Ionospheric Electric Fields, Currents, and Resulting Magnetic Fields Variations

Total Page:16

File Type:pdf, Size:1020Kb

Ionospheric Electric Fields, Currents, and Resulting Magnetic Fields Variations Ionospheric Electric Fields, Currents, and Resulting Magnetic Fields Variations Junhu Du A thesis submitted for the degree of Doctor of Philosophy . Ill - The Faculty of Science and Technology The University of New South Wales Sydney, 1998 CERTIFICATE OF ORIGINALITY 1 lleteby declare that this submission is my own work and to die best of my knowledge it conllins no materials previously published or wriam by -tbcr person, nor material which ID a substantial extent bas been accepted for die awanl of any other degree or diploma at UNSW or any other educational insti1ution, except where due acknowleclgement is llllde in the thesis. Any contribution lllldc ID the research by odlers, with whom I bave worlted at UNSW or elsewllcre, is explicitly acknowledged in lbe thesis. l also declare that lbe intellec1ull content of this thesis is lbe product of my own ..t, except ID die extent that ISSis1ance from others in lbe project's design 111d c:mc:eption or in style, ~talion and linguistic expression is acknowledged. (~) ....... Abstract This thesis uses an equivalent circuit model to calculate ionospheric electric fields, current densities and introduced magnetic fields variations on the ground. The winds used as input are adjusted to yield values of the calculated parameters close to those which have been measured experimentally. The role of the field aligned current is examined. MSIS-90 and IRl-86 are adopted in the program to represent the neutral atmosphere and the ionosphere. The flux tube integrated conductivities in the E and F region are compared. It is found that the ionospheric electric dynamo process is controlled by the E region during daytime but by the F region during nighttime. The F region has a larger effect on the dynamo processes during solar maximum than at solar minimum, and during equinox than in solstice. The different wind models are included and their contributions to the ionospheric electric fields are discussed. We studied the electric field variations with altitude, season and solar activity. In equatorial area, the ionospheric eastward electric field changes very little within the whole ionosphere. The southward(equatorward) electric field is large and changes quickly with height in the E region although it is nearly constant in the F region. The prereversal enhancement of the eastward electric field is produced by the F region dynamo. We conclude that the Forbes and Gillette tidal wind omitting the semidiurnal eastward component can repro­ duce most features of the Jicamarca experiment and the AE-E and DE-2 satellite observations of the electric fields. The HWM90 empirical wind model failed to produce the observed electric field and it seems the semidiurnal wind in HWM90 is too strong. The changes of the field aligned current with altitude, UT, season and solar ac­ tivity are examined. We find that the field aligned current is sensitive to the arithmetic method used and is located mainly in the E and low F region. The non-coincidence of the geomagnetic and geographic equators has a strong effect on the field aligned current in the equatorial zone. The solar activity does not much influence the field aligned current distribution pattern but changes its magni­ tude and introduces considerable field aligned current at night. The field aligned currents driven by Forbes' winds for March equinox and December solstice flow mainly from the southern to northern hemisphere in the morning and vice versa in the afternoon at F region heights. The observed magnetic field variations on the ground are well reproduced in our simulations. It was shown that the field aligned current is the main contributor to the eastward magnetic field component in the equatorial zone. The longitudinal inequality of the northward magnetic field is introduced mainly by the variations of the local magnetic field intensity. The electric field variations have only a mi­ nor effect. The northward magnetic field variations with the solar activity are introduced by changes of the E region equatorward electric field and the Hall conductivity. The difference in the seasonal dependence between simulations and observations in the equatorial zone is pointed out. It seems that a more accurate wind model is needed. Acknowledgments The work described in this thesis was carried out in the School of Physics at the University of New South Wales under the direction of Associate Professor Robert J. Stening. I would like to take this opportunity to express my most heartfelt gratitude to my supervisor, Associate Professor Robert J. Stening, for allowing me use his equivalent circuit codes, for his unflagging encouragement, constant reassurance, careful supervision, and patient guidance both during the research and prepara­ tion of this thesis. Thanks must also go to my fellow student Scott, who has provided me with mis­ cellaneous help and useful discussions concerning the ionospheric physics. Great thinks also go to Weihong Zheng, who has helped me with computer graphing. I am very grateful to my wife Wei Sun and my son Johnny Du for their support and understanding throughout the course of my study. I also acknowledge the financial support provided by an Australia Commonwealth Government Overseas Postgraduate ·Research Scholarship scheme, and another scholarship provided by Associate Professor Robert J. Stening which makes my research possible. Contents 1 Introduction 1 1.1 Introduction . 1 1.2 Simulation models 2 1.2.1 No feedback between the electrodynamics and the neutral motions .............. 3 1.2.1.1 Equivalent Circuit Network 3 1.2.1.2 Differential Equation .... 4 1.2.2 Feedback between the Electrodynamics and the Neutral Motions 8 1.3 Experiments . 10 1.3.1 Rockets 10 1.3.2 Incoherent Scatter Radar . 10 1.3.2.1 Equatorial Region. 10 1.3.2.2 Low and Middle Latitude 14 1.3.2.3 Empirical Drift Model 15 1.3.3 HF Coherent Scatter Radar 15 1.3.4 Satellite .......... 17 2 Simulation Model 21 2.1 Introduction .. 21 2.2 Equivalent Circuit 21 2.3 Perpendicular Current Density . 26 2.3.1 No Dynamo in F Region 27 2.3.2 No Dynamo in E Region 28 2.4 Scale Factor . 28 2.5 Equipotential Lines • • I • • • • • • • • • • • • • • • • • • • • • 31 2.6 Field Aligned Current 32 2.7 Magnetic Field Variations on the ground 33 3 Conductivity and Background Atmosphere 38 3.1 Conductivity .... 38 3.2 Collision Frequency . 39 3.3 Electron Temperature 42 3.4 Neutral Atmosphere . 44 11 3.5 Ionosphere . 46 3.6 Internal Magnetic Field . 47 3. 7 Atmospheric Wind 48 3.7.1 History ... 48 3.7.2 The (1, -2) Tidal Winds in E Region and Measured F Re­ gion Zonal Winds . 49 3.7.3 Forbes Diurnal and Semidiurnal Tidal Winds 51 3. 7.4 HWM90 . 53 4 Flux Tube Integrated Conductivity 55 4.1 Introduction . 55 4.2 Equations .. 57 4.3 Flux Tube Integrated Conductivity 58 4.3.1 Altitude distribution . 58 4.3.2 Local Time Variation . 60 4.3.3 Solar Activity Dependence . 60 4.3.4 Longitudinal Variation 70 4.3.5 Seasonal Variation 70 4.4 Discussion 71 4.5 Summary 72 lll 5 Electric Fields and Currents 74 5.1 Introduction . 74 5.2 Electric Field and Current Produced by the (1, -2) mode in the E region and the F Region Winds 75 5.2.1 E Region alone . 76 5.2.2 Whole Ionosphere . 77 5.2.2.1 Dynamo in the E region only 77 5.2.2.2 Dynamo in the F Region only 78 5.2.2.3 Dynamo Operating Throughout the Whole Ionosphere 79 5.2.3 Altitude Variation 80 5.2.3.1 Daytime . 80 5.2.3.2 Nighttime 82 5.2.4 Solar Activity Dependence . 83 5.3 Electric Field Produced by Forbes' Tidal Winds 84 5.3.1 Altitude Variation 86 5.3.2 Seasonal Variation 86 5.3.3 Solar Activity Dependence . 87 5.4 Electric Field Produced by HWM90 Winds . 88 5.5 Comparison and Conclusion ........ 88 lV 6 Field Aligned Current 111 6.1 Introduction .... 111 6.2 Altitude Variation 112 6.3 Universal Time Effect . 115 6.4 Solar Activity Effect 119 6.5 Seasonal Variation . 120 6.6 Discussion and Summary . 121 7 Magnetic Fields Variations on the Ground 136 7.1 Introduction ................. 136 7.2 Magnetic Fields Variations without Field Aligned Current 137 7.2.1 Latitudinal Variation . 137 7.2.2 Longitudinal Variation 139 7.2.3 Seasonal Variation . 140 7.2.4 Solar Activity Effect 140 7.3 Magnetic Fields Variations Introduced by Field Aligned Current 141 7.4 Conclusion . 145 V Chapter 1 Introduction 1.1 Introduction Models of the ionospheric wind dynamo are useful for several purposes. They can help us to elucidate the characteristics of the dynamo mechanism, and show where and how the electric field and current were generated in the electrically conducting ionosphere. The dynamo model can also be used to infer properties of the local and global scale thermospheric winds by comparing calculated electric fields, currents and generated magnetic field variations with experimental values. The dynamo model certainly has the potential to predict upper atmospheric electrodynamic properties which we have not measured yet, such as field aligned currents. In this chapter, we will review the dynamo simulation models and discuss the experiments concerning the electric fields and currents measured by incoherent and coherent scatter radars, rockets and satellites. 1 CHAPTER 1. INTRODUCTION 2 1.2 Simulation models The electric fields and currents produced by dynamo action in the ionosphere have been investigated and computed by many workers. It is not easy to solve the relevant equations without any assumptions and simplifications since we have the wind dynamo process, the anisotropic inhomogeneous conductivity of the ionosphere plasma, and the feedback between the electrodynamics and the neutral winds all involved in the process.
Recommended publications
  • Planetary Wave Signatures in the Equatorial Atmosphere–Ionosphere System, and Mesosphere- E- and F-Region Coupling
    ARTICLE IN PRESS Journal of Atmospheric and Solar-Terrestrial Physics 68 (2006) 509–522 www.elsevier.com/locate/jastp Planetary wave signatures in the equatorial atmosphere–ionosphere system, and mesosphere- E- and F-region coupling M.A. Abdua,Ã, T.K. Ramkumarb, I.S. Batistaa, C.G.M. Bruma, H. Takahashia, B.W. Reinischc, J.H.A. Sobrala aNational Institute for Space Research—INPE, Sao Jose dos Campos, 12245-970 SP, Brazil bNational MST Radar Facility, Gadanki, India cUniversity of Massachusetts, Lowell, USA Available online 8 November 2005 Abstract Upward transport of wave energy and momentum due to gravity, tidal and planetary waves from below and extra- tropics controls the phenomenology of the equatorial atmosphere–ionosphere system. An important aspect of this phenomenology is the development of small- and large-scale structures including thin layers in the mesosphere and E- region, and the formation of wide spectrum plasma structures of the equatorial F-region, widely known as equatorial spread F/plasma bubble irregularities (that are known to have significant impact on space application systems based on trans-ionospheric radio waves propagation). It seems that the effects of tidal and gravity waves at mesospheric and thermospheric heights and their control of ionospheric densities, electric fields and currents are relatively better known than are the effects originating from vertical coupling due to planetary waves. Results from airglow, radar and ionospheric sounding observations demonstrate the existence of significant planetary wave influence on plasma parameters at E- and F- region heights over equatorial latitudes. We present and discuss here some results showing planetary wave oscillations in concurrent mesospheric winds and equatorial electrojet intensity variations in the Indian sector as well as in the mesospheric airglow and F-layer height variation in Brazil.
    [Show full text]
  • Equatorial Ionospheric Response to Different Estimated Disturbed
    PUBLICATIONS Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Equatorial Ionospheric Response to Different Estimated 10.1002/2017JA024265 Disturbed Electric Fields as Investigated Using Sheffield Key Points: University Plasmasphere Ionosphere Model at INPE • The equatorial ionosphere response to different disturbed electric fields is M. A. Bravo1,2 , I. S. Batista1 , J. R. Souza1, and A. J. Foppiano3 analyzed using the SUPIM-INPE model • fi We want to nd the best alternative of 1Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil, 2Now at Universidad de Santiago de fi disturbed electric eld, both 3 temporally and spatially, when E × B Chile, Estación Central, Santiago, Chile, Universidad de Concepción, Concepción, Chile measurements are not available • The comparison between simulations and observations will serve to find a Abstract Good ionospheric modeling is important to understand anomalous effects, mainly during hierarchy among the different types of geomagnetic storm events. Ionospheric electric fields, thermospheric winds, and neutral composition are drifts affected at different degrees, depending on the intensity of the magnetic disturbance which, in turns, affects the electron density distribution at all latitudes. The most important disturbed parameter for the equatorial Supporting Information: ionosphere is the electric field, which is responsible for the equatorial ionization anomaly. Here various • Supporting Information S1 electric field measurements and models are analyzed: (1) measured by the Jicamarca incoherent scatter radar Correspondence to: (ISR), (2) from Jicamarca Unattended Long-Term studies of the Ionosphere and Atmosphere (JULIA) radar, 0 M. A. Bravo, (3) deduced from magnetometers, (4) calculated from the time variations of the F layer height (dh F/dt), [email protected] and (5) deduced from interplanetary electric field determinations.
    [Show full text]
  • ESA Space Weather STUDY Alcatel Consortium
    ESA Space Weather STUDY Alcatel Consortium SPACE Weather Parameters WP 2100 Version V2.2 1 Aout 2001 C. Lathuillere, J. Lilensten, M. Menvielle With the contributions of T. Amari, A. Aylward, D. Boscher, P. Cargill and S.M. Radicella 1 2 1 INTRODUCTION........................................................................................................................................ 5 2 THE MODELS............................................................................................................................................. 6 2.1 THE SUN 6 2.1.1 Reconstruction and study of the active region static structures 7 2.1.2 Evolution of the magnetic configurations 9 2.2 THE INTERPLANETARY MEDIUM 11 2.3 THE MAGNETOSPHERE 13 2.3.1 Global magnetosphere modelling 14 2.3.2 Specific models 16 2.4 THE IONOSPHERE-THERMOSPHERE SYSTEM 20 2.4.1 Empirical and semi-empirical Models 21 2.4.2 Physics-based models 23 2.4.3 Ionospheric profilers 23 2.4.4 Convection electric field and auroral precipitation models 25 2.4.5 EUV/UV models for aeronomy 26 2.5 METEOROIDS AND SPACE DEBRIS 27 2.5.1 Space debris models 27 2.5.2 Meteoroids models 29 3 THE PARAMETERS ................................................................................................................................ 31 3.1 THE SUN 35 3.2 THE INTERPLANETARY MEDIUM 35 3.3 THE MAGNETOSPHERE 35 3.3.1 The radiation belts 36 3.4 THE IONOSPHERE-THERMOSPHERE SYSTEM 36 4 THE OBSERVATIONS ...........................................................................................................................
    [Show full text]
  • Daytime Dynamo Electrodynamics with Spiral Currents Driven by Strong Winds Revealed by Vapor Trails and Sounding Rocket Probes
    UCLA UCLA Previously Published Works Title Daytime Dynamo Electrodynamics With Spiral Currents Driven by Strong Winds Revealed by Vapor Trails and Sounding Rocket Probes. Permalink https://escholarship.org/uc/item/2386m69r Journal Geophysical research letters, 47(15) ISSN 0094-8276 Authors Pfaff, R Larsen, M Abe, T et al. Publication Date 2020-08-03 DOI 10.1029/2020gl088803 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH LETTER Daytime Dynamo Electrodynamics With Spiral Currents 10.1029/2020GL088803 Driven by Strong Winds Revealed by Vapor Trails and Key Points: • Comprehensive observations of the Sounding Rocket Probes daytime Sq dynamo electrodynamics R. Pfaff1 , M. Larsen2 , T. Abe3 , H. Habu3, J. Clemmons4 , H. Freudenreich1, D. Rowland1, have been gathered for the first time 5,6 7 8 8 9 • Observed daytime winds in the T. Bullett ,M.‐Y. Yamamoto , S. Watanabe , Y. Kakinami , T. Yokoyama , dynamo region are much larger than J. Mabie5,6 , J. Klenzing1 , R. Bishop10, R. Walterscheid10 , M. Yamamoto9 , expected yet their currents are Y. Yamazaki11 , N. Murphy12, and V. Angelopoulos13 reduced by those of DC electric fields • Winds and currents exhibit an 1NASA Goddard Space Flight Center, Greenbelt, MD, USA, 2Department of Physics and Astronomy, Clemson University, interleaved spiral pattern indicative 3 4 of tidal forcing Clemson, SC, USA, Japan Aerospace Exploration Agency, Tokyo, Japan, Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA, 5Cooperative
    [Show full text]
  • Locations of Chorus Emissions Observed by the Polar Plasma Wave Instrument K
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A00F12, doi:10.1029/2009JA014579, 2010 Click Here for Full Article Locations of chorus emissions observed by the Polar Plasma Wave Instrument K. Sigsbee,1 J. D. Menietti,1 O. Santolík,2,3 and J. S. Pickett1 Received 18 June 2009; revised 20 November 2009; accepted 17 December 2009; published 8 June 2010. [1] We performed a statistical study of the locations of chorus emissions observed by the Polar spacecraft’s Plasma Wave Instrument (PWI) from March 1996 to September 1997, near the minimum of solar cycles 22/23. We examined how the occurrence of chorus emissions in the Polar PWI data set depends upon magnetic local time, magnetic latitude, L shell, and L*. The Polar PWI observed chorus most often over a range of magnetic local times extending from about 2100 MLT around to the dawn flank and into the dayside magnetosphere near 1500 MLT. Chorus was least likely to be observed near the dusk flank. On the dayside, near noon, the region in which Polar observed chorus extended to larger radial distances and higher latitudes than at other local times. Away from noon, the regions in which chorus occurred were more restricted in both radial and latitudinal extent. We found that for high‐latitude chorus near local noon, L* provides a more reasonable mapping to the equatorial plane than the standard L shell. Chorus was observed slightly more often when the magnitude of the solar wind magnetic field BSW was greater than 5 nT than it was for smaller interplanetary magnetic field strengths.
    [Show full text]
  • The Near-Earth Plasma Environment
    Space Sci Rev (2012) 168:23–112 DOI 10.1007/s11214-012-9872-6 The Near-Earth Plasma Environment Robert F. Pfaff Jr. Received: 1 March 2012 / Accepted: 3 March 2012 / Published online: 20 June 2012 © US Government 2012 Abstract An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth’s plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control iono- spheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electro- dynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances. Keywords Ionosphere · Upper atmosphere · Electric fields 1 Introduction In this article we discuss the near-earth plasma environment, for which the ionosphere is the natural focus. Because this ionized gas co-exists with the neutral atmospheric gas to which it is coupled, the ionized/neutral gas system is more properly considered a partially ionized gas rather than a medium consisting of two distinct, independent fluids.
    [Show full text]
  • The Current State of Ionospheric Wind Dynamo Theory Is Reviewed
    J. Geomag. Geoelectr., 31, 287-310, 1979 Ionospheric Wind Dynamo Theory: A Review A. D. RICHMOND SpaceEnvironment Laboratory, National Oceanic and Atmospheric Administration,Boulder, Colorado 80302, U. S. A. (Accepted June 10, 1978) The current state of ionospheric wind dynamo theory is reviewed. Observation- al and theoreticaladvances in recent yearshave permitted more accurate models of the dynamo mechanismto be presentedthan previously,which have lent further credenceto the validity of dynamo theory as the main explanation for quiet-day ionosphericelectric fields and currents at middle and low latitudes. The diurnal component of the wind in the upper E region and lower F region appears to be primarily responsiblefor averagequiet-day currents, although other wind compo- nents give significantcontributions. Observationally,there is a need for better spatial and temporal coverage of wind and electric field data. Theoretically, there is a need for further considerationof the mutual dynamiccoupling among winds, conductivities,electric fields, and electric currents, and for better modeling of nighttimeconditions. 1. Introduction This paper is intended to review the present state of knowledge concerning the theory of the ionospheric wind dynamo. The main emphasis is on current theoreti- cal conceptions, with historical aspects, observational evidence, and treatments of temporal and spatial variability covered more briefly. For further information on dynamo theory and ionospheric currents, previous reviews (K. MAEDA and KATO, 1966; MATSUSHITA, 1967, 1968, 1971a, 1973, 1975, 1977; H. MAEDA, 1968; PRICE, 1969a, b; WAGNER, 1971; AKASOFU and CHAPMAN, 1972; MATSUSHITA and MOZER, 1973; VOLLAND, 1974a; FATKULLIN, 1975; KANE, 1976) will be found useful. 2. Formulation of Dynamo Theory The basic features of ionospheric wind dynamo theory can be formulated as follows.
    [Show full text]
  • Dynamics of the Earth's Radiation Belts and Inner Magnetosphere Newfoundland and Labrador, Canada 17 – 22 July 2011
    AGU Chapman Conference on Dynamics of the Earth's Radiation Belts and Inner Magnetosphere Newfoundland and Labrador, Canada 17 – 22 July 2011 Conveners Danny Summers, Memorial University of Newfoundland, St. John's (Canada) Ian Mann, University of Alberta, Edmonton (Canada) Daniel Baker, University of Colorado, Boulder (USA) Program Committee David Boteler, Natural Resources Canada, Ottawa, Ontario (Canada) Sebastien Bourdarie, CERT/ONERA, Toulouse (France) Joseph Fennell, Aerospace Corporation, Los Angeles, California (USA) Brian Fraser, University of Newcastle, Callaghan, New South Wales (Australia) Masaki Fujimoto, ISAS/JAXA, Kanagawa (Japan) Richard Horne, British Antarctic Survey, Cambridge (UK) Mona Kessel, NASA Headquarters, Washington, D.C. (USA) Craig Kletzing, University of Iowa, Iowa City (USA) Janet Kozy ra, University of Michigan, Ann Arbor (USA) Lou Lanzerotti, New Jersey Institute of Technology, Newark (USA) Robyn Millan, Dartmouth College, Hanover, New Hampshire (USA) Yoshiharu Omura, RISH, Kyoto University (Japan) Terry Onsager, NOAA, Boulder, Colorado (USA) Geoffrey Reeves, LANL, Los Alamos, New Mexico (USA) Kazuo Shiokawa, STEL, Nagoya University (Japan) Harlan Spence, Boston University, Massachusetts (USA) David Thomson, Queen's University, Kingston, Ontario (Canada) Richard Thorne, Univeristy of California, Los Angeles (USA) Andrew Yau, University of Calgary, Alberta (Canada) Financial Support The conference organizers acknowledge the generous support of the following organizations: Cover photo: Andy Kale ([email protected])
    [Show full text]
  • LCSH Section E
    E (The Japanese word) E. J. Pugh (Fictitious character) E-waste [PL669.E] USE Pugh, E. J. (Fictitious character) USE Electronic waste BT Japanese language—Etymology E.J. Thomas Performing Arts Hall (Akron, Ohio) e World (Online service) e (The number) UF Edwin J. Thomas Performing Arts Hall (Akron, USE eWorld (Online service) UF Napier number Ohio) E. Y. Mullins Lectures on Preaching Number, Napier BT Centers for the performing arts—Ohio UF Mullins Lectures on Preaching BT Logarithmic functions E-journals BT Preaching Transcendental numbers USE Electronic journals E-zines (May Subd Geog) Ë (The Russian letter) E.L. Kirchner Haus (Frauenkirch, Switzerland) UF Ezines BT Russian language—Alphabet USE In den Lärchen (Frauenkirch, Switzerland) BT Electronic journals E & E Ranch (Tex.) E. L. Pender (Fictitious character) Zines UF E and E Ranch (Tex.) USE Pender, Ed (Fictitious character) E1 (Mountain) (China and Nepal) BT Ranches—Texas E-lists (Electronic discussion groups) USE Lhotse (China and Nepal) E-605 (Insecticide) USE Electronic discussion groups E2ENP (Computer network protocol) USE Parathion E. London Crossing (London, England) USE End-to-End Negotiation Protocol (Computer E.1027 (Roquebrune-Cap-Martin, France) USE East London River Crossing (London, England) network protocol) UF E1027 (Roquebrune-Cap-Martin, France) E. London River Crossing (London, England) E10 Motorway Maison en bord du mer E.1027 (Roquebrune- USE East London River Crossing (London, England) USE Autoroute E10 Cap-Martin, France) Ê-luan Pi (Taiwan) E22 Highway (Sweden) Villa E.1027 (Roquebrune-Cap-Martin, France) USE O-luan-pi, Cape (Taiwan) USE Väg E22 (Sweden) BT Dwellings—France E-mail art E190 (Jet transport) E.A.
    [Show full text]
  • The Atmospheric Global Electric Circuit: an Overview
    The atmospheric global electric circuit: An overview Devendraa Siingha,b*, V. Gopalakrishnana,, R. P. Singhc, A. K. Kamraa, Shubha Singhc, Vimlesh Panta, R. Singhd, and A. K. Singhe aIndian Institute of Tropical Meteorology, Pune-411 008, India bInstitute of Environmental Physics, University of Tartu, 18, Ulikooli Street, Tartu- 50090, Estonia cDepartment of Physics, Banaras Hindu University, Varanasi-221 005, India dIndian Institute of Geomagnetism, Mumbai-410 218, India ePhysics Department, Bundelkhand University, Jhansi, India Abstract: Research work in the area of the Global Electric Circuit (GEC) has rapidly expanded in recent years mainly through observations of lightning from satellites and ground-based networks and observations of optical emissions between cloud and ionosphere. After reviewing this progress, we critically examine the role of various generators of the currents flowing in the lower and upper atmosphere and supplying currents to the GEC. The role of aerosols and cosmic rays in controlling the GEC and linkage between climate, solar-terrestrial relationships and the GEC has been briefly discussed. Some unsolved problems in this area are reported for future investigations. ----------------------------------------------------------------------------------------------------------- - *Address for corrspondence Institute of Environmental Physics, University of Tartu, 18, Ulikooli Street Tartu-50090, Estonia e-mail; [email protected] [email protected] Fax +37 27 37 55 56 1 1. Introduction The global electric circuit (GEC) links the electric field and current flowing in the lower atmosphere, ionosphere and magnetosphere forming a giant spherical condenser (Lakhina, 1993; Bering III, 1995; Bering III et al., 1998; Rycroft et al., 2000; Siingh et al., 2005), which is charged by the thunderstorms to a potential of several hundred thousand volts (Roble and Tzur, 1986) and drives vertical current through the atmosphere’s columnar resistance.
    [Show full text]
  • Cosmic Noise Absorption Signature of Particle Precipitation During Interplanetary Coronal Mass Ejection Sheaths and Ejecta
    Ann. Geophys., 38, 557–574, 2020 https://doi.org/10.5194/angeo-38-557-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Cosmic noise absorption signature of particle precipitation during interplanetary coronal mass ejection sheaths and ejecta Emilia Kilpua1, Liisa Juusola2, Maxime Grandin1, Antti Kero3, Stepan Dubyagin2, Noora Partamies4,5, Adnane Osmane1, Harriet George1, Milla Kalliokoski1, Tero Raita3, Timo Asikainen6, and Minna Palmroth1,2 1Department of Physics, University of Helsinki, Helsinki, Finland 2Finnish Meteorological Institute, Helsinki, Finland 3Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland 4Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway 5Birkeland Centre for Space Science, Bergen, Norway 6ReSoLVE Center of Excellence, Space Climate Research Unit, University of Oulu, Oulu, Finland Correspondence: Emilia Kilpua (emilia.kilpua@helsinki.fi) Received: 30 October 2019 – Discussion started: 3 December 2019 Revised: 20 February 2020 – Accepted: 26 February 2020 – Published: 21 April 2020 Abstract. We study here energetic-electron (E > 30 keV) tance of substorms and magnetospheric ultra-low-frequency precipitation using cosmic noise absorption (CNA) during (ULF) waves for enhanced CNA. the sheath and ejecta structures of 61 interplanetary coro- nal mass ejections (ICMEs) observed in the near-Earth so- lar wind between 1997 and 2012. The data come from the Finnish riometer (relative ionospheric opacity meter) chain 1 Introduction from stations extending from auroral (IVA, 65.2◦ N geomag- netic latitude; MLAT) to subauroral (JYV, 59.0◦ N MLAT) Precipitation of high-energy (E > 30 keV) electrons from the latitudes. We find that sheaths and ejecta lead frequently to inner magnetosphere into the Earth’s ionosphere is an inter- enhanced CNA (> 0:5 dB) both at auroral and subauroral esting fundamental plasma process that can have significant latitudes, although the CNA magnitudes stay relatively low consequences on the atmospheric chemistry (e.g.
    [Show full text]
  • Electrodynamics of the Martian Dynamo Region Near Magnetic
    GeophysicalResearchLetters RESEARCH LETTER Electrodynamics of the Martian dynamo region 10.1002/2013GL059130 near magnetic cusps and loops Key Points: Jeremy A. Riousset1, Carol S. Paty1, Robert J. Lillis2, Matthew O. Fillingim2, Scott L. England2, • The dynamo current forms in a Paul G. Withers3, and John P.M. Hale1 torus shape due to the E⃗× B⃗ drift of electrons 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2Space Sciences • Asymmetries in the electric field Laboratory, University of California, Berkeley, California, USA, 3Astronomy Department, Boston University, Boston, are due to the collision-driven ion dynamics Massachusetts, USA • Magnetized region can alter charge carrier motion from lower to upper atmosphere Abstract Strong and inhomogeneous remanent magnetization on Mars results in a complex pattern of crustal magnetic fields. The geometry and topology of these fields lead to atmospheric electrodynamic Supporting Information: structures that are unique among the bodies of the solar system. In the atmospheric dynamo region • Readme (∼100−250 km altitude), ions depart from the gyropath due to collisions with neutral particles, while • Figure S1 electron motion remains governed by electromagnetic drift. This differential motion of the charge • Figure S2 • Text S1 carriers generates electric currents, which induce a perturbation field. The electromagnetic changes ultimately alter the behavior of the local ionosphere beyond the dynamo region. Here we use multifluid Correspondence to: modeling to investigate the dynamics around an isolated magnetic cusp and around magnetic loops or J. A. Riousset, arcades representative of the magnetic topology near, for example, Terra Sirenum. Our results show [email protected] consistent, circular patterns in the electric current around regions with high local field strength, with possible consequences on atmospheric escape of charged particles.
    [Show full text]