Advantages of a Continuous Thrust Strategy from a Geosynchronous Transfer Orbit, Using High Specific Impulse Thrusters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Perturbations and Station-Keeping Requirements in Highly-Inclined Geosynchronous Orbits
ANALYSIS OF PERTURBATIONS AND STATION-KEEPING REQUIREMENTS IN HIGHLY-INCLINED GEOSYNCHRONOUS ORBITS Elena Fantino(1), Roberto Flores(2), Alessio Di Salvo(3), and Marilena Di Carlo(4) (1)Space Studies Institute of Catalonia (IEEC), Polytechnic University of Catalonia (UPC), E.T.S.E.I.A.T., Colom 11, 08222 Terrassa (Spain), [email protected] (2)International Center for Numerical Methods in Engineering (CIMNE), Polytechnic University of Catalonia (UPC), Building C1, Campus Norte, UPC, Gran Capitan,´ s/n, 08034 Barcelona (Spain) (3)NEXT Ingegneria dei Sistemi S.p.A., Space Innovation System Unit, Via A. Noale 345/b, 00155 Roma (Italy), [email protected] (4)Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom), [email protected] Abstract: There is a demand for communications services at high latitudes that is not well served by conventional geostationary satellites. Alternatives using low-altitude orbits require too large constellations. Other options are the Molniya and Tundra families (critically-inclined, eccentric orbits with the apogee at high latitudes). In this work we have considered derivatives of the Tundra type with different inclinations and eccentricities. By means of a high-precision model of the terrestrial gravity field and the most relevant environmental perturbations, we have studied the evolution of these orbits during a period of two years. The effects of the different perturbations on the constellation ground track (which is more important for coverage than the orbital elements themselves) have been identified. We show that, in order to maintain the ground track unchanged, the most important parameters are the orbital period and the argument of the perigee. -
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
Reference System Issues in Binary Star Calculations
Reference System Issues in Binary Star Calculations Poster for Division A Meeting DAp.1.05 George H. Kaplan Consultant to U.S. Naval Observatory Washington, D.C., U.S.A. [email protected] or [email protected] IAU General Assembly Honolulu, August 2015 1 Poster DAp.1.05 Division!A! !!!!!!Coordinate!System!Issues!in!Binary!Star!Computa3ons! George!H.!Kaplan! Consultant!to!U.S.!Naval!Observatory!!([email protected][email protected])! It!has!been!es3mated!that!half!of!all!stars!are!components!of!binary!or!mul3ple!systems.!!Yet!the!number!of!known!orbits!for!astrometric!and!spectroscopic!binary!systems!together!is! less!than!7,000!(including!redundancies),!almost!all!of!them!for!bright!stars.!!A!new!genera3on!of!deep!allLsky!surveys!such!as!PanLSTARRS,!Gaia,!and!LSST!are!expected!to!lead!to!the! discovery!of!millions!of!new!systems.!!Although!for!many!of!these!systems,!the!orbits!may!be!poorly!sampled!ini3ally,!it!is!to!be!expected!that!combina3ons!of!new!and!old!data!sources! will!eventually!lead!to!many!more!orbits!being!known.!!As!a!result,!a!revolu3on!in!the!scien3fic!understanding!of!these!systems!may!be!upon!us.! The!current!database!of!visual!(astrometric)!binary!orbits!represents!them!rela3ve!to!the!“plane!of!the!sky”,!that!is,!the!plane!orthogonal!to!the!line!of!sight.!!Although!the!line!of!sight! to!stars!constantly!changes!due!to!proper!mo3on,!aberra3on,!and!other!effects,!there!is!no!agreed!upon!standard!for!what!line!of!sight!defines!the!orbital!reference!plane.!! Furthermore,!the!computa3on!of!differen3al!coordinates!(component!B!rela3ve!to!A)!for!a!given!date!must!be!based!on!the!binary!system’s!direc3on!at!that!date.!!Thus,!a!different! -
Sentinel-1 Constellation SAR Interferometry Performance Verification
Sentinel-1 Constellation SAR Interferometry Performance Verification Dirk Geudtner1, Francisco Ceba Vega1, Pau Prats2 , Nestor Yaguee-Martinez2 , Francesco de Zan3, Helko Breit3, Andrea Monti Guarnieri4, Yngvar Larsen5, Itziar Barat1, Cecillia Mezzera1, Ian Shurmer6 and Ramon Torres1 1 ESA ESTEC 2 DLR, Microwaves and Radar Institute 3 DLR, Remote Sensing Technology Institute 4 Politecnico Di Milano 5 Northern Research Institute (Norut) 6 ESA ESOC ESA UNCLASSIFIED - For Official Use Outline • Introduction − Sentinel-1 Constellation Mission Status − Overview of SAR Imaging Modes • Results from the Sentinel-1B Commissioning Phase • Azimuth Spectral Alignment Impact on common − Burst synchronization Doppler bandwidth − Difference in mean Doppler Centroid Frequency (InSAR) • Sentinel-1 Orbital Tube and InSAR Baseline • Demonstration of cross S-1A/S-1B InSAR Capability for Surface Deformation Mapping ESA UNCLASSIFIED - For Official Use ESA Slide 2 Sentinel-1 Constellation Mission Status • Constellation of two SAR C-band (5.405 GHz) satellites (A & B units) • Sentinel-1A launched on 3 April, 2014 & Sentinel-1B on 25 April, 2016 • Near-Polar, sun-synchronous (dawn-dusk) orbit at 698 km • 12-day repeat cycle (each satellite), 6 days for the constellation • Systematic SAR data acquisition using a predefined observation scenario • More than 10 TB of data products daily (specification of 3 TB) • 3 X-band Ground stations (Svalbard, Matera, Maspalomas) + upcoming 4th core station in Inuvik, Canada • Use of European Data Relay System (EDRS) provides -
Circular Orbits
ANALYSIS AND MECHANIZATION OF LAUNCH WINDOW AND RENDEZVOUS COMPUTATION PART I. CIRCULAR ORBITS Research & Analysis Section Tech Memo No. 175 March 1966 BY J. L. Shady Prepared for: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION / GEORGE C. MARSHALL SPACE FLIGHT CENTER AERO-ASTRODYNAMICS LABORATORY Prepared under Contract NAS8-20082 Reviewed by: " D. L/Cooper Technical Supervisor Director Research & Analysis Section / NORTHROP SPACE LABORATORIES HUNTSVILLE DEPARTMENT HUNTSVILLE, ALABAMA FOREWORD The enclosed presents the results of work performed by Northrop Space Laboratories, Huntsville Department, while )under contract to the Aero- Astrodynamfcs Laboratory of Marshall Space Flight Center (NAS8-20082) * This task was conducted in response to the requirement of Appendix E-1, Schedule Order No. PO. Technical coordination was provided by Mr. Jesco van Puttkamer of the Technical and Scientific Staff (R-AERO-T) ABS TRACT This repart presents Khe results of an analytical study to develop the logic for a digrtal c3mp;lrer sclbrolrtine for the automatic computationof launch opportunities, or the sequence of launch times, that rill allow execution of various mades of gross ~ircuiarorbit rendezvous. The equations developed in this study are based on tho-bady orb:taf chmry. The Earch has been assumed tcr ha.:e the shape of an oblate spheroid. Oblateness of the Earth has been accounted for by assuming the circular target orbit to be space- fixed and by cosrecring che T ational raLe of the EarKh accordingly. Gross rendezvous between the rarget vehicle and a maneuverable chaser vehicle, assumed to be a standard 3+ uprated Saturn V launched from Cape Kennedy, is in this srudy aecomplfshed by: .x> direct ascent to rendezvous, or 2) rendezvous via an intermediate circG1a.r parking orbit. -
Some of the Scientific Miracles in Brief ﻹﻋﺠﺎز اﻟﻌﻠ� ﻲﻓ ﺳﻄﻮر English [ إ�ﻠ�ي - ]
Some of the Scientific Miracles in Brief ﻟﻋﺠﺎز ﻟﻌﻠ� ﻓ ﺳﻄﻮر English [ إ���ي - ] www.onereason.org website مﻮﻗﻊ ﺳﺒﺐ وﻟﺣﺪ www.islamreligion.com website مﻮﻗﻊ دﻳﻦ ﻟﻋﺳﻼم 2013 - 1434 Some of the Scientific Miracles in Brief Ever since the dawn of mankind, we have sought to understand nature and our place in it. In this quest for the purpose of life many people have turned to religion. Most religions are based on books claimed by their followers to be divinely inspired, without any proof. Islam is different because it is based upon reason and proof. There are clear signs that the book of Islam, the Quran, is the word of God and we have many reasons to support this claim: - There are scientific and historical facts found in the Qu- ran which were unknown to the people at the time, and have only been discovered recently by contemporary science. - The Quran is in a unique style of language that cannot be replicated, this is known as the ‘Inimitability of the Qu- ran.’ - There are prophecies made in the Quran and by the Prophet Muhammad, may God praise him, which have come to be pass. This article lays out and explains the scientific facts that are found in the Quran, centuries before they were ‘discov- ered’ in contemporary science. It is important to note that the Quran is not a book of science but a book of ‘signs’. These signs are there for people to recognise God’s existence and 2 affirm His revelation. As we know, science sometimes takes a ‘U-turn’ where what once scientifically correct is false a few years later. -
Principles and Techniques of Remote Sensing
BASIC ORBIT MECHANICS 1-1 Example Mission Requirements: Spatial and Temporal Scales of Hydrologic Processes 1.E+05 Lateral Redistribution 1.E+04 Year Evapotranspiration 1.E+03 Month 1.E+02 Week Percolation Streamflow Day 1.E+01 Time Scale (hours) Scale Time 1.E+00 Precipitation Runoff Intensity 1.E-01 Infiltration 1.E-02 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Length Scale (meters) 1-2 BASIC ORBITS • Circular Orbits – Used most often for earth orbiting remote sensing satellites – Nadir trace resembles a sinusoid on planet surface for general case – Geosynchronous orbit has a period equal to the siderial day – Geostationary orbits are equatorial geosynchronous orbits – Sun synchronous orbits provide constant node-to-sun angle • Elliptical Orbits: – Used most often for planetary remote sensing – Can also be used to increase observation time of certain region on Earth 1-3 CIRCULAR ORBITS • Circular orbits balance inward gravitational force and outward centrifugal force: R 2 F mg g s r mv2 F c r g R2 F F v s g c r 2r r T 2r 2 v gs R • The rate of change of the nodal longitude is approximated by: d 3 cos I J R3 g dt 2 2 s r 7 2 1-4 Orbital Velocities 9 8 7 6 5 Earth Moon 4 Mars 3 Linear Velocity in km/sec in Linear Velocity 2 1 0 200 400 600 800 1000 1200 1400 Orbit Altitude in km 1-5 Orbital Periods 300 250 200 Earth Moon Mars 150 Orbital Period in MinutesPeriodOrbitalin 100 50 200 400 600 800 1000 1200 1400 Orbit Altitude in km 1-6 ORBIT INCLINATION EQUATORIAL I PLANE EARTH ORBITAL PLANE 1-7 ORBITAL NODE LONGITUDE SUN ORBITAL PLANE EARTH VERNAL EQUINOX 1-8 SATELLITE ORBIT PRECESSION 1-9 CIRCULAR GEOSYNCHRONOUS ORBIT TRACE 1-10 ORBIT COVERAGE • The orbit step S is the longitudinal difference between two consecutive equatorial crossings • If S is such that N S 360 ; N, L integers L then the orbit is repetitive. -
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance -
An Assessment of Aerocapture and Applications to Future Missions
Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission. -
Multisatellite Determination of the Relativistic Electron Phase Space Density at Geosynchronous Orbit: Methodology and Results During Geomagnetically Quiet Times Y
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, A10210, doi:10.1029/2004JA010895, 2005 Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: Methodology and results during geomagnetically quiet times Y. Chen, R. H. W. Friedel, and G. D. Reeves Los Alamos National Laboratory, Los Alamos, New Mexico, USA T. G. Onsager NOAA, Boulder, Colorado, USA M. F. Thomsen Los Alamos National Laboratory, Los Alamos, New Mexico, USA Received 10 November 2004; revised 20 May 2005; accepted 8 July 2005; published 20 October 2005. [1] We develop and test a methodology to determine the relativistic electron phase space density distribution in the vicinity of geostationary orbit by making use of the pitch-angle resolved energetic electron data from three Los Alamos National Laboratory geosynchronous Synchronous Orbit Particle Analyzer instruments and magnetic field measurements from two GOES satellites. Owing to the Earth’s dipole tilt and drift shell splitting for different pitch angles, each satellite samples a different range of Roederer L* throughout its orbit. We use existing empirical magnetic field models and the measured pitch-angle resolved electron spectra to determine the phase space density as a function of the three adiabatic invariants at each spacecraft. Comparing all satellite measurements provides a determination of the global phase space density gradient over the range L* 6–7. We investigate the sensitivity of this method to the choice of the magnetic field model and the fidelity of the instrument intercalibration in order to both understand and mitigate possible error sources. Results for magnetically quiet periods show that the radial slopes of the density distribution at low energy are positive, while at high energy the slopes are negative, which confirms the results from some earlier studies of this type. -
Gravity-Assist Trajectories to Jupiter Using Nuclear Electric Propulsion
AAS 05-398 Gravity-Assist Trajectories to Jupiter Using Nuclear Electric Propulsion ∗ ϒ Daniel W. Parcher ∗∗ and Jon A. Sims ϒϒ This paper examines optimal low-thrust gravity-assist trajectories to Jupiter using nuclear electric propulsion. Three different Venus-Earth Gravity Assist (VEGA) types are presented and compared to other gravity-assist trajectories using combinations of Earth, Venus, and Mars. Families of solutions for a given gravity-assist combination are differentiated by the approximate transfer resonance or number of heliocentric revolutions between flybys and by the flyby types. Trajectories that minimize initial injection energy by using low resonance transfers or additional heliocentric revolutions on the first leg of the trajectory offer the most delivered mass given sufficient flight time. Trajectory families that use only Earth gravity assists offer the most delivered mass at most flight times examined, and are available frequently with little variation in performance. However, at least one of the VEGA trajectory types is among the top performers at all of the flight times considered. INTRODUCTION The use of planetary gravity assists is a proven technique to improve the performance of interplanetary trajectories as exemplified by the Voyager, Galileo, and Cassini missions. Another proven technique for enhancing the performance of space missions is the use of highly efficient electric propulsion systems. Electric propulsion can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems.1,2 This technology has been demonstrated on the Deep Space 1 mission 3 − part of NASA’s New Millennium Program to validate technologies which can lower the cost and risk and enhance the performance of future missions. -
Positioning: Drift Orbit and Station Acquisition
Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.