Force Measurements with the Atomic Force Microscope

Total Page:16

File Type:pdf, Size:1020Kb

Force Measurements with the Atomic Force Microscope Surface Science Reports 59 (2005) 1–152 www.elsevier.com/locate/surfrep Force measurements with the atomic force microscope: Technique, interpretation and applications Hans-Ju¨rgen Butt a, Brunero Cappella b,*, Michael Kappl a a Max-Planck-Institute for Polymer Research, D-55128 Mainz, Germany b Federal Institute for Material Research and Testing, D-12205 Berlin, Germany Accepted 1 August 2005 Abbreviations: AFM, atomic force microscope; AOT, bis(2-ethylhexyl)sulfosuccinate; BSA, bovine serum albumin; CMC, critical micellar concentration (mol/L); CSH, calcium silicate hydrate; CTAB, cetyltrimethylammonium bromide (=hexade- cyltrimethylammonium bromide); DDAB, didodecyl dimethylammonium bromide; DDAPS, N-dodecyl-N,N-dimethyl-3- ammonio-1-propanesulfonate; DGDG, digalactosyldiglyceride; DLVO, Derjaguin–Landau–Verwey–Overbeek theory; DMA, dynamical mechanical analysis; DMT, Derjaguin–Mu¨ller–Toporov theory of mechanical contact; DNA, desoxy- ribonucleic acid; DODAB, dimethyl-dioctadecylammonium bromide; DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphodylethanolamine; DOPS, 1,2-dioleoyl-sn-glycero-3-phospho-l-serine; DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane chloride; DTAB, dodecyltrimethylammonium bromide; DSCG, disodium cromo- glycate; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; EDTA, ethylenediaminetetraacetic acid; FJC, freely jointed chain; HOPG, highly oriented pyrolytic graphite; HSA, human serum albumin; JKR, Johnson–Kendall–Roberts theory of mechanical contact; LPS, lipopolysaccharides; MD, molecular dynamics; MEMS, micro-electromechanical systems; MF, melamine formaldehyde; MGDG, monogalactosyldiacylglycerol; OMCTS, octamethylcyclotetrasiloxane, ((CH2)2SiO)4; OTS, octadecyltrichlorosilane; PAA, poly(acrylic acid); PAH, poly(allyl amine hydrochloride); PBA, parallel beam approximation; PBMA, poly(n-butyl methacrylate), –(CH2CC4H9COOCH3)n–; PDADMAC, poly(diallyl-dimethyl-ammonium chloride); PDMS, poly(dimethylsiloxane); PEG, polyethylene glycol; PEI, polyethyleneimine; PEO, polyethyleneoxide, – (OCH2CH2)n–; PFM, pulsed force mode; PLA, polylactic acid; PMAA, poly(methacrylic acid), –(CH2CHCOOH)n–; PMC, polyelectrolyte microcapsules; PMMA, poly(methyl methacrylate), –(CH2CCH3COOCH3)n–; PP, poly(propylene), – (CH2CHCH3)n–; PS, polystyrene, –(CH2–CH(C6H5))n–; PSD, position sensitive detector; PSS, poly(sodium styrenesulfonate); PSU, polysulfonate; PTFE, poly(tetrafluoroethylene); PVD, physical vapor deposition; PVP, poly(vinylpyridine), – (CH2CHC5NH4)n–; SAM, self-assembled monolayer; SDS, sodium dodecylsulfate; SEDS, solution-enhanced dispersion by supercritical fluids; SEM, scanning electron microscope; SFA, surface forces apparatus; SNOM, scanning near-field optical microscope; STM, scanning tunneling microscope; TEM, transmission electron microscope; TIRM, total internal reflection microscopy; TTAB, tetradecyl trimethylammonium bromide; UHV, ultra-high vacuum; WLC, wormlike chain; XPS, X-ray photoelectron spectroscopy * Corresponding author. E-mail address: [email protected] (B. Cappella). 0167-5729/$ – see front matter # 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.surfrep.2005.08.003 2 H.-J. Butt et al. / Surface Science Reports 59 (2005) 1–152 Nomenclature a contact radius (m) aHertz contact radius in the Hertz theory A area (m2) AH Hamaker constant (J) A1 area between the two contact lines above the axis F =0 A2 area between the retraction contact lines and the axis F =0 b slip length (m) c speed of light in vacuum (2.998 Â 108 m/s), concentration (mol/L) C capacitance of tip and sample (F); constant of the atom–atom pair potential (J m6) 6 CK, CD, CL Keesom, Debye, and London coefficients (J m ) d distance between end of cantilever and PSD D tip–sample distance (m) Djtc tip–sample distance at which the jump-to-contact occurs (m) D0 typical interatomic spacing (m) e unit charge (1.602 Â 10À19 C) E Young’s modulus (Pa) EF, ES Young’ modulus of film and substrate (Pa) Et, Es Young’s modulus of tip and sample material (Pa) Etot reduced Young’s modulus Eq. (4.4) (Pa) f force per unit area (Pa) f* dimensionless correction factor F force (N) Fad adhesion force (N) Fav average force (N) Fcap capillary force (N) Fel double-layer force (N) FH hydrodynamic force (N) Fsurf distance-dependent surface force (N) F0 mean rupture force (N) h Planck’s constant (6.626 Â 10À34 J s); thickness of a film on a substrate (m) H height of tip (m); hardness (Pa) Hd height of a deformed polyelectrolyte microcapsule (m) 3 4 I wtc =12, moment of inertia of a cantilever (m ) IPSD photosensor current (A) J relative Young’ modulus, Eq. (4.12) À23 kB Boltzmann constant (1.381 Â 10 J/K) kc spring constant of cantilever (N/m) keff =kcks/(kc + ks) effective spring constant (N/m) ks sample stiffness (N/m) k0 frequency of spontaneous hole formation (Hz) l length of one segment in a linear polymer (m) H.-J. Butt et al. / Surface Science Reports 59 (2005) 1–152 3 lK Kuhn length (m) lp persistence length (m) L length of cantilever (m) L0 equilibrium thickness of a polymer brush (m) mc mass of the cantilever (g) mM ratio between the contact radius a and an annular region, where the adhesion is taken into account mt mass of the tip (g) m* effective mass of the cantilever (g) n number of carbon atoms in an alkyl chain; number of segments in a linear polymer; parameter; refractive index ni refractive index nav average number of bonds n1 bulk concentration of salt in a solvent (molecules per volume) p permanent plastic deformation (m) p0 intercept between the axis F = 0 and the tangent to the unloading curve for very high loads P pressure (N/m2); probability to find the tip on top of a molecular layer; binding probability Q quality factor of the cantilever r radial distance or distance between molecules (m) rms root mean square roughness (m) R tip radius or radius of microsphere (m) Re Reynolds number Rg radius of gyration of a polymer (m) Rm molecular radius (m) R0 radius of not deformed polyelectrolyte microcapsule s surface stress (N/m) S order parameter; spreading pressure t time (s) tc thickness of the cantilever (m) ts thickness of the shell of a polyelectrolyte capsule T temperature (K) u1, u2 dipole moment of molecules (C m) U potential energy between tip and sample (J) 2 UA potential energy per unit area between two planar, parallel surfaces (J/m ) Uc Hooke’s elastic potential of the cantilever (J) Ucs tip–sample interaction potential (J) Us Hooke’s elastic potential of the sample (J) U0 activation energy (J) v velocity of the tip or particle (m/s) vx fluid velocity parallel to a surface (m/s) v0 vertical scan rate, identical to velocity of the base of the cantilever (m/s) V voltage (V) Vm molar volume of a liquid 4 H.-J. Butt et al. / Surface Science Reports 59 (2005) 1–152 w width of cantilevers (m) wK; wD; wL; wvdW Keesom, Debye, London, and total van der Waals potentials between molecules W work of adhesion at contact per unit area (J/m2) Wad work of adhesion at contact (J) x distance in gap between two planar, parallel walls (m); relative extension of a polymer X horizontal coordinate originating at the base of the cantilever (m) z coordinate normal to a surface (m) Z cantilever deflection (m) at a certain horizontal coordinate Zc deflection of the cantilever at its end (m) (Zc)jtc deflection of the cantilever at the jump to contact (m) Zi valency of ion Zp height position of the piezoelectric translator (m) Z0 amplitude of cantilever vibration (m) Greek letters a opening angle of V-shaped cantilever; endslope of cantilever; parameter in contact theory; immersion angle ai parameters describing the eigenmodes of rectangular cantilevers 2 2 a01, a02 electronic polarizabilities of molecules (C m /J) b, b* correction factor, parameter b1, b2 parameters to describe plastic contact g surface tension of a liquid (N/m) or surface energy gD damping coefficient (kg/s) g0 surface tension of a pure liquid (N/m) gAB acid–base surface energy gLW Lifshitz–van der Waals surface energy g+, gÀ electron acceptor and electron donor components of the acid–base surface energy G surface excess (mol/m2); grafting density (number/m2) Gi imaginary part of the so-called ‘‘hydrodynamic function’’ d indentation (m) dmax maximal indentation (m) DPSD distance the laser spot moves on the PSD (m) e, ei dielectric constant of the medium À12 À1 À1 e0 vacuum permittivity (8.854 Â 10 AsV m ) h viscosity (Pa s) u, ua, ur contact angle (advancing and receding) Q half opening angle of a conical tip W tilt of the cantilever with respect to the horizontal k line tension (N); bending rigidity (J) l Maugis parameter lD Debye length (m) lH Decay length of hydration force (m) li wavelengths of the eigenmodes of rectangular cantilevers H.-J. Butt et al. / Surface Science Reports 59 (2005) 1–152 5 lS Decay length of solvation force (m) m chemical potential (J/mol) n Poisson’s ratio ne mean absorption frequency (Hz) nF, nS Poisson’s ratio of film and substrate (Pa) nt, ns Poisson’s ratio of tip and sample material (Pa) n0 resonance frequency of cantilever (Hz) n1, n2 ionization frequencies (Hz) j relative deformation of a polyelectrolyte microcapsule r density (kg/m3) 3 rf density of fluid surrounding the cantilever (kg/m ) s molecular diameter (m) 2 sS surface charge density of sample in aqueous medium (C/m ) 2 sT surface charge density of tip in aqueous medium (C/m ) 2 2 sF ðsnÞ force variance, number of bonds variance t inverse of vibration frequency (s) w phase c electric potential (V) cP plasticity index, Eq. (4.9) cS electric surface potential of sample in aqueous medium (V) cT electric surface potential of tip in aqueous medium (V) v angular frequency (Hz) v0 angular resonance frequency of the cantilever, v0 =2pn0 (Hz) V frequency factor (number of attempts of the tip to penetrate through a layer) Abstract The atomic force microscope (AFM) is not only a tool to image the topography of solid surfaces at high resolution.
Recommended publications
  • Chemical Force Microscopy Nanoscale Probing of Fundamental Chemical Interactions
    3 Chemical Force Microscopy Nanoscale Probing of Fundamental Chemical Interactions Aleksandr Noy, Dmitri V. Vezenov, and Charles M. Lieber 1 Basic Principles of Chemical Force Microscopy 1.1 Chemical Sensitivity in Scanning Probe Microscopy Measurements Intermolecular forces impact a wide spectrum of problems in condensed phases: from molecular recognition, self-assembly, and protein folding at the molecular and nanometer scale, to interfacial fracture, friction, and lubrication at a macroscopic length scale. Understanding these phenomena, regardless of the length scale, requires fundamen- tal knowledge of the magnitude and range of underlying weak interactions between basic chemical functionalities in these systems (Figure 1). While the theoretical description has long recognized that intermolecular forces are necessarily microscopic in origin, experi- mental efforts in direct force measurements at the microscopic level have been lagging behind and have only intensified in the course of the last decade. Atomic force microscopy (AFM)1,2 is an ideal tool for probing interactions between various chemical groups, since it has pico-Newton force sensitivity (i.e., several orders of magnitude better than the weak- est chemical bond3) and sub-nanometer spatial resolution (i.e., approaching the length of a chemical bond). These features enable AFM to produce nanometer to micron scale images of surface topography, adhesion, friction, and compliance, and make it an essential charac- terization technique for fields ranging from materials science to biology. As the name implies, intermolecular forces are at the center of the AFM operation. However, during the routine use of this technique the specific chemical groups on an AFM probe tip are typically ill-defined.
    [Show full text]
  • Revisiting the Interaction Force Measurement Between Lipid
    Journal of Oleo Science Copyright ©2018 by Japan Oil Chemists’ Society doi : 10.5650/jos.ess18088 J. Oleo Sci. 67, (11) 1361-1372 (2018) REVIEW Revisiting the Interaction Force Measurement between Lipid Bilayers Using a Surface Forces Apparatus (SFA) Dong Woog Lee School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun 44919, Republic of KOREA Abstract: In this review, previous researches that measured intermembrane forces using the Surface Forces Apparatus are recapitulated. Different types of interaction forces are reported between two lipid bilayers including non-specific interactions (e.g., van der Waals, electrostatic, steric hydration, thermal undulation, and hydrophobic) and specific interactions (e.g., ligand-receptor). By measuring absolute distance and interaction forces at the sub-angstrom level and at a few nano-Newtons resolution, respectively, magnitudes, working ranges, and decay lengths of interaction between lipid bilayers are investigated. Utilizing recently developed fluorescence microscopy attachments, simultaneous fluorescence imaging of membrane proteins and lipid phases can be performed during approach/separation cycles of two lipid bilayer deposited surfaces, which can reveal cooperative effects between lipid phases and various types of membrane proteins. Key words: surface forces apparatus, lipid bilayers, intermembrane forces, van der Waals forces, electrostatic forces, entropic forces, hydrophobic forces, membrane fusion, specific interaction 1 Introduction - Surface Forces Apparatus(SFA) 1.1 Absolute distance and interaction force measure- The Surface Forces Apparatuses(SFA)has been used for ments decades to measure interaction forces and absolute dis- The absolute distance between two opposing surfaces is tance between two macroscopic surfaces. The first version measured by multiple beam interferometry8), which also of an SFA was developed by Tabor, Winterton and Is- provides the quantitative shapes of the surfaces.
    [Show full text]
  • Measurement and Analysis of Forces in Bubble and Droplet Systems Using AFM ⇑ Rico F
    Journal of Colloid and Interface Science 371 (2012) 1–14 Contents lists available at SciVerse ScienceDirect Journal of Colloid and Interface Science www.elsevier.com/locate/jcis Feature Article (by invitation only) Measurement and analysis of forces in bubble and droplet systems using AFM ⇑ Rico F. Tabor a,b, , Franz Grieser b,c, Raymond R. Dagastine a,b,d, Derek Y.C. Chan b,e,f,1 a Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville 3010, Australia b Particulate Fluids Processing Centre, University of Melbourne, Parkville 3010, Australia c School of Chemistry, University of Melbourne, Parkville 3010, Australia d Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia e Department of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia f Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn 3122, Australia article info abstract Article history: The use of atomic force microscopy to measure and understand the interactions between deformable col- Received 29 October 2011 loids – particularly bubbles and drops – has grown to prominence over the last decade. Insight into sur- Accepted 15 December 2011 face and structural forces, hydrodynamic drainage and coalescence events has been obtained, aiding in Available online 27 December 2011 the understanding of emulsions, foams and other soft matter systems. This article provides information on experimental techniques and considerations unique to performing such measurements. The theoret- Keywords: ical modelling frameworks which have proven crucial to quantitative analysis are presented briefly, along Atomic force microscope with a summary of the most significant results from drop and bubble AFM measurements.
    [Show full text]
  • Electrical Double Layer Interactions with Surface Charge Heterogeneities
    Electrical double layer interactions with surface charge heterogeneities by Christian Pick A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Christian Pick All rights reserved Abstract Particle deposition at solid-liquid interfaces is a critical process in a diverse number of technological systems. The surface forces governing particle deposition are typically treated within the framework of the well-known DLVO (Derjaguin-Landau- Verwey-Overbeek) theory. DLVO theory assumes of a uniform surface charge density but real surfaces often contain chemical heterogeneities that can introduce variations in surface charge density. While numerous studies have revealed a great deal on the role of charge heterogeneities in particle deposition, direct force measurement of heterogeneously charged surfaces has remained a largely unexplored area of research. Force measurements would allow for systematic investigation into the effects of charge heterogeneities on surface forces. A significant challenge with employing force measurements of heterogeneously charged surfaces is the size of the interaction area, referred to in literature as the electrostatic zone of influence. For microparticles, the size of the zone of influence is, at most, a few hundred nanometers across. Creating a surface with well-defined patterned heterogeneities within this area is out of reach of most conventional photolithographic techniques. Here, we present a means of simultaneously scaling up the electrostatic zone of influence and performing direct force measurements with micropatterned heterogeneously charged surfaces by employing the surface forces apparatus (SFA). A technique is developed here based on the vapor deposition of an aminosilane (3- aminopropyltriethoxysilane, APTES) through elastomeric membranes to create surfaces for force measurement experiments.
    [Show full text]
  • Interface-Sensitive Raman Microspectroscopy of Water Via Confinement with a Multimodal Miniature Surface Forces Apparatus Hilton B
    Interface-Sensitive Raman Microspectroscopy of Water via Confinement with a Multimodal Miniature Surface Forces Apparatus Hilton B. de Aguiar,1,* Joshua D. McGraw,1,2 Stephen H. Donaldson Jr.1,* 1Département de Physique, Ecole Normale Supérieure/PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France 2Gulliver CNRS UMR 7083, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France *Corresponding authors: [email protected]; [email protected] Abstract Modern interfacial science is increasingly multi-disciplinary. Unique insight into interfacial interactions requires new multimodal techniques for interrogating surfaces with simultaneous complementary physical and chemical measurements. We describe here the design and testing of a microscope that incorporates a miniature Surface Forces Apparatus (μSFA) in sphere vs. flat mode for force-distance measurements, while simultaneously acquiring Raman spectra of the confined zone. The microscope uses a simple optical setup that isolates independent optical paths for (i) the illumination and imaging of Newton’s Rings and (ii) Raman-mode excitation and efficient signal collection. We benchmark the methodology by examining Teflon thin films in asymmetric (Teflon-water-glass) and symmetric (Teflon-water-Teflon) configurations. Water is observed near the Teflon-glass interface with nanometer-scale sensitivity in both the distance and Raman signals. We perform chemically-resolved, label-free imaging of confined contact regions between Teflon and glass surfaces immersed in water. Remarkably, we estimate that the combined approach enables vibrational spectroscopy with single water monolayer sensitivity within minutes. Altogether, the Raman-μSFA allows exploration of molecular confinement between surfaces with chemical selectivity and correlation with interaction forces.
    [Show full text]
  • Chapter 1 Introduction
    Chapter 1 Introduction 1.1 General The DLVO theory (1,2) states that the total force (Ft) between lyophobic particles immersed in a solvent is given by the algebraic sum of the electrical double layer repulsion (Fe) and the van der Waals (vdW) attraction (Fd): Ft = Fe + Fd (1) Figure 1.1 shows a schematic of the interaction between two surfaces in a polar liquid. Mathematically, Fe can be approximately described by an exponential function, whereas Fd follows an inverse power law. The net result is that, usually, at small separations, the dispersion force dominates, whereas, at larger separations, the double layer repulsion is dominant. This interplay between the two forces gives rise to a typical curve with an energy barrier as shown in Figure 1. With the advent of force measuring devices like the Surface Force Apparatus (SFA) and the Atomic Force Microscope (AFM), it has become possible to measure, with great sensitivity, the interaction forces between two surfaces down to molecular separations. As a result of these force measurements, serious limitations of the DLVO theory have come into light. Specifically, in aqueous solutions, depending on the situation, one has to take into account: (i) the extraneous attraction between hydrophobic surfaces known as the hydrophobic force (3-5); (ii) repulsive primary hydration forces between lipid bilayers (6) and silica surfaces (7-11); (iii) repulsive secondary hydration forces between mica and rutile surfaces (12,13); (iv) oscillatory forces due to solvent structure and layering near surfaces (14,15); (v) depletion force in micellar systems (16,17); (vi) ion-correlation effects (18) and (vii) fluctuation forces between soft surfaces like bilayers (19).
    [Show full text]
  • Molecular Mechanisms Underlying Lubrication by Ionic Liquids: Activated Slip and Flow
    lubricants Article Molecular Mechanisms Underlying Lubrication by Ionic Liquids: Activated Slip and Flow Mengwei Han and Rosa M. Espinosa-Marzal * ID University of Illinois at Urbana-Champaign, 205 N Matthews Avenue, Urbana, IL 61801, USA; [email protected] * Correspondence: [email protected] Received: 19 June 2018; Accepted: 17 July 2018; Published: 20 July 2018 Abstract: The present study provides molecular insight into the mechanisms underlying energy dissipation and lubrication of a smooth contact lubricated by an ionic liquid. We have performed normal and lateral force measurements with a surface forces apparatus and by colloidal probe atomic force microscopy on the following model systems: 1-ethyl-3-methyl imidazolium bis-(trifluoro-methylsulfonyl) imide, in dry state and in equilibrium with ambient (humid) air; the surface was either bare mica or functionalized with a polymer brush. The velocity-dependence of the friction force reveals two different regimes of lubrication, boundary-film lubrication, with distinct characteristics for each model system, and fluid-film lubrication above a transition velocity V∗. The underlying mechanisms of energy dissipation are evaluated with molecular models for stress-activated slip and flow, respectively. The stress-activated slip assumes that two boundary layers (composed of ions/water strongly adsorbed to the surface) slide past each other; the dynamics of interionic interactions at the slip plane and the strength of the interaction dictate the change in friction -decreasing, increasing or remaining constant- with velocity in the boundary-film lubrication regime. Above a transition velocity V∗, friction monotonically increases with velocity in the three model systems. Here, multiple layers of ions slide past each other (“flow”) under a shear stress and friction depends on a shear-activation volume that is significantly affected by confinement.
    [Show full text]
  • Surface Forces and Friction
    Surface Forces and Friction Effects of adsorbed layers and surface topography XIAOYAN LIU Doctoral Thesis KTH Royal Institute of Technology School of Chemistry Science and Engineering Division of Surface and Corrosion Science Dorrottning Kristinas Väg 51 SE-100 44 Stockholm TRITA-CHE Report 2014:57 ISSN 1654-1081 ISBN 978-91-7595-362-5 Denna avhandling är skyddad enligt upphovsrättslagen. Alla rättigheter förbehålles. Copyright © 2014 Xiaoyan Liu. All rights reserved. No part of this thesis may be reproduced by any means without permission from the author. The following items are printed with permission: PAPER I: © 2012 American Chemistry Society PAPER III: © 2013 The Royal Society of Chemistry Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framlägges till offentlig granskning for avläggande av teknologie doktorsexamen torsdag den 18 December 2014 klockan 10:00 i Kollegiesalen, Kungliga Tekniska Högskolan, Brinellvägen 8, Stockholm. Avhandlingen presenteras på engelska. ii Abstract Interfacial features of polymers are a complex, fascinating topic, and industrially very important. There is clearly a need to understand interactions between polymer layers as they can be used for controlling surface properties, colloidal stability and lubrication. The aim of my Ph.D study was to investigate fundamental phenomena of polymers at interfaces, covering adsorption, interactions between polymer layers and surfactants, surface forces and friction between adsorbed layers. A branched brush layer with high water content was formed on silica surfaces by a diblock copolymer, (METAC)m-b-(PEO45MEMA)n, via physisorption. The adsorption properties were determined using several complementary methods. Interactions between pre-adsorbed branched brush layers and the anionic surfactant SDS were investigated as well.
    [Show full text]
  • UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Bio-Inspired Adhesion, Friction and Lubrication Permalink https://escholarship.org/uc/item/115636tt Author Das, Saurabh Basudeb Publication Date 2014 Supplemental Material https://escholarship.org/uc/item/115636tt#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Bio-Inspired Adhesion, Friction and Lubrication A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemical Engineering by Saurabh Basudeb Das Committee in charge: Professor Jacob N. Israelachvili, Chair Professor Todd M. Squires Professor Michael J. Gordon Professor Kimberly L. Turner December 2014 The dissertation of Saurabh Basudeb Das is approved. _____________________________________________ Professor Todd M. Squires _____________________________________________ Professor Michael J. Gordon _____________________________________________ Professor Kimberly L. Turner _____________________________________________ Professor Jacob N. Israelachvili, Chair December 2014 Bio-Inspired Adhesion, Friction and Lubrication Copyright © 2014 Saurabh Basudeb Das iii ACKNOWLEDGEMENTS During my stint as a doctoral researcher at UCSB, I investigated multiple problems in interfacial science and engineering along with collaborators from mechanical engineering, materials science, chemistry, and molecular and marine biology. All this would have not been possible without the support and guidance of my PhD advisor Prof. Jacob Israelachvili. He encouraged and cultivated a collaborative research environment in his group and this has immensely contributed to my success as a PhD student. He taught me to ask the right questions and I express my gratitude and respect to him for enabling me to grow as a Scientist. I would also like to thank my many other lab members who supported me from a professional perspective.
    [Show full text]
  • A Multi-Modal Miniature Surface Forces Apparatus (Μsfa)
    A Multi-Modal Miniature Surface Forces Apparatus (µSFA) for Interfacial Science Measurements Kai Kristiansen‡,*,9, Stephen H. Donaldson Jr†,9, Zachariah J. Berkson‡,ֆ, Jeffrey Scott§, Rongxin Su┴, Xavier Banquy¶, Dong Woog Lee#, Hilton B. de Aguiar†, Joshua D. McGraw†,‖, George D. Degen‡, and Jacob N. Israelachvili‡. ‡Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106, United States †Département de Physique, Ecole Normale Supérieure/PSL,Research University, CNRS, 24 rue Lhomond, 75005 Paris, France §SurForce LLC, Goleta, CA, 93117, United States ┴State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China ¶Faculty of Pharmacy, Université de Montréal, Succursale Centre Ville, Montréal Quebec H3C 3J7, Canada #School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea ‖ Gulliver CNRS UMR 7083, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France 9KK and SHD contributed equally to this work. 1 ABSTRACT Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the Surface Force Apparatus – the µSFA – that has been designed for ease of use and multi-modal capabilities with retention of the capabilities of other SFA models including accurate measurement of surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, bio-specific).
    [Show full text]
  • Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy
    Chem. Rev. 1997, 97, 1163−1194 1163 Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy Robert W. Carpick Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Physics, University of California at Berkeley, Berkeley, California 94720 Miquel Salmeron* Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Received October 3, 1996 (Revised Manuscript Received March 31, 1997) Contents I. Introduction I. Introduction 1163 A few years after the invention of the scanning II. Technical Aspects 1165 tunneling microscope (STM), the atomic force micro- 1 A. Force Sensing 1165 scope (AFM) was developed. Instead of measuring B. Force Calibration 1166 tunneling current, a new physical quantity could be investigated with atomic-scale resolution: the force C. Probe Tip Characterization 1167 between a small tip and a chosen sample surface. D. AFM Operation Modes 1167 Sample conductivity was no longer a requirement, 1. Normal Force Measurements 1168 and so whole new classes of important materials, 2. Lateral Force Measurements 1168 namely insulators and large band-gap semiconduc- 3. Force Modulation Techniques 1169 tors, were brought into the realm of atomic-scale 4. Force-Controlled Instruments 1170 scanning probe measurements. The initial operation 5. Lateral Stiffness Measurements 1170 mode measured the vertical topography of a surface III. Nanotribology with Other Instruments 1171 by maintaining a constant repulsive contact force A. The Surface Forces Apparatus (SFA) 1171 between tip and sample during scanning, akin to a B. The Quartz-Crystal Microbalance (QCM) 1172 simple record stylus. However, since its inception, IV. Bare Interfaces 1172 a myriad of new operation modes have been devel- oped which can measure, often simultaneously, vari- A.
    [Show full text]
  • Compliant Surfaces Under Shear: Elastohydrodynamic Lift Force Pierre Vialar, Pascal Merzeau, Suzanne Giasson, Carlos Drummond
    Compliant Surfaces under Shear: Elastohydrodynamic Lift Force Pierre Vialar, Pascal Merzeau, Suzanne Giasson, Carlos Drummond To cite this version: Pierre Vialar, Pascal Merzeau, Suzanne Giasson, Carlos Drummond. Compliant Surfaces under Shear: Elastohydrodynamic Lift Force. Langmuir, American Chemical Society, 2019, 35 (48), pp.15605-15613. 10.1021/acs.langmuir.9b02019. hal-02383852 HAL Id: hal-02383852 https://hal.archives-ouvertes.fr/hal-02383852 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Compliant Surfaces under Shear: Elastohydrodynamic Lift Force Pierre Vialar, 1,2 Pascal Merzeau1, 2, Suzanne Giasson3* and Carlos Drummond1,2* 1 CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031, F-33600 Pessac, France 2 Université Bordeaux, CRPP, F-33600 Pessac, France 3 Department of Chemistry and Faculty of Pharmacy, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7 Corresponding Author * [email protected], [email protected] ABSTRACT. In this work we have investigated the behavior under shear and compression of mica surfaces coated with poly (N-isopropylacrylamide) cationic microgels. We have observed the emergence of velocity dependent, shear-induced normal forces, which can be large enough to entrain a fluid film that separates the surfaces out of contact, driving the dynamic system from conditions of boundary to hydrodynamic lubrication.
    [Show full text]