Matrix Dan Kalman
A Singularly Valuable Decomposition: The SVD of a Matrix Dan Kalman Dan Kalman is an assistant professor at American University in Washington, DC. From 1985 to 1993 he worked as an applied mathematician in the aerospace industry. It was during that period that he first learned about the SVD and its applications. He is very happy to be teaching again and is avidly following all the discussions and presentations about the teaching of linear algebra. Every teacher of linear algebra should be familiar with the matrix singular value deco~??positiolz(or SVD). It has interesting and attractive algebraic properties, and conveys important geometrical and theoretical insights about linear transformations. The close connection between the SVD and the well-known theo1-j~of diagonalization for sylnmetric matrices makes the topic immediately accessible to linear algebra teachers and, indeed, a natural extension of what these teachers already know. At the same time, the SVD has fundamental importance in several different applications of linear algebra. Gilbert Strang was aware of these facts when he introduced the SVD in his now classical text [22, p. 1421, obselving that "it is not nearly as famous as it should be." Golub and Van Loan ascribe a central significance to the SVD in their defini- tive explication of numerical matrix methods [8, p, xivl, stating that "perhaps the most recurring theme in the book is the practical and theoretical value" of the SVD. Additional evidence of the SVD's significance is its central role in a number of re- cent papers in :Matlgenzatics ivlagazine and the Atnericalz Mathematical ilironthly; for example, [2, 3, 17, 231. -
Matrix Inversion Using Cholesky Decomposition
Matrix Inversion Using Cholesky Decomposition Aravindh Krishnamoorthy, Deepak Menon ST-Ericsson India Private Limited, Bangalore [email protected], [email protected] Abstract—In this paper we present a method for matrix inversion Upper triangular elements, i.e. : based on Cholesky decomposition with reduced number of operations by avoiding computation of intermediate results; further, we use fixed point simulations to compare the numerical ( ∑ ) accuracy of the method. … (4) Keywords-matrix, inversion, Cholesky, LDL. Note that since older values of aii aren’t required for computing newer elements, they may be overwritten by the I. INTRODUCTION value of rii, hence, the algorithm may be performed in-place Matrix inversion techniques based on Cholesky using the same memory for matrices A and R. decomposition and the related LDL decomposition are efficient Cholesky decomposition is of order and requires techniques widely used for inversion of positive- operations. Matrix inversion based on Cholesky definite/symmetric matrices across multiple fields. decomposition is numerically stable for well conditioned Existing matrix inversion algorithms based on Cholesky matrices. decomposition use either equation solving [3] or triangular matrix operations [4] with most efficient implementation If , with is the linear system with requiring operations. variables, and satisfies the requirement for Cholesky decomposition, we can rewrite the linear system as In this paper we propose an inversion algorithm which … (5) reduces the number of operations by 16-17% compared to the existing algorithms by avoiding computation of some known By letting , we have intermediate results. … (6) In section 2 of this paper we review the Cholesky and LDL decomposition techniques, and discuss solutions to linear and systems based on them. -
MFEM: a Modular Finite Element Methods Library
MFEM: A Modular Finite Element Methods Library Robert Anderson1, Andrew Barker1, Jamie Bramwell1, Jakub Cerveny2, Johann Dahm3, Veselin Dobrev1,YohannDudouit1, Aaron Fisher1,TzanioKolev1,MarkStowell1,and Vladimir Tomov1 1Lawrence Livermore National Laboratory 2University of West Bohemia 3IBM Research July 2, 2018 Abstract MFEM is a free, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing efficiency. Its mission is to provide application scientists with access to cutting-edge algorithms for high-order finite element meshing, discretizations and linear solvers. MFEM also enables researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. Contents 1 Introduction 3 2 Overview of the Finite Element Method 4 3Meshes 9 3.1 Conforming Meshes . 10 3.2 Non-Conforming Meshes . 11 3.3 NURBS Meshes . 12 3.4 Parallel Meshes . 12 3.5 Supported Input and Output Formats . 13 1 4 Finite Element Spaces 13 4.1 FiniteElements....................................... 14 4.2 DiscretedeRhamComplex ................................ 16 4.3 High-OrderSpaces ..................................... 17 4.4 Visualization . 18 5 Finite Element Operators 18 5.1 DiscretizationMethods................................... 18 5.2 FiniteElementLinearSystems . 19 5.3 Operator Decomposition . 23 5.4 High-Order Partial Assembly . 25 6 High-Performance Computing 27 6.1 Parallel Meshes, Spaces, and Operators . 27 6.2 Scalable Linear Solvers . -
AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization
AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric Positive-Definite Matrices n×n Symmetric matrix A 2 R is symmetric positive definite (SPD) if T n x Ax > 0 for x 2 R nf0g n×n Hermitian matrix A 2 C is Hermitian positive definite (HPD) if ∗ n x Ax > 0 for x 2 C nf0g SPD matrices have positive real eigenvalues and orthogonal eigenvectors Note: Most textbooks only talk about SPD or HPD matrices, but a positive-definite matrix does not need to be symmetric or Hermitian! A real matrix A is positive definite iff A + AT is SPD T n If x Ax ≥ 0 for x 2 R nf0g, then A is said to be positive semidefinite Xiangmin Jiao Numerical Analysis I 2 / 11 Properties of Symmetric Positive-Definite Matrices SPD matrix often arises as Hessian matrix of some convex functional I E.g., least squares problems; partial differential equations If A is SPD, then A is nonsingular Let X be any n × m matrix with full rank and n ≥ m. Then T I X X is symmetric positive definite, and T I XX is symmetric positive semidefinite n×m If A is n × n SPD and X 2 R has full rank and n ≥ m, then X T AX is SPD Any principal submatrix (picking some rows and corresponding columns) of A is SPD and aii > 0 Xiangmin Jiao Numerical Analysis I 3 / 11 Cholesky Factorization If A is symmetric positive definite, then there is factorization of A A = RT R where R is upper triangular, and all its diagonal entries are positive Note: Textbook calls is “Cholesky