How Perception of Translucency Depends on Lighting Direction

Total Page:16

File Type:pdf, Size:1020Kb

How Perception of Translucency Depends on Lighting Direction Journal of Vision (2014) 14(3):17, 1–22 http://www.journalofvision.org/content/14/3/17 1 Looking against the light: How perception of translucency depends on lighting direction Department of Computer Science, American University, Bei Xiao Washington, DC, USA # $ Department of Computer Science, Cornell University, Ithaca, Bruce Walter NY, USA # $ Harvard School of Engineering and Applied Sciences, Ioannis Gkioulekas Cambridge, MA, USA # $ Harvard School of Engineering and Applied Sciences, Todd Zickler Cambridge, MA, USA # $ Department of Brain and Cognitive Sciences, Edward Adelson Massachusetts Institute of Technology, Cambridge, MA, USA Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Computer Science, Cornell University, Kavita Bala Ithaca, NY, USA # $ Translucency is an important aspect of material (2013) to span an important range of translucent appearance. To some extent, humans are able to appearance. We find the degree of translucency estimate translucency in a consistent way across constancy depends strongly on the phase function’s different shapes and lighting conditions, i.e., to exhibit location in the same 2D space, suggesting that the space translucency constancy. However, Fleming and Bulthoff¨ captures useful information about different types of (2005) have shown that that there can be large failures translucency. We also find that the geometry of an object of constancy, with lighting direction playing an important is important. We compare the case of a torus, which has role. In this paper, we explore the interaction of shape, a simple smooth shape, with that of the figurine, which illumination, and degree of translucency constancy more has more complex geometric features. The complex deeply by including in our analysis the variations in shape shows a greater range of apparent translucencies translucent appearance that are induced by the shape of and a higher degree of constancy failure. In summary, the scattering phase function. This is an aspect of humans show significant failures of translucency translucency that has been largely neglected. We used constancy across changes in lighting direction, but the appearance matching to measure how perceived effect depends both on the shape complexity and the translucency depends on both lighting and phase translucency phase function. function. The stimuli were rendered scenes that contained a figurine and the lighting direction was represented by spherical harmonic basis function. Observers adjusted the density of a figurine under one lighting condition to match the material property of a Introduction target figurine under another lighting condition. Across the trials, we varied both the lighting direction and the Many natural materials we encounter every day are phase function of the target. The phase functions were translucent, including the food we eat, the liquids we sampled from a 2D space proposed by Gkioulekas et al. drink, and our skin. The translucent appearance of Citation: Xiao, B., Walter, B., Gkioulekas, I., Zickler, T., Adelson, E., & Bala, K. (2014). Looking against the light: how perception of translucency depends on lighting direction. Journal of Vision, 14(3):17, 1–22, http://www.journalofvision.org/content/14/3/17, doi:10.1167/14.3.17. doi: 10.1167/14.3.17 Received October 7, 2013; published March 13, 2014 ISSN 1534-7362 Ó 2014 ARVO Journal of Vision (2014) 14(3):17, 1–22 Xiao et al. 2 Figure 1. Translucent materials. (A) Studio photographs of a cherub figurine made with polyurethane lit from two lighting directions, from behind and from the side. The one on the left looks more translucent. (B) Photographs of two different translucent materials under the same natural illumination. The same ‘‘frog prince’’ shape was made of two different translucent materials, soap, and wax. Observers can discriminate the subtle differences between the two materials. these materials is caused by internal volumetric translucent appearance of the two materials is very scattering. Figure 1A shows photographs of a cherub different. Since in the natural world translucent under two different lighting directions. One distinctive materials are the norm, not the exception (Donner et feature of the material is that it is permeable to light. al., 2009), it makes sense that the human visual system We see part of the green background through the thin is well engineered to analyze them. However, very little parts of the cherub, such as its wings. This is because is known about how the visual system recognizes and some light penetrates into the cherub that allowed the discriminates translucent materials from images. background to be seen through the object. Creating controlled inputs to study translucency Humans are skilled at discriminating subtle differ- with real objects is a challenge as it is hard to ences in translucency, such as when they discriminate manufacture objects with specific scattering parame- milk from cream, wax from soap, and human flesh ters. Further, until very recently rendering realistic from a doll. Figure 1B shows photographs under translucent objects was not feasible using computer natural illumination of the same ‘‘frog prince’’ shape simulation, thus preventing the use of such stimuli for made of two different materials, soap and wax; the controlled studies. Therefore, most previous work in Journal of Vision (2014) 14(3):17, 1–22 Xiao et al. 3 translucency perception has focused on stimuli with Background and related work simple shapes, unnatural illumination, and a limited set of materials. These works hypothesized that image cues We begin by introducing the physical process of such as specular highlights, blur, image contrast, and subsurface scattering that is responsible for the color variation could influence the perception of appearance of the translucent objects, the phase translucency. However, to understand translucency function models, and current rendering methods for perception in the real world, we need to expand on each translucency. We will then review previous studies on of these three parameters: We need to consider complex material perception and constancy, with an emphasis shapes, realistic lighting, and a richer set of materials. on the effects of lighting environment and 3D shape. It is commonly observed that lighting has dramatic effects on translucent objects: They tend to appear more translucent under backlighting. For example, Translucent materials people often hold up a translucent object against a light Subsurface scattering: Figure 2A illustrates how light while studying it. This change in lighting direction also interacts with translucent objects and the parameters causes many of the measureable image properties (such controlling subsurface scattering. When light hits the as image contrast, location of specular highlights, cast surface of an opaque object, it bounces back from the shadows, luminance histograms, etc.) to change. point that is illuminated. When light hits a translucent Studying the effect of lighting direction on translucency object, only some of it bounces off from the surface. can be very informative of the images cues used by the The rest penetrates into the object, refracts, and visual system. In addition, the lighting effect varies scatters multiple times within the body of the medium, depending on the 3D shapes and material properties of until it re-emerges outside from a different location. In objects. For example, the translucent appearance of a computer graphics, this process can be modeled using jade bracelet might be more sensitive to a change of the radiative transfer equation (RTE) (Ishimaru, 1978). lighting direction than a bar of soap. Therefore, This approach models the material using three wave- studying lighting on translucency perception with a length dependent functions, the scattering coefficient rs, controlled 3D shape and material properties is impor- the absorption coefficient ra, and the phase function p. tant. For light at a single wavelength, rs and ra describe how Changing lighting direction also influences the rapidly the light is scattered and absorbed in the perception of 3D shape of an object, which indirectly medium. When light is scattered, the phase function, influences the perception of material properties (Ger- which is a probability distribution over directions, ardin, Kourtzi, & Mamassian, 2010; Koenderink & van describes the angular distribution of scattered light. Doorn, 2001; Olkkonen & Brainard, 2011; Todd, 2004; The sum of the scattering and absorption coefficients is Wijntjes & Pont, 2010). A previous study on the effect called the extinction coefficient, rt rs ra, also referred ¼ þ of lighting direction on translucency used a simple to as the density of the material, and the ratio rs/rt is shape, a torus (Fleming & Bu¨lthoff, 2005). By called the albedo. The density controls the degree of observing translucent objects in real life, we find translucency of the medium. A more translucent lighting direction influences objects that have a medium has a low density while a less translucent variation of thin and thick geometry, such as the medium has a high density. When light interacts with cherub shown in Figure 1A, in a different way from an the medium, the albedo controls what fraction of this object with a simple geometry, such as a torus (Xiao et light is scattered instead of being absorbed. The al., 2012). Gkioulekas et al. (2013) showed that scattered light then continues in new directions
Recommended publications
  • Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers Maxime Droques, Benoit Barviau, Alexandre Kudlinski, Géraud Bouwmans and Arnaud Mussot
    Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers Maxime Droques, Benoit Barviau, Alexandre Kudlinski, Géraud Bouwmans and Arnaud Mussot Abstract— We propose a very simple method for measuring the zero-dispersion wavelength of an optical fiber as well as the ratio between the third- and fourth-order dispersion terms. The method is based on the four wave mixing process when pumping the fiber in the normal dispersion region, and only requires the measurement of two spectra, provided that a source tunable near the zero- dispersion wavelength is available. We provide an experimental demonstration of the method in a photonic crystal fiber and we show that the measured zero-dispersion wavelength is in good agreement with a low-coherence interferometry measurement. Index Terms— Photonic crystal fiber, four-wave-mixing, chromatic dispersion, zero-dispersion wavelength. I. INTRODUCTION Group velocity dispersion (GVD) is one of the key characteristics of optical fibers. It is thus important to be able to accurately measure this parameter. The techniques developed to reach this goal can be divided into two main categories: the ones based on linear processes, such as time-of-flight, phase-shift or interferometric measurements [1-4]; and the ones based on nonlinear effects, such as four wave mixing (FWM), mainly [5-8]. The main advantage of these last ones is that the GVD measurement can be made in fiber samples ranging from a few meters up to hundred of meters long, while linear techniques are restricted to either very short samples (in the meter range) or to very long ones (in the kilometer range).
    [Show full text]
  • Tauc-Lorentz Dispersion Formula
    TN11 Tauc-Lorentz Dispersion Formula Spectroscopic ellipsometry (SE) is a technique based on the measurement of the relative phase change of re- flected and polarized light in order to characterize thin film optical functions and other properties. The meas- ured SE data are used to describe a model where layers refer to given materials. The model uses mathematical relations called dispersion formulae that help to evaluate the material’s optical properties by adjusting specific fit parameters. This technical note deals with Tauc-Lorentz dispersion formula. Theoretical model The real part εr,TL of the dielectric function is derived from the expression of εi using the Kramers-Kronig integration. Jellison and Modine developed this model (1996) using Then, it comes the following expression for εi: the Tauc joint density of states and the Lorentz oscillator. The complex dielectric function is : 2 ∞ ξ ⋅ε ()ξ ε ()E = ε ()∞ + ⋅ P ⋅ i dξ ()5 ~ε =ε + i ⋅ε =ε + i ⋅(ε × ε ) (1) r r π ∫ ξ 2 − E 2 TL r,TL i,TL r,TL i,T i, L Eg Here the imaginary part εi,TL of the dielectric function is where P is the Cauchy principal value containing the resi- given by the product of imaginary part of Tauc’s (1966) dues of the integral at poles located on lower half of the dielectric εi,T function with Lorentz one εi,L. In the approx- complex plane and along the real axis. imation of parabolic bands, Tauc’s dielectric function de- According to Jellison and Modine (Ref. 1), the derivation scribes inter-band transitions above the band edge as : of the previous integral yields : E − E 2 ⎛ g ⎞ 2 2 εi,T ()E > Eg = AT ⋅⎜ ⎟ ()2 A⋅C ⋅a ⎡ E + E + α ⋅ E ⎤ ⎜ E ⎟ ln 0 g g ⎝ ⎠ εr,TL ()E = ε∞ + 4 ⋅ln⎢ 2 2 ⎥ where : 2⋅π ⋅ζ ⋅α ⋅ E0 ⎣⎢ E0 + Eg − α ⋅ Eg ⎦⎥ -A is the Tauc coefficient T A a ⎡ ⎛ 2⋅ E + α ⎞ - E is the photon energy − ⋅ a tan ⋅ π − arctan⎜ g ⎟ + 4 ⎢ ⎜ ⎟ K -Eg is the optical band gap π ζ ⋅ E0 ⎣ ⎝ C ⎠ The imaginary part of Tauc’s dielectric function gives the ⎛ α − 2⋅ E ⎞⎤ response of the material caused by inter-band mecha- g + arctan⎜ ⎟⎥ nisms only : thus εi, T (E ≤ Eg) = 0.
    [Show full text]
  • Section 5: Optical Amplifiers
    SECTION 5: OPTICAL AMPLIFIERS 1 OPTICAL AMPLIFIERS S In order to transmit signals over long distances (>100 km) it is necessary to compensate for attenuation losses within the fiber. S Initially this was accomplished with an optoelectronic module consisting of an optical receiver, a regeneration and equalization system, and an optical transmitter to send the data. S Although functional this arrangement is limited by the optical to electrical and electrical to optical conversions. Fiber Fiber OE OE Rx Tx Electronic Amp Optical Equalization Signal Optical Regeneration Out Signal In S Several types of optical amplifiers have since been demonstrated to replace the OE – electronic regeneration systems. S These systems eliminate the need for E-O and O-E conversions. S This is one of the main reasons for the success of today’s optical communications systems. 2 OPTICAL AMPLIFIERS The general form of an optical amplifier: PUMP Power Amplified Weak Fiber Signal Signal Fiber Optical AMP Medium Optical Signal Optical Out Signal In Some types of OAs that have been demonstrated include: S Semiconductor optical amplifiers (SOAs) S Fiber Raman and Brillouin amplifiers S Rare earth doped fiber amplifiers (erbium – EDFA 1500 nm, praseodymium – PDFA 1300 nm) The most practical optical amplifiers to date include the SOA and EDFA types. New pumping methods and materials are also improving the performance of Raman amplifiers. 3 Characteristics of SOA types: S Polarization dependent – require polarization maintaining fiber S Relatively high gain ~20 dB S Output saturation power 5-10 dBm S Large BW S Can operate at 800, 1300, and 1500 nm wavelength regions.
    [Show full text]
  • Examples of Translucent Objects
    Examples Of Translucent Objects Chancier and ecclesiological Chan never nebulise his heroes! Afternoon and affirmable Garvin often arterialised some yokes glisteringly or nuggets jealously. Rationalist and papist Erastus attunes while frogged Robb descant her mercs anaerobically and misclassifies moistly. You wish them, a whole and water droplets in translucent materials, like to be directed to translucent, and translucency is pumpkin seed oil. Learn more energy when the error you found that is diffused and table into light? Light can see more light through the image used in illumination affects the number of the materials differ. Explain the examples of a technically precise result. Assigned two example, the teaching for online counselling session has. If the object scatters light. Opaque objects examples intersecting volumes clad in translucency rating increases with textiles and we examined the example of these materials, it can you? Learn from objects examples of translucency controls are called translucent object has a great instructors. Opaque materials which the example of light to authenticated users to work the question together your new class can exit this activity to contact with. Please reload this means cannot see through a lahu man smoking against the of examples of how the choice between a few moving parts that a meaning they transmit. You study the object is. Here ߤ and examples of object looktranslucent or water spray, they interact with every day. Raft product for example of objects, the patterns and to. Students to object, but it allows us improve the example of material appears here is. Emailing our online counselling session expired game yet when describing phenomena such objects? You some examples of translucency image as an example of.
    [Show full text]
  • Chapter 19/ Optical Properties
    Chapter 19 /Optical Properties The four notched and transpar- ent rods shown in this photograph demonstrate the phenomenon of photoelasticity. When elastically deformed, the optical properties (e.g., index of refraction) of a photoelastic specimen become anisotropic. Using a special optical system and polarized light, the stress distribution within the speci- men may be deduced from inter- ference fringes that are produced. These fringes within the four photoelastic specimens shown in the photograph indicate how the stress concentration and distribu- tion change with notch geometry for an axial tensile stress. (Photo- graph courtesy of Measurements Group, Inc., Raleigh, North Carolina.) Why Study the Optical Properties of Materials? When materials are exposed to electromagnetic radia- materials, we note that the performance of optical tion, it is sometimes important to be able to predict fibers is increased by introducing a gradual variation and alter their responses. This is possible when we are of the index of refraction (i.e., a graded index) at the familiar with their optical properties, and understand outer surface of the fiber. This is accomplished by the mechanisms responsible for their optical behaviors. the addition of specific impurities in controlled For example, in Section 19.14 on optical fiber concentrations. 766 Learning Objectives After careful study of this chapter you should be able to do the following: 1. Compute the energy of a photon given its fre- 5. Describe the mechanism of photon absorption quency and the value of Planck’s constant. for (a) high-purity insulators and semiconduc- 2. Briefly describe electronic polarization that re- tors, and (b) insulators and semiconductors that sults from electromagnetic radiation-atomic in- contain electrically active defects.
    [Show full text]
  • Principles and Applications of CVD Powder Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Principles and applications of CVD powder technology Constantin Vahlas, Brigitte Caussat, Philippe Serp and George N. Angelopoulos Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, CIRIMAT-UMR CNRS 5085, ENSIACET-INPT, 118 Route de Narbonne, 31077 Toulouse cedex 4, France Laboratoire de Génie Chimique, LGC-UMR CNRS 5503, ENSIACET-INPT, 5 rue Paulin Talabot, BP1301, 31106 Toulouse cedex 1, France Laboratoire de Catalyse, Chimie Fine et Polymères, LCCFP-INPT, ENSIACET, 118 Route de Narbonne, 31077 Toulouse cedex 4, France Department of Chemical Engineering, University of Patras, University Campus, 26500 Patras, Greece Abstract Chemical vapor deposition (CVD) is an important technique for surface modification of powders through either grafting or deposition of films and coatings. The efficiency of this complex process primarily depends on appropriate contact between the reactive gas phase and the solid particles to be treated. Based on this requirement, the first part of this review focuses on the ways to ensure such contact and particularly on the formation of fluidized beds. Combination of constraints due to both fluidization and chemical vapor deposition leads to the definition of different types of reactors as an alternative to classical fluidized beds, such as spouted beds, circulating beds operating in turbulent and fast-transport regimes or vibro- fluidized beds. They operate under thermal but also plasma activation of the reactive gas and their design mainly depends on the type of powders to be treated. Modeling of both reactors and operating conditions is a valuable tool for understanding and optimizing these complex processes and materials.
    [Show full text]
  • Optical Properties and Phase-Change Transition in Ge2sb2te5 Flash Evaporated Thin Films Studied by Temperature Dependent Spectroscopic Ellipsometry
    Optical properties and phase-change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry J. Orava1*, T. Wágner1, J. Šik2, J. Přikryl1, L. Beneš3, M. Frumar1 1Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Cs. Legion’s Sq. 565, Pardubice, 532 10 Czech Republic 2ON Semiconductor Czech Republic, R&D Europe, 1. máje 2230, Rožnov pod Radhoštěm, 756 61 Czech Republic 3Joint Laboratory of Solid State Chemistry of the Institute of Macromolecular Chemistry AS CR, v.v.i. and University of Pardubice, Studentská 84, Pardubice, 53210 Czech Republic *Corresponding author: tel.: +420 466 037 220, fax: +420 466 037 311 *E-mail address: [email protected] Keywords: Ge2Sb2Te5, optical properties, ellipsometry, amorphous, fcc PACs: 07.60.Fs, 77.84.Bw, 78.20.-e, 78.20.Bh Abstract We studied the optical properties of as-prepared (amorphous) and thermally crystallized (fcc) flash evaporated Ge2Sb2Te5 thin films using variable angle spectroscopic ellipsometry in the photon energy range 0.54 - 4.13 eV. We employed Tauc-Lorentz model (TL) and Cody- Lorentz model (CL) for amorphous phase and Tauc-Lorentz model with one additional Gaussian oscillator for fcc phase data analysis. The amorphous phase has optical bandgap opt energy Eg = 0.65 eV (TL) or 0.63 eV (CL) slightly dependent on used model. The Urbach edge of amorphous thin film was found to be ~ 70 meV. Both models behave very similarly and accurately fit to the experimental data at energies above 1 eV. The Cody-Lorentz model is more accurate in describing dielectric function in the absorption onset region.
    [Show full text]
  • Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: a Review
    molecules Review Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review Maryam Saeed 1,*, Yousef Alshammari 2, Shereen A. Majeed 3 and Eissa Al-Nasrallah 1 1 Energy and Building Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; [email protected] 2 Waikato Centre for Advanced Materials, School of Engineering, The University of Waikato, Hamilton 3240, New Zealand; [email protected] 3 Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; [email protected] * Correspondence: [email protected]; Tel.: +965-99490373 Received: 8 July 2020; Accepted: 18 August 2020; Published: 25 August 2020 Abstract: Graphene as the 2D material with extraordinary properties has attracted the interest of research communities to master the synthesis of this remarkable material at a large scale without sacrificing the quality. Although Top-Down and Bottom-Up approaches produce graphene of different quality, chemical vapour deposition (CVD) stands as the most promising technique. This review details the leading CVD methods for graphene growth, including hot-wall, cold-wall and plasma-enhanced CVD. The role of process conditions and growth substrates on the nucleation and growth of graphene film are thoroughly discussed. The essential characterisation techniques in the study of CVD-grown graphene are reported, highlighting the characteristics of a sample which can be extracted from those techniques. This review also offers a brief overview of the applications to which CVD-grown graphene is well-suited, drawing particular attention to its potential in the sectors of energy and electronic devices.
    [Show full text]
  • Different Types of Dispersions in an Optical Fiber
    International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 ISSN 2250-3153 Different Types of Dispersions in an Optical Fiber N.Ravi Teja, M.Aneesh Babu, T.R.S.Prasad, T.Ravi B.tech Final Year Students (ECE) ,KL University, Vaddeswaram, Andhra Pradesh, India. Abstract- The intended application of our Different Types of Dispersions in an optical fiber. In this report we discuss about the III. ADVANTAGES OF FIBER OPTICS Optical Fiber and its advantages, Theory and principles of the Fiber Optics has the following advantages: fiber optics, Fiber geometry, Types of optical fiber, Different (I) Optical Fibers are non-conductive (Dielectrics). parameters and characteristics of fiber are also explained. Fiber (II) Electromagnetic Immunity: has linear and non-linear characteristics. Linear characteristics (III) Large Bandwidth (> 5.0 GHz for 1 km length) are wavelength window, bandwidth, attenuation and dispersion. (IV) Small, Lightweight cables. Non-linear characteristics depend on the fiber manufacturing, (V) Security. geometry etc.Dispersion is the spreading of light pulse as its travels down the length of an optical fiber. Dispersion limits the Principle of Operation - Theory bandwidth or information carrying capacity of a fiber. Total Internal Reflection - The Reflection that Occurs when a Light Ray Travelling in One Material Hits a Different Material Index Terms- Optical Fibers, Dispersions, Modal Dispersions, and Reflects Back into the Original Material without any Loss of Material Dispersion, Wave Guide Dispersions, Polarization Light Dispersions, Chromatic Dispersions. I. INTRODUCTION opper wires have been used in data transmission since the C invention of the telephone in 1876. But as the demand increased, the use of copper wires consistently got reduced due to many reasons such as low bandwidth, short transmission length and inefficiency.
    [Show full text]
  • Porcelain Enamel Coatings, from the Past to the Future: Solved and Unsolved Issues for the Improvement of Their Mechanical Properties
    Porcelain enamel coatings, from the past to the future: solved and unsolved issues for the improvement of their mechanical properties. Created by: Stefano Rossi , Francesca Russo Version received: 1 May 2020 Porcelain enamel coatings have their origins in ancient times when they were mainly used for decorative and ornamental purposes. From the industrial revolution onwards, these coatings have started to be used also as functional layers, ranging from home applications up to the use in high-technological fields, such as in chemical reactors. The excellent properties of enamel coatings, such as fire resistance, protection of the substrate from corrosion, resistance to atmospheric and chemical degradation, mainly depend and originate from the glassy nature of the enamel matrix itself. On the other side, the vitreous nature of enamel coatings limits their application in many fields, where mechanical stress and heavy abrasion phenomena could lead to nucleation and propagation of cracks inside the material, thus negatively affecting the protective properties of this coating. Many efforts have been made to improve the abrasion resistance of enamelled materials. On this regard, researchers showed encouraging results and proposed many different improvement approaches. Now it is possible to obtain enamels with enhanced resistance to abrasion. Differently, the investigation of the mechanical properties of enamel coatings remains a poorly studied topic. In the literature, there are interesting methodological ideas, which could be successfully applied to the mechanical study of enamelled materials and could allow to have further insights on their behaviour. Thus, the path that should be followed in the future includes the mechanical characterization of these coatings and the search for new solutions to address their brittle behaviour.
    [Show full text]
  • SCHOTT AG Infomail
    Follow us: Advanced Optics - News Flash 02/2014 Hot Topic: N-FK58: A new extremely low dispersion optical glass with excellent processing properties SCHOTT has improved its melting capabilities for the production of low dispersion glasses. During a recent melting campaign for N-PK52A and N-FK51A, two low dispersion glasses from SCHOTT, the development of a new extremely low dispersion (XLD) glass N-FK58 was accomplished by a successful production run. Low dispersion and extremely low dispersion glasses are required for optical designs to improve the apochromatic colour correction, especially in combination with anomalous dispersion glasses like the KZFS glasses. Information: optical position: nd = 1.45600, vd = 90.80 extremely low dispersion excellent processing properties offers outstanding apochromatic correction capabilities in combination with SCHOTT KZFS glasses (e.g. N-KZFS4/5/8/11) supplements the low dispersion glass portfolio of N-PK52A and N-FK51A will become an on-stock glass The datasheet of the XLD glass N-FK58 is currently under development and will be available soon. For more information on available formats, please contact your sales agent. SCHOTT Advanced Optics will exhibit these glasses at the upcoming Optatec exhibition (booth 3.0/D12) which will take place May 20th - 22nd, 2014 in Frankfurt, Germany. More Other recent developments TIE's: New look and feel SCHOTT Advanced Optics has recently reworked their TIE's (Technical Information) in order to even better serve our customers needs. These popular technical papers that provide detailed information on the properties of our optical glass as well as our extremely low expansion glass ceramic ZERODUR®, will be revised step by step in terms of layout and content until end of 2014.
    [Show full text]
  • Optics 101 for Non-Optical Engineers Huntington Camera Club
    Optics 101 for non-optical engineers Huntington Camera Club Stuart W. Singer 1 Table of Contents Basic Terms (Units, Light, Refraction, Reflection, Diffraction) Lens Design Parameters f/numbers Depth of Field & Hyperfocal Distance Lens Design Types Basic Filters Anti-Reflection Coatings / Glare Sensor Sizes / Lens Conversion Factors 2 Optics 101 Basic Optical Terms 3 COMMONLY USED UNITS Centimeters = 10 -2 meter cm Millimeters = 10 -3 meter mm Micrometers = 10 -6 meter µm Micron = 10 -6 meter µm Millimicron = 10 -9 meter mµ Nanometer = 10 -9 meter nm Angstrom = 10 -10 meter Å Inch = 25.4mm In Millimeter = 0.03937in mm Furlong = 201.168 meter 4 Basic Optical Terms / Definitions Light = Electromagnetic radiation detectable by the Human eye , ranging in wavelength from about 400nm to 700nm (1 nanometer = 1 x 10 -9 meters) Electromagnetic Spectrum WAVE LENGTHS IN MICROMETERS 10 -9 10 -7 10 -5 10 -3 10 -1 10 2 10 4 10 6 10 8 COSMIC GAMMA X-RAYS UV IR MICRO TV AM RADIO RAYS RAYS RAYS RAYS WAVE WAVES VISIBLE SPECTRUM (nanometers) 5 Basic Optical Terms / Definitions Refraction = The bending of oblique incident rays as they pass from a medium having one refractive index into a medium with a different refractive index Index = N (Air) Index = N’ (Glass) 6 Basic Optical Terms / Definitions Diffraction = As a wavefront of light passes by an opaque edge or through an opening, secondary weaker wavefronts are generated. These secondary wavefronts will interfere with the primary wavefront as well as each other to form various diffraction patterns. Secondary Diffracted Wavefront Wavefront Incident Wavefront 7 Basic Optical Terms /Definitions Reflection = Return of radiation by a surface, without change in wavelength.
    [Show full text]