Cutting Stock Problems and Solution Procedures

Total Page:16

File Type:pdf, Size:1020Kb

Cutting Stock Problems and Solution Procedures European Journal of Operational Research 54 (1991) 141-150 141 North-Holland Invited Review Cutting stock problems and solution procedures Robert W. Haessler and Paul E. Sweeney School of Business Administration, The Uniuersity of Michigan, Ann Arbor, MI, USA Received May 1991 Abstract: This paper discusses some of the basic formulation issues and solution procedures for solving one- and two- dimensional cutting stock problems. Linear programming, sequential heuristic and hybrid solution procedures are described. For two-dimensional cutting stock problems with rectangular shapes, we also propose an approach for solving large problems with limits on the number of times an ordered size may appear in a pattern. Keywords: Cutting stock, trim loss, linear programming, heuristic problem solving, pattern generation, two-dimensional knapsack Introduction literature has led Dyckhoff (1990) to develop a classification scheme for cutting stock and pack- The first known formulation of a cutting stock ing problems (packing problems are closely re- problem was given in 1939 by the Russian lated to cutting stock problems but are not consid- economist Kantorovich (1960). The first and most ered here). He classifies problems using four char- significant advance in solving cutting problems acteristics as follows: was the seminal work of Gilmore and Gomory 1. Dimensionality (1961, 1963) in which they described their delayed (N) Number of dimensions pattern generation technique for solving the one- 2, Kind of assignment dimensional trim loss minimization problem using (B) All large objects and a selection of small linear programming. Since that time there has items. been an explosion of interest in this application (V) A selection of large objects and all small area. Sweeney and Paternoster (1991) have identi- items. fied more than 500 papers which deal with cutting 3. Assortment of large objects stock and related problems and applications. The (O) One large object. primary reasons for this activity are that cutting (I) Many identical large objects. stock problems occur in a wide variety of in- (V) Different large objects. dustries, there is a large economic incentive to find 4. Assortment of small items more effective solution procedures, and it is easy (F) Few items of different dimensions. to compare alternative solution procedures and to (M) Many items of many different dimensions. identify the potential benefits of using a proposed (R) Many items of relatively few dimensions. procedure. (C) Many identical items. The large variety of applications reported in the Cutting stock problems are introduced with a 0377-2217/91/$03,50 © 1991 - Elsevier Science Publishers B.V. All rights reserved 142 R. 14(. Haessler, P.E. Sweeney / Cutting stock problems a-d solution procedures discussion of the one-dimensional problem in tern j. In order for the elements Aij, i = 1..... m, which many items of relatively few sizes are to be to constitute a feasible cutting pattern, the follow- cut from multiple pieces of a single stock size ing restrictions must be satisfied: (1/V/I/R using Dyckhoff's typology). Two-di- mensional cutting stock problems are more dif- ~_~AijWi < UW, (4) ficult to solve than one-dimensional problems be- i cause of the greater complexity of defining feasi- A~/> 0 and integer, (5) ble cutting patterns. Hence the focus in two-di- mensional problems is on the pattern generation Xj is the number of stock rolls to be slit using process rather than on the cutting stock problem pattern j, and itself. The paper will conclude with a discussion of T/ is the trim loss incurred by pattern j, a possible new approach for generating patterns = UW - EA,jW,. (6) needed to solve two-dimensional cutting stock i problems of type 2/V/I/R. Note that the objective in this example is sim- ply to minimize trim loss. In most industrial appli- One-dimensional problems cations, it is necessary to consider other factors in addition to trim loss. For example, there may be a An example of a one-dimensional cutting stock cost associated with pattern changes and, there- problem is the trim loss minimization problem fore, controlling the number of patterns used to which occurs in the paper industry. In this prob- satisfy the order requirements would be an im- lem, known quantities of rolls of various widths portant consideration. and the same diameter are to be slit from stock Because optimal solutions to integer cutting rolls of some standard width and diameter. The stock problems can be found only for values of m objective is to identify slitting patterns and their smaller than typically found in practices, heuristic associated usage levels which satisfy the require- procedures represent the only feasible approach to ments for ordered rolls at the least possible total solving this type of problem. Two types of heuris- cost for scrap and other controllable factors. The tic procedures have been widely used to solve basic cutting pattern feasibility restriction in this one-dimensional cutting stock problems. One ap- problem is that the sum of the roll widths slit from proach uses the solution to a linear programming each stock roll must not exceed the usable width (LP) relaxation of the integer problem above as its of the stock roll. starting point. The LP solution is then modified in Let R~ be the nominal order requirements for some way to provide an integer solution to the rolls of width W,, i=l ..... m, to be cut from problem. The second approach is to generate cut- stock rolls of usable width UW. RL, and RUi are ting patterns sequentially to satisfy some portion the lower and upper bounds on the order require- of the remaining requirements. This sequential ment, for customer order i reflecting the general heuristic procedure (SHP) terminates when all industry practice of allowing overruns or under- order requirements are satisfied. runs within specified limits. Depending on the situation, R, may be equal to RLi and/or RU,. All orders are for rolls of the same diameter. This Linear programming solutions problem can be formulated as follows: Min Y'. T;.X, (1) Almost all LP based procedures for solving J cutting stock problems can be traced back to s.t. RL, _< Y'.AoX/_< RUt for all i, (2) Gilmore and Gomory (1961, 1963). They de- J scribed how the next pattern to enter the LP basis could be found by solving an associated knapsack Xj >__ 0 and integer, (3) problem. This made it possible to solve the trim where loss minimization problem by linear programming A,j is the number of rolls of width W, to be slit without first enumerating every feasible slitting from each stock roll that is processed using pat- pattern. This is extremely important because a R. V~ Haessler, P.E. Sweeney / Cutting stock problems a-d solution procedures" 143 large number of feasible patterns may exist when Xj which satisfy the order requirements. One com- narrow widths are to be slit from a wide stock roll. mon approach is to round the LP solution down Pierce (1964) showed that in such situations the to integer values, then increase the values of Xj by number of slitting patterns can easily run into the unit amounts for any patterns whose usage can be millions. Because only a small fraction of all pos- increased without exceeding RU,. Finally, new sible slitting patterns need to be considered in patterns can be generated for any rolls still needed finding the minimum trim loss solution, the de- using the sequential heuristic described in the next layed pattern generation technique developed by section. Gilmore and Gomory made it possible to solve In order to make this rounding problem as trim loss minimization problems in much less time simple as possible, it is generally useful to place than would be required if all the slitting patterns limitations on the number of times a given size were input to a general purpose linear program- can appear in a pattern. A very obvious restriction ming algorithm. is that A i < RU,. If this is not satisfied, any pat- A common LP relaxation of the integer pro- tern for which A, > RU, will have to be rounded gramming problem given in (1)-(3) can be stated down to zero and a new pattern found by some as follows: other method. The following simple example dem- onstrates the advantage of placing even greater Min •X, (7) restrictions on the values of A,. Let .i R 1=3, W 1=100, s.t. Y'Ai/X: > R, for all i, (8) / R2=3, W~=90. X,>0. (9) UW = 200. Solving this problem using the Gilmore-Gomory Let U, be the dual variable associated with algorithm yields the following solution: constraint i. Pattern 1. 2-100 and 0-90, X 1 = 1.5. The dual of this problem can be stated as Pattern 2. 0-100 and 2-90, X 2 = 1.5. Max Y'~R,Ui (10) In virtually all situations, the preferred solution i would be: Pattern 3. 1-100 and 1-90, X 3 = 3. s.t. Y" A,jU, _< 1, (11) Haessler (1980) demonstrated how placing restric- t tions on the values of A, in the knapsack problem _> 0. (12) led to LP solutions with fewer patterns which are The dual constraints in (11) provide the means easier to round to integer values. for determining if the optimal LP solution has The primary disadvantage of using LP to solve been obtained or if there exists a pattern which cutting stock problems is that the number of ac- will improve the LP solution because the dual tive cutting patterns in the solution will be very problem is still infeasible.
Recommended publications
  • Solving Real-World Cutting Stock-Problems in the Paper Industry – Mathematical Approaches, Experience and Challenges –
    Solving Real-World Cutting Stock-Problems in the Paper Industry – Mathematical Approaches, Experience and Challenges – Julia Kallratha,b, Steffen Rebennackc,∗, Josef Kallrathd, R¨udiger Kuschee aGSEmbH, Oranienpassage 1, 57258 Freudenberg, Germany bh da Hochschule Darmstadt, Sch¨offerstr. 3, 64295 Darmstadt, Germany cColorado School of Mines, Division of Economics and Business, Golden, CO 80401, USA dUniversity of Florida, Dept. of Astronomy, Gainesville, FL 32611, USA eGSEmbH, Oranienpassage 1, 57258 Freudenberg, Germany Abstract We discuss cutting stock problems (CSPs) from the perspective of the paper industry and the financial impact they make. Exact solution approaches and heuristics have been used for decades to support cutting stock decisions in that industry. We have developed polylithic solution techniques integrated in our ERP system to solve a variety of cutting stock problems occurring in real world problems. Among them is the simultaneous minimization of the number of rolls and the number of patterns while not allowing any overproduction. For two cases, CSPs minimizing underproduction and CSPs with master rolls of different widths and availability, we have developed new column generation approaches. The methods are numerically tested using real world data instances. An assembly of current solved and unsolved standard and non-standard CSPs at the forefront of research are put in perspective. Keywords: paper industry, cutting stock, roll production, format production, column generation, column enumeration, operations research, stochastic demand, real-world optimization 1. Introduction 4% of the GDP and 5% of the active employees. As it is subject of both local and global environmen- The pulp and paper industry plays an important tal discussions, effective planning and cutting stock role worldwide.
    [Show full text]
  • One-Dimensional Cutting Stock Problem with Divisible Items
    One-dimensional Cutting Stock Problem with Divisible Items 1Deniz Tanir, *1Onur Ugurlu, 2Asli Guler, and 1Urfat Nuriyev 1Ege University, Izmir, Turkey [email protected], [email protected], [email protected] 2Yasar University, Izmir, Turkey [email protected] Abstract. This paper considers the one-dimensional cutting stock problem with divisible items, which is a new problem in the cutting stock literature. The problem exists in steel industries. In the new problem, each item can be divided into smaller pieces, then they can be recombined again by welding. The objective is to minimize both the trim loss and the number of the welds. We present a mathematical model and a dynamic programming based heuristic for the problem. Furthermore, a software, which is based on the proposed heuristic algorithm, is developed to use in MKA company, and its performance is analyzed by solving real-life problems in the steel industry. The computational experiments show the efficiency of the proposed algorithm. Keywords: One-dimensional cutting stock problem, heuristics, dynamic programming, nonlinear integer programming. 1. Introduction The cutting-stock problem (CSP) has many applications in the production planning of many industries such as the metallurgy, plastics, paper, glass, furniture and textile. In general, cutting stock problems are based on cutting unlimited large pieces of length c into a set of smaller items with demand vi and length wi while optimizing a certain objective function. The objective function can be minimizing waste, maximizing the profit, minimizing cost, minimizing the number of items used, etc [1]. The CSP has many practical applications in real-life problems and is easy to formulate.
    [Show full text]
  • Combinatorial Optimization Modeling Approach for One-Dimensional Cutting Stock Problems
    INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 9, 2015 Combinatorial optimization modeling approach for one-dimensional cutting stock problems Ivan C. Mustakerov and Daniela I. Borissova Most materials used in the industry are supplied of standard Abstract—The paper describes an combinatorial optimization forms and lengths, and direct use of such forms is most cases modeling approach to one-dimensional cutting stock problem. The are impossible. They should be cut in advance to some size, investigated problem seeks to determine the optimal length of the expected to be optimal in the sense of trim waste. This can be blanks and the optimum cutting pattern of each blank to meet the requirement for a given number of elements with different lengths. done using various methods of cutting planning. The problem Blanks of particular type are offered with equal size in large of optimal cutting is that different size elements have to be quantities and the goal is to find such optimal length of blanks that manufactured using blanks of single standard size. This leads to minimal overall trim waste. To achieve that goal a demands development of methods for optimal cutting of combinatorial optimization approach is used for modeling of one- source material. Cutting-stock problems can be classified by dimensional cutting stock problem. Numerical example of real-life problem is presented to illustrate the applicability of the proposed the dimensionality of the cutting as one-dimensional or two- approach. It is shown that numerical example can be solved for dimensional problems. reasonable time by Lingo Solver and MS Excel Solver.
    [Show full text]
  • Solving an One-Dimensional Cutting Stock Problem by Simulated
    Jahromi et al. Journal of Industrial Engineering International 2012, 8:24 http://www.jiei-tsb.com/content/8/1/24 ORIGINAL RESEARCH Open Access Solving an one-dimensional cutting stock problem by simulated annealing and tabu search Meghdad HMA Jahromi1*, Reza Tavakkoli-Moghaddam2, Ahmad Makui3 and Abbas Shamsi1 Abstract A cutting stock problem is one of the main and classical problems in operations research that is modeled as LP problem. Because of its NP-hard nature, finding an optimal solution in reasonable time is extremely difficult and at least non-economical. In this paper, two meta-heuristic algorithms, namely simulated annealing (SA) and tabu search (TS), are proposed and developed for this type of the complex and large-sized problem. To evaluate the efficiency of these proposed approaches, several problems are solved using SA and TS, and then the related results are compared. The results show that the proposed SA gives good results in terms of objective function values rather than TS. Keywords: One-dimensional cutting stock problem, Mathematical model, Simulated annealing, Tabu search Background All stock lengths are identical and there is no A one-dimensional cutting stock problem (1D-CSP) is one difference between the lengths of them. of the famous combinatorial optimization problems, which has many applications in industries. In this prob- In a standard cutting problem, each cutting stock is lem, the amount of residual pieces of processed stock rolls, consumed totally, because the remaining is as cutting called trim loss (i.e., wastage) is a significant objective in waste. While in a general one-dimensional stock cutting most studies that should be minimized.
    [Show full text]
  • Bin Packing Problems 23Rd Belgian Mathematical Optimization Workshop
    Bin packing problems 23rd Belgian Mathematical Optimization Workshop Silvano Martello DEI \Guglielmo Marconi", Alma Mater Studiorum Universit`adi Bologna, Italy This work by is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. S. Martello, Bin packing problems The Bin Packing Problem One of the most famous problems in combinatorial optimization. Attacked with all main theoretical and practical tools. Packing problems have been studied since the Thirties (Kantorovich). In 1961 Gilmore and Gomory introduced, for these problems, the concept of column generation. The worst-case performance of approximation algorithms investigated since the early Seventies. Lower bounds and effective exact algorithms developed starting from the Eighties. [Many heuristic and (starting from the Nineties) metaheuristic approaches.] This talk will also introduce many basic general techniques for Combinatorial Optimization. The field is still very active: 1 160 ut ut ut 140 ut ut ut ut ut 120 ut ut 100 ut * ut * ut * 80 * * * * b * b ut b b ut b b 60 ut * b * b b ut *b * b ut b b b b ut b 40 ut * ut ut * ut b ut ut * * ut b b b b b b 20 b * * * b b * * ** * * * 0 1993 1998 2003 2008 2013 2018 ut ut Google Scholar ** Scopus b b Web of Science Figure 1: Number of papers dealing with bin packing and cutting stock problems, 1993- 2018 S. Martello, Bin packing problems 1 Contents • Polynomial models • Upper bounds { Approximation algorithms { Absolute worst-case performance { Asymptotic worst-case performance • Lower bounds • Reduction algorithms • Branch-and-Bound • Branch(-and-Price)-(and-Cut) { Set covering formulation { Column generation • Integer round-up properties • Pseudo-polynomial formulations • Computer codes and the BPPLIB • Experimental evaluation • Two-dimensional packing • Three-dimensional packing S.
    [Show full text]
  • Applied Integer Programming
    CHAPTER XVI: INTEGER PROGRAMMING FORMULATIONS ...........................................2 16.1 Knapsack - Capital Budgeting Problem ...................................................................... 2 16.1.1 Example ....................................................................................................... 2 16.1.2 Comments .................................................................................................... 3 16.2 Warehouse Location ................................................................................................... 3 16.2.1 Example ....................................................................................................... 5 16.2.2 Comments .................................................................................................... 5 16.3 Traveling Salesman Problem ...................................................................................... 5 16.3.1 Example ....................................................................................................... 7 16.3.2 Comments .................................................................................................... 7 16.4 Decreasing Costs ......................................................................................................... 7 16.4.1 Example ....................................................................................................... 9 16.4.2 Comments .................................................................................................. 10 16.5 Machinery Selection
    [Show full text]
  • Process Optimization for Cutting Steel-Plates
    Process Optimization for Cutting Steel-Plates Markus Rothe, Michael Reyer and Rudolf Mathar Institute for Theoretical Information Technology, RWTH Aachen University, Kopernikusstraße 16, 52074 Aachen, Germany Keywords: Two-Stage Three-Dimensional Guillotine Cutting, Residual Bin-Packing Problem, Mixed Integer Program- ming Model, Reuseable Leftovers. Abstract: In this paper, we consider the two-stage three-dimensional guillotine cutting stock problem with usable left- over. There are two properties that distinguish our problem formulation from others. First, we allow the items to be rotated. Second, we consider the case in which leftover material is to be reused in subsequent production cycles. Third, we solve the problem in three dimensions. The optimization problem is formulated as a mixed integer linear program. To verify the approach, several examples show that our formulation performs well. 1 INTRODUCTION and (Gilmore and Gomory, 1961), utilize linear pro- gramming to solve cutting stock problems. P. Gilmore In many areas of industrial production large or long and Gomory investigate the one dimensional prob- pieces of material need to be cut into smaller ones. lem of cutting items from stock of several standard E.g., it needs to be decided from which reel of raw lengths. They devise the method of column gener- material a cable of a specific length will be produced. ation in their work. P. Gilmore and Gomory con- This is an example for a one-dimensional problem. tinued their work in (Gilmore and Gomory, 1965). An example for a two-dimensional problem is to cut Here, they extend their formulation to multistage cut- patterns from pieces of large leather.
    [Show full text]
  • Bin Packing and Cutting Stock Problems: Mathematical Models and Exact Algorithms
    Bin Packing and Cutting Stock Problems: Mathematical Models and Exact Algorithms Maxence Delorme(1), Manuel Iori(2), Silvano Martello(1) (1)DEI \Guglielmo Marconi", University of Bologna (2)DISMI, University of Modena and Reggio Emilia Research Report OR-15-1 DEI "Guglielmo Marconi", University of Bologna Bin Packing and Cutting Stock Problems: Mathematical Models and Exact Algorithms Maxence Delorme(1), Manuel Iori(2), Silvano Martello(1) (1) DEI ”Guglielmo Marconi”, University of Bologna (2) DISMI, University of Modena and Reggio Emilia March 24, 2015 Abstract We review the most important mathematical models and algorithms developed for the exact solution of the one dimensional bin packing and cutting stock problems, and experimentally evaluate, on state-of-the art computers, the performance of the main available software tools. Keywords: Bin packing, Cutting stock, Exact algorithms, Computational evaluation. 1 Introduction The (one-dimensional) bin packing problem is one of the most famous problems in combina- torial optimization. Its structure and its applications have been studied since the thirties, see Kantorovich [80]. In 1961 Gilmore and Gomory [67] introduced, for this class of problems, the concept of column generation, by deriving it from earlier ideas of Ford and Fulkerson [61], and Dantzig and Wolfe [39]. This is one of the first problems for which, since the early seventies, the worst-case performance of approximation algorithms was investigated. In the next decades lower bounds were studied, and exact algorithms proposed. As the problem is strongly N P-hard, many heuristic and metaheuristic approaches have also been proposed along the years. The purpose of this article is to review the most important mathematical models and algorithms developed for the exact solution of the problem, and to experimen- tally evaluate, on state-of-the art computers, the performance of the main available software tools.
    [Show full text]
  • Solving Cutting and Packing Problems with Extended Integer Programming Formulations
    Solving cutting and packing problems with extended integer programming formulations François Clautiaux Mexico City, April 9th, 2019 Introduction Introduction Classical Integer programming formulation for CSP Extended formulations for the cutting-stock problem Extended formulations for a 2-dimensional cutting-stock problem Conclusion References Introduction Introduction We focus on MILP methods for solving 1D and 2D cutting problems The best exact methods known so far are based on extended formulations These formulations have an exponential size, but an interesting structure We show how they can be used effectively and why they actually work Introduction Mixed-Integer Linear Programs n minfcx : Ax ≥ a; x 2 Z g Linear programs can be solved efficiently, even for large-size models Some integer linear programming models can only be solved for medium sizes Introduction Solving an MILP by branch-and-bound max 17x1 + 12x2 t.q. 10x1 + 7x2 ≤ 40 x1 + x2 ≤ 5 x1 ; x2 2 R+ x1 = 1; 6666; x2 = 3; 3333; u = 65 x ≤ 1 1 x1 ≥ 2 max 17x + 12x 1 2 max 17x + 12x t.q. 10x + 7x ≤ 40 1 2 1 2 t.q. 10x + 7x ≤ 40 x + x ≤ 5 1 2 1 2 x + x ≤ 5 x ≤ 1 1 2 1 x ≥ 2 x ; x 2 1 1 2 R+ x ; x 2 x = 1; x = 4; u = 63 1 2 R+ 1 2 x = 2; x = 2; 8571; u = 64; 286 Feasible solution 1 2 x2 ≤ 2 x2 ≥ 3 max 17x1 + 12x2 max 17x1 + 12x2 t.q. 10x1 + 7x2 ≤ 40 t.q. 10x1 + 7x2 ≤ 40 x1 + x2 ≤ 5 x1 + x2 ≤ 5 x1 ≥ 2 x1 ≥ 2 x2 ≤ 2 x2 ≥ 3 x1 ; x2 2 R+ x1 ; x2 2 R+ > x1 = 2; 6; x2 = 2; u = 63 No solution ! Introduction Important features of an ILP Important features of an integer linear program I Quality of the linear relaxation (good bounds) I Number of symmetries (impacts the size of the branch-and-bound tree) I Size of the model (impacts the time needed to solve the linear relaxation, and the size of the branch-and-bound tree) Introduction Quality of a formulation x2 x2 5 5 (7) (7) 3 3 (6) (5) (6) (5) 2 2 (4) (4) 1 1 1 2 3 4 x1 1 2 3 4 x1 The choice of the formulation is key.
    [Show full text]
  • Improving Branch-And-Price Algorithms for Solving One Dimensional Cutting Stock Problem
    Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem MTech Project Stage-I Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering Indian Institute of Technology, Bombay Mumbai ii Acknowledgments I would like to thank my guide, Prof. A. G. Ranade, for his consistent motivation and directions throughout this work. Soumitra Pal MTech-I CSE, IIT Bombay iii iv Abstract Column Generation is a technique for solving linear programming problems with larger number of variables or columns. This technique was first applied to large real life cutting stock problem by Gilmore and Gomory. Since then several researchers have applied the column generation technique to many real life applications. In this report, we discuss how column generation can be combined with the branch-and-bound techique (commonly known as branch-and-price) to solve integer programming problems with huge number of columns. We provide an outline of the next stage of our work to improve the branch-and-price based algorithm. v vi Contents Acknowledgements iii Abstract v 1 Introduction 1 1.1 Cutting stock problem . 1 1.2 Kantorovich model . 2 1.3 Gilmore-Gomory model . 3 1.4 Column generation approach . 4 1.5 Organization of the report . 4 2 Column Generation 5 2.1 Pricing step of simplex method . 5 2.2 Delayed Column Generation . 7 2.3 Summary . 8 3 Branch-and-price 9 3.1 Generic branch-and-price algorithm . 9 3.2 Branching .
    [Show full text]
  • Algorithms for 3D Guillotine Cutting Problems: Unbounded Knapsack, Cutting Stock and Strip Packing∗
    Algorithms for 3D Guillotine Cutting Problems: Unbounded Knapsack, Cutting Stock and Strip Packing∗ Thiago A. de Queiroz, Flávio K. Miyazawa, Instituto de Computação, IC, UNICAMP, 13084-971, Campinas, SP e-mail: [email protected], [email protected] Yoshiko Wakabayashi, Instituto de Matemática e Estatística, IME, USP 05508-090, São Paulo, SP e-mail: [email protected] Eduardo C. Xavier Instituto de Computação, IC, UNICAMP, 13084-971, Campinas, SP e-mail: [email protected] ABSTRACT We present algorithms for the following three-dimensional (3D) guillotine cutting problems: Un- bounded Knapsack, Cutting Stock and Strip Packing. We consider the case where the items have fixed orientation and the case where orthogonal rotations around all axes are allowed. For the Un- bounded 3D Knapsack problem, we extend the recurrence formula proposed by Beasley for the Rectangular Knapsack Problem and present a dynamic programming algorithm that uses reduced raster points. We also consider a variant of the Unbounded Knapsack problem in which the cuts must be staged. For the 3D Cutting Stock problem and its variants in which the bins have differ- ent sizes (and the cuts must be staged), we present column generation based algorithms. Modified versions of the algorithms for the 3D Cutting Stock problems with stages are then used to build algorithms for the 3D Strip Packing problem and its variants. The computational tests performed with the algorithms described in this paper indicate that they are useful to solve instances of mod- erate size. KEYWORDS. Guillotine cutting; three-dimensional cutting stock; unbounded knapsack; strip packing; column generation.
    [Show full text]
  • Analysis of Cargo Stability in Container Transportation
    Analysis of cargo stability in container transportation Ant´onioJos´eGalr~aoRamos Faculdade de Engenharia da Universidade do Porto Department of Industrial Engineering and Management Supervisor Professor Jos´eFernando da Costa Oliveira Co-supervisors Professor Jos´eFernando Gon¸calves Professor Manuel Joaquim Pereira Lopes Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Industrial Engineering and Management. Faculdade de Engenharia da Universidade do Porto 2015 This research was partially supported by the ERDF through the COMPETE Programme, by the Portuguese Government through the FCT (StableCargo - PTDC/SEN-TRA/121715/ 2010 and PTDC/EGE-GES/117692/2010) and by the Project BEST CASE - SAESCTN- PIIC&DT/1/2011, which is co-financed by the North Portugal Regional Operational Pro- gramme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). It is never too late to be what you might have been. George Eliot Matthew 25:14-30 To Vanessa, the love of my life, Sim~aoand Teresa. For your unconditional love. Acknowledgements This thesis was a long and challenging endeavour that would not have been possible without the academic and personal support of a number of people, to whom I am very grateful. I would like to start by thanking Professor Jos´eFernando Oliveira, who generously accepted to be my supervisor, and welcomed me into his research family when I arrived at a crossroads in life. He provided the idea and funding for this research and guided my development as a researcher. Sometimes we just have the good fortune of coming across remarkable people.
    [Show full text]