Crustal Extension in the Southern Snake Range and Vicinity, Nevada-Utah: an Integrated Geological and Geophysical Study

Total Page:16

File Type:pdf, Size:1020Kb

Crustal Extension in the Southern Snake Range and Vicinity, Nevada-Utah: an Integrated Geological and Geophysical Study Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1990 Crustal Extension in the Southern Snake Range and Vicinity, Nevada-Utah: An Integrated Geological and Geophysical Study. A. H. m. shah Alam Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Alam, A. H. m. shah, "Crustal Extension in the Southern Snake Range and Vicinity, Nevada-Utah: An Integrated Geological and Geophysical Study." (1990). LSU Historical Dissertations and Theses. 4967. https://digitalcommons.lsu.edu/gradschool_disstheses/4967 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 0112214 Crustal extension in the southern Snake Range and vicinity, Nevada-TJtah: An integrated geological and geophysical study Alam, A. H. M. Shah, Ph.D. The Louisiana State University and Agricultural and Mechanical Col., 1990 UMI 300 N. Zeeb Rd. Ann Aibor, MI 48106 Grustal extension in the Southern Snake Range and vicinity, Nevada-Utah: an integrated geological and geophysical study A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by A. H. M. Shah Alam B.Sc(Hons.), The University of Dhaka, Bangladesh, 1981 M.S., Louisiana State University, 1985 August 1990 ACKNOWLEDGEMENTS The author thanks Professor Rex H. Pilger, Jr., for serving as the major professor, and for his able guidance through the ups and downs of this research. Professor Dag Nummedal, the minor professor, helped with the seismic stratigraphic framework of land-locked continental basins of this study. Professor Jeffrey Nunn helped with the gravity modeling and with constructive geophysical comments of crustal extensional models which structural geologists tend to overlook. Discussions with professors Vindell Hsu and Charles McCabe on various aspects of this research were beneficial. The author thanks Professor Paul M. Walthall (Department of Agronomy) for serving as the external committee member for the dissertation defense. Discussions with Professors John Oldow (Rice University) and Laura Serpa (University of New Orleans) during their visits to Louisiana State University were stimulating. Frank Royse, now retired from Chevron, kindly provided his one unpublished geologic section across eastern Basin and Range Province and shared his thoughts about this research. My collective thanks to the audiences during my poster and oral presentations based on various aspects of this research at Geological Society of America (1987, 1989), American Geophysical Union (1989), Graduate Student Research (LSU) (1989), Volcanoes for Lunch (LSU) (1989), Fluid Seminar (LSU) (1989), and Exxon Production Company (1989) meetings, who provided thought-provoking comments and helped to evaluate this research at every meeting. Confucius once said "one out of every three persons can teach you something"; with that the author reminisces the camaraderie of geophysics graduate students at LSU including Linda Kauth, Terry Angelich, Brian Butler, Jeff Lobao, Bernard Coakley, Yeadong Kim, David Lisle, Mancheol Suh, Vicki Iliff, B. Wayne Driskill, David Evans and Sharon Walley. My sincerest thanks, however, are for my supportive parents. The author is grateful to the Union Oil Company of California (Mr. Jean Paul Chauvel, Senior Geologist, UNOCAL) for providing the seismic and the bore hole data. Viki Bankey of United States Geological Survey provided digital gravity data. Several Oil Companies including Badger Oil Corporation, Forest Oil Corporation, Oxy USA Inc., and Wolverine Exploration Company provided additional seismic and bore hole data. Sigma Xi, the Scientific Research Society, supported this study with a grant. The Department of Geology and Geophysics (LSU) provided a grant to meet cartographic and duplication expenses involved in the final manuscript preparation. TABLE OF CONTENTS ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES viii ABSTRACT X CHAPTER ONE: INTRODUCTION 1 CHAPTER TWO! REGIONAL GEOLOGY & GEOPHYSICS 6 Location of the study area 6 Regional Geophysics 9 Crust and Moho 9 Seismicity 10 Extension Direction 10 Gravity, Magnetics and Topography 11 Heat-flow 14 Extension of Heterogeneous, anisotropic crust 14 Regional Tectonic History 15 Precambrian Rifting 15 Paleozoic Passive Margin 16 Mesozoic Orogeny 16 Cenozoic Crustal Extension 17 Regional Geology 17 Precambrian to Paleozoic 17 Mesozoic 20 Cenozoic 21 Early Cenozoic Sediments 21 iv Mid-Cenozoic Volcanic Rocks 22 Late Cenozoic Basin-fill 23 CHAPTER THREE: DATA 24 Seismic Data 25 Well Data 26 The Commodore Resources Outlaw # 1 Federal 2 6 Fletcher Federal # 1 33 CHAPTER FOUR: METHODOLOGY 36 Integrated Interpretation of Seismic Lines 37 Integration of Gravity Data 39 Geometric Restorations 41 Compaction 42 CHAPTER FIVE: HAMLIN AND SOUTHERN SNAKE VALLEYS 63 Introduction 63 Basin-fill Stratigraphy 64 Pre-Cenozoic 64 Cenozoic 65 Structure 72 Snake Range Decollement Reflection 76 Onset of Crustal Extension 79 Magnitude of Upper Crustal Extension 80 CHAPTER Six: CORE COMPLEX EVOLUTION 83 Introduction 83 Snake Range Core Complex 84 Geologic Interpretation 85 Subsurface Observations 86 Core Complex Uplift 89 v Characterization of Uplift 89 Mechanisms for Uplift 89 Evolutionary Model 94 Pre-extension 101 Onset of Extension 101 Development of Low-angle Normal Faults 103 Uplift of Lower Plate 103 CHAPTER SEVEN: CONCLUSION 105 BIBLIOGRAPHY 107 APPENDIX 1: DATA 121 VITA 12 6 vi LIST OF TABLES 1. Plutons in the southern Snake Range 21 2. Stratigraphic thicknesses encountered in the 32 Commodore Resources well are compared with the outcrop thicknesses 3. Gross lithologies, interval velocities and 39 density values of the basin-fill sequences 4. Parameters of the exponential relation between 44 porosity and depth 5. Magnitude of upper crustal extensions along 82 seismic profiles A1. Seismic line-lengths in the Hamlin Valley 121 A2 . Seismic data processing sequence 122 A3. Fletcher Union Federal NO. 1: well resume 123 A4. Fletcher Union Federal NO. 1: electric log tops 123 A5. Commodore Resources Outlaw # 1 Federal: well 124 resume A6. Commodore Resources Outlaw # 1 Federal: electric 124 log tops A7. Identifications of aerial photographs 125 v i i LIST OF FIGURES 1. Continental crustal extensional models 3 2. Locations of the study area and the data, and 7 the geology 3. Aerial photograph of parts of the southern Snake 8 Range, and the southern Snake and the Hamlin Valleys 4. Complete Bouguer Gravity map of the study area 12 5. Regional gravity low of northern Basin and Range 13 Province 6. Stratigraphic section for the study area 19 7. Stratigraphic cross-section utilizing bore boles 27 8. Stratigraphy penetrated in the Commodore 28-29 Resources Outlaw # 1 Federal 9. Stratigraphy penetrated in the Fletcher Union 30 Federal No. 1 10. Seismic line 08: uninterpreted and interpreted, 45-49 migrated and unmigrated stack, and depth sections with gravity profiles, seismic interval velocities, and density values; geometric restorations of the depth section 11. Seismic line 20: uninterpreted and interpreted, 50-52 migrated and unmigrated stack, and depth sections with gravity profiles 12. Seismic line 06: uninterpreted and interpreted, 53-55 migrated and unmigrated stack, and depth sections with gravity profiles 13. Seismic line 07: uninterpreted and interpreted, 56-58 migrated and unmigrated stack, and depth sections with gravity profiles 14. Seismic line 09: uninterpreted and interpreted, 59-61 migrated and unmigrated
Recommended publications
  • Description and Correlation of Geologic Units, Cross
    Plate 2 UTAH GEOLOGICAL SURVEY Utah Geological Survey Bulletin 135 a division of Hydrogeologic Studies and Groundwater Monitoring in Snake Valley and Utah Department of Natural Resources Adjacent Hydrographic Areas, West-Central Utah and East-Central Nevada DESCRIPTION OF GEOLOGIC UNITS SOURCES USED FOR MAP COMPILATION UNIT CORRELATION AND UNIT CORRELATION HYDROGEOLOGIC Alluvial deposits – Sand, silt, clay and gravel; variable thickness; Holocene. Qal MDs Lower Mississippian and Upper Devonian sedimentary rocks, undivided – Best, M.G., Toth, M.I., Kowallis, B.J., Willis, J.B., and Best, V.C., 1989, GEOLOGIC UNITS UNITS Shale; consists primarily of the Pilot Shale; thickness about 850 feet in Geologic map of the Northern White Rock Mountains-Hamlin Valley area, Confining Playa deposits – Silt, clay, and evaporites; deposited along the floor of active Utah, 300–400 feet in Nevada. Aquifers Qp Beaver County, Utah, and Lincoln County, Nevada: U.S. Geological Survey Units playa systems; variable thickness; Pleistocene through Holocene. Map I-1881, 1 pl., scale 1:50,000. D Devonian sedimentary rocks, undivided – Limestone, dolomite, shale, and Holocene Qal Qsm Qp Qea Qafy Spring and wetland related deposits – Clay, silt, and sand; variable thickness; sandstone; includes the Guilmette Formation, Simonson and Sevy Fritz, W.H., 1968, Geologic map and sections of the southern Cherry Creek and Qsm Quaternary Holocene. Dolomite, and portions of the Pilot Shale in Utah; thickness about 4400– northern Egan Ranges, White Pine County, Nevada: Nevada Bureau of QTcs 4700 feet in Utah, 2100–4350 feet in Nevada. Mines Map 35, scale 1:62,500. Pleistocene Qls Qlm Qlg Qgt Qafo QTs QTfs Qea Eolian deposits – Sand and silt; deposited along valley floor margins, includes Hintze, L.H., 1963, Geologic map of Utah southwest quarter, Utah Sate Land active and vegetated dunes; variable thickness; Pleistocene through S Silurian sedimentary rocks, undivided – Dolomite; consists primarily of the Board, scale 1:250,000.
    [Show full text]
  • The Confusion Range, West-Central Utah: Fold-Thrust Deformation and a Western Utah Thrust Belt in the Sevier Hinterland
    The Confusion Range, west-central Utah: Fold-thrust deformation and a western Utah thrust belt in the Sevier hinterland David C. Greene* Department of Geosciences, Denison University, Granville, Ohio 43023, USA ABSTRACT INTRODUCTION tions together while delineating the lateral and oblique thrust ramps that form a signifi cant The Confusion Range in west-central Utah The Confusion Range is a collection of ridges complicating factor in the structure of the fold- has been considered a broad structural trough and small ranges that together form a low moun- thrust system. Together, these fi ve cross sections or synclinorium with little overall shorten- tain range in western Utah, between the more total almost 300 km in map length. Enlarged ing. However, new structural studies indicate imposing Snake Range on the west and House versions of the cross sections at a scale of that the Confusion Range is more accurately Range on the east (Figs. 1 and 2). The range is 1:50,000, along with a discussion of the petro- characterized as an east-vergent, fold-thrust named for its “rugged isolation and confusing leum potential of the region, may be found in system with ~10 km of horizontal shortening topography” (Van Cott, 1990). The Confusion Greene and Herring (2013). during Late Jurassic to Eocene Cordilleran Range exposes ~5000 m of Ordovician through Similar structural style and fold-thrust struc- contractional deformation. For this study, Triassic strata in what has been considered a tures are continuous southward throughout the four balanced and retrodeformable cross broad structural trough or synclinorium (e.g., length of the originally proposed synclinorium, sections across the Confusion Range and Hose, 1977; Anderson, 1983; Hintze and Davis, forming a fold-thrust belt more than 130 km in adjacent Tule Valley were constructed using 2003; Rowley et al., 2009).
    [Show full text]
  • Isotope Hydrology of Lehman and Baker Creeks Drainages, Great Basin National Park, Nevada
    UNLV Retrospective Theses & Dissertations 1-1-1992 Isotope hydrology of Lehman and Baker creeks drainages, Great Basin National Park, Nevada Stephen Yaw Acheampong University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Acheampong, Stephen Yaw, "Isotope hydrology of Lehman and Baker creeks drainages, Great Basin National Park, Nevada" (1992). UNLV Retrospective Theses & Dissertations. 195. http://dx.doi.org/10.25669/3kmp-t8wo This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • Hydrogeologic and Geochemical Characterization of Groundwater
    Prepared in cooperation with the Bureau of Indian Affairs Hydrogeologic and Geochemical Characterization of Groundwater Resources in Deep Creek Valley and Adjacent Areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada Scientific Investigations Report 2015–5097 U.S. Department of the Interior U.S. Geological Survey Windmill over an abandoned stock well on the Goshute Indian Reservation looking east with the Deep Creek Range in the background. Hydrogeologic and Geochemical Characterization of Groundwater Resources in Deep Creek Valley and Adjacent Areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada By Philip M. Gardner and Melissa D. Masbruch Prepared in cooperation with the Bureau of Indian Affairs Scientific Investigations Report 2015–5097 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]
  • Water Resources of Millard County, Utah
    WATER RESOURCES OF MILLARD COUNTY, UTAH by Fitzhugh D. Davis Utah Geological Survey, retired OPEN-FILE REPORT 447 May 2005 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, stated or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. This Open-File Report makes information available to the public in a timely manner. It may not conform to policy and editorial standards of the Utah Geological Survey. Thus it may be premature for an individual or group to take action based on its contents. WATER RESOURCES OF MILLARD COUNTY, UTAH by Fitzhugh D. Davis Utah Geological Survey, retired 2005 This open-file release makes information available to the public in a timely manner. It may not conform to policy and editorial standards of the Utah Geological Survey. Thus it may be premature for an individual or group to take action based on its contents. Although this product is the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product.
    [Show full text]
  • University of Nevada Reno Determination of Timing Of
    University of Nevada Reno J Determination of Timing of Recharge for Geothermal Fluids in The Great Basin Using Environmental Isotopes and Paleoclimate Indicators A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, in geology by Paul K. Buchanan 1" April, 1990 i MINES LIBRARY Tti GS Li a (ths The thesis of Paul K. Buchanan is approved by University of Nevada Reno April, 1990 11 ACKNOWLEGEMENTS This study was made possible by grant DE-FG07-88ID12784 from the United States Department of Energy, Geothermal Technology Division, administered by the Idaho Operations Office, Idaho Falls, Idaho. Additional financial assistance from the Nevada Section of the Geothermal Resources Council aided in the completion of this thesis. My thanks go to the Nevada geothermal power industry for allowing fluid sampling of deep powerplant production wells. Specifically, Chevron Resources, Oxbow Geothermal, Ormat Energy Systems, Geothermal Food Processors, Tad's Enterprises, Thermochem Inc., Elko Heat Co. and Elko School District are thanked. Thanks also to Dr. Robert Fournier of the United States Geological Survey for providing data on the Coso geothermal system. Michelle Stickles is to be commended for suffering through the proof reading of the initial drafts of this report. Thanks to my advisor, Jim Carr, and my committee members, Mel Hibbard and Gary Haynes, for taking on this project and putting up with my inconsistent scheduling and "last minute" rush. Special thanks to my cohorts at the Division of Earth Sciences and Mackay School of Mines for their cynical attitudes that helped keep it all in perspec- tive, through both the good and the bad times.
    [Show full text]
  • Management Plan for the Great Basin National Heritage Area Approved April 30, 2013
    Management Plan for the Great Basin National Heritage Area Approved April 30, 2013 Prepared by the Great Basin Heritage Area Partnership Baker, Nevada i ii Great Basin National Heritage Area Management Plan September 23, 2011 Plans prepared previously by several National Heritage Areas provided inspiration for the framework and format for the Great Basin National Heritage Area Management Plan. National Park Service staff and documents provided guidance. We gratefully acknowledge these contributions. This Management Plan was made possible through funding provided by the National Park Service, the State of Nevada, the State of Utah and the generosity of local citizens. 2011 Great Basin National Heritage Area Disclaimer Restriction of Liability The Great Basin Heritage Area Partnership (GBHAP) and the authors of this document have made every reasonable effort to insur e accuracy and objectivity in preparing this plan. However, based on limitations of time, funding and references available, the parties involved make no claims, promises or guarantees about the absolute accuracy, completeness, or adequacy of the contents of this document and expressly disclaim liability for errors and omissions in the contents of this plan. No warranty of any kind, implied, expressed or statutory, including but not limited to the warranties of non-infringement of third party rights, title, merchantability, fitness for a particular purpose, is given with respect to the contents of this document or its references. Reference in this document to any specific commercial products, processes, or services, or the use of any trade, firm or corporation name is for the inf ormation and convenience of the public, and does not constitute endorsement, recommendation, or favoring by the GBHAP or the authors.
    [Show full text]
  • STATE of NEVADA Brian Sandoval, Governor
    STATE OF NEVADA Brian Sandoval, Governor DEPARTMENT OF WILDLIFE Tony Wasley, Director GAME DIVISION Brian F. Wakeling, Chief Mike Cox, Big Game Staff Biologist Pat Jackson, Carnivore Staff Biologist Cody McKee, Elk Staff Biologist Cody Schroeder, Mule Deer Staff Biologist Peregrine Wolff, Wildlife Health Specialist Western Region Southern Region Eastern Region Regional Supervisors Mike Scott Steve Kimble Tom Donham Big Game Biologists Chris Hampson Joe Bennett Travis Allen Carl Lackey Pat Cummings Clint Garrett Kyle Neill Cooper Munson Matt Jeffress Ed Partee Kari Huebner Jason Salisbury Jeremy Lutz Kody Menghini Tyler Nall Scott Roberts Cover photo credit: Mike Cox This publication will be made available in an alternative format upon request. Nevada Department of Wildlife receives funding through the Federal Aid in Wildlife Restoration. Federal Laws prohibit discrimination on the basis of race, color, national origin, age, sex, or disability. If you believe you’ve been discriminated against in any NDOW program, activity, or facility, please write to the following: Diversity Program Manager or Director U.S. Fish and Wildlife Service Nevada Department of Wildlife 4401 North Fairfax Drive, Mailstop: 7072-43 6980 Sierra Center Parkway, Suite 120 Arlington, VA 22203 Reno, Nevada 8911-2237 Individuals with hearing impairments may contact the Department via telecommunications device at our Headquarters at 775-688-1500 via a text telephone (TTY) telecommunications device by first calling the State of Nevada Relay Operator at 1-800-326-6868. NEVADA DEPARTMENT OF WILDLIFE 2017-2018 BIG GAME STATUS This program is supported by Federal financial assistance titled “Statewide Game Management” submitted to the U.S.
    [Show full text]
  • Kane County, Utah Resource Management Plan
    Kane County Resource Management Plan Adopted 28 November 2011 KANE COUNTY, UTAH RESOURCE MANAGEMENT PLAN For the Physical Development of the Unincorporated Area Pursuant to Section 17-27-301 of the Utah Code ADOPTED 28 NOVEMBER 2011 Should any part of the Kane County Resource Management Plan be determined invalid, no longer applicable or need modification, those changes shall affect only those parts of the Plan that are deleted, invalidated or modified and shall have no effect on the remainder of the Resource Management Plan. This document was prepared by the Division of Community and Economic Development of the Five County Association of Governments under the guidance and direction of the Kane County Resource Development Committee, Kane County Land Use Authority and the Board of County Commissioners. Funding used to prepare this document came from Kane County contributions, a Regional Planning grant from the Utah Permanent Community Impact Board and a Planning and Technical Assistance Grant from the U.S. Department of Commerce, Economic Development Administration. - 1 - Kane County Resource Management Plan Adopted 28 November 2011 Acknowledgments Every effective planning process includes a multitude of individuals if it is to be successful. This effort is no different. Many individuals have had an impact upon the preparation and adoption of this Plan. However, most important are the residents of Kane County, who have responded to surveys, interviews, and attended public meetings and hearings. All who did so should be commended for their desire to be a participant in determining the future of Kane County. Some specific individuals and groups have had intensive involvement in the Kane County planning process, and are acknowledged below: Kane County Commission Kane County Land Use Authority Doug Heaton, Chairman Shannon McBride, Land Use Administrator Dirk Clayson Tony Chelewski, Chairman Jim Matson Roger Chamberlain Wade Heaton Kane County Staff Robert Houston Verjean Caruso, Co.
    [Show full text]
  • MULE DEER Units 114-115
    Nevada Hunter Information Sheet MULE DEER Units 114-115 LOCATION: Eastern White Pine County – Snake Range. Please see unit descriptions in the Nevada Hunt Book. ELEVATION: From 5,100' in Snake Valley to 12,050' on Mount Moriah. TERRAIN: Gentle to extremely difficult. VEGETATION: Ranges from salt-desert shrub on some valley floors through sage and mixed brush, pinyon/juniper, mountain mahogany and aspen types at mid elevations to aspen/fir/spruce/limber pine/bristlecone pine at higher elevations. Mountainous areas support forest types more than brush, with pinyon and juniper dominating many areas between 6,500’ and 8,000’. Aspen is a minor component in both units. LAND STATUS: The majority of deer habitat is public land administered by either the BLM Ely Field Office or the Ely Ranger District of the Humboldt-Toiyabe National Forest (USFS). Hunting is not permitted on National Park Service lands (Great Basin National Park) located in Unit 115. Note: In 2006, Congress added 11,000 acres to the Mt. Moriah Wilderness in Unit 114 and created a new wilderness area (69,000 acres) on the south end of Unit 115. Vehicles and mechanized equipment, including wheeled game carriers are prohibited in wilderness areas. Contact the Federal Land Management Agency responsible for the area you intend to hunt for more information. Most private land is located on valley bottoms and benches. Private lands do not restrict access to public land. HUNTER ACCESS: Good to fair, based on weather and ground conditions. Access to Unit 114 can be impacted by winter storms. Motorized access is limited by existing roads, terrain and wilderness designations.
    [Show full text]
  • Hybrid Granitoid Rocks of the Southern Snake Range, Nevada
    Hybrid Granitoid Rocks of the Southern Snake Range, Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 668 Hybrid Granitoid Rocks of the Southern Snake Range, Nevada By DONALD E. LEE and RICHARD E, VAN LOENEN GEOLOGICAL SURVEY PROFESSIONAL PAPER 668 A study of assimilation and the resulting systematic and interrelated differences in chemistry and mineralogy within a well-exposed granitoid outcrop area of 2O square miles UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 72-811324 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Fage Chemistry and mineralogy of the granitoid rocks Con. Abstract.._-___--___--__-_-___-_-_-_._____--_______ 1 Mineralogy. _________________________________ 21 Location and geologic setting-___-__----_-_________-__ 1 Petrography and petrology of the granitoid rocks-___- 29 Previous work and purpose of this paper.______________ 2 Snake Creek-Williams Canyon area.____________ 29 Intrusive structures, form, and contact effects...------- 3 Petrography. ____________________________ 29 Snake Creek-Williams Canyon area_______________ 4 Petrology. _______________________________ 31 Pole Canyon-Can Young Canyon area__-------___- 5 Petrogenesis.. _ ___________________________ 33 Young Canyon-Kious Basin area.________________ 6 Pole Canyon-Can Young Canyon area_________ 38 Summary of intrusive rocks._____________________
    [Show full text]
  • July 22-28, 2012 Field Trip to Snake Range Metamorphic Core Complex (Great Basin National Park and Mt
    Sign Up!! GES 209B/291 Spring Quarter Class: July 22-28, 2012 Field Trip to Snake Range Metamorphic Core Complex (Great Basin National Park and Mt. Moriah Wilderness) Elizabeth Miller and Jeffrey Lee Associated with GES 209 (Microstructures) taught Fall Quarter 2011-12 by Miller, Warren and Lee (Blaustein visiting scholar 2011/12) Extensional detachment faults remain enigmatic structures that are controversial in terms of their mechanism of formation and kinematic evolution. The Snake Range has spectacular exposures of footwall mylonites, the detachment fault, overlying brittle fault block mosaics and the inverted deposits of Miocene sedimentary basins. This field trip is a rare opportunity to learn more about crustal scale processes and extensional fault systems as they transition from the ductile to the brittle part of the earth’s crust and to contemplate the geologic details that have made these structures so controversial. Advanced planning is needed, so please let [email protected] know your interest in such a trip before the beginning of Spring Quarter. The schedule is detailed below. Note that depending on interest and how we plan this trip, there can be wilderness hiking/camping involved. Precambrian quartz mylonites and schists, Hendry’s Creek Sunday July 22: Drive out to Snake Range Monday July 23: Syn-faulting Tertiary sedimentary section and its avalanche deposits (top). Precambrian- Cambrian section and views, Wheeler Peak/Stella Lake trails (10-11,000’) Great Basin National Park (right) Tuesday July 24: Part of group has option of packing in to N. Snake Range from mouth of Hendry’s Creek and hike to base of “Table” beneath Mt.
    [Show full text]