Management of Anterocapitis and Anterocollis

Total Page:16

File Type:pdf, Size:1020Kb

Management of Anterocapitis and Anterocollis toxins Article Management of Anterocapitis and Anterocollis: A Novel Ultrasound Guided Approach Combined with Electromyography for Botulinum Toxin Injection of Longus Colli and Longus Capitis Michael Farrell 1 , Barbara I. Karp 2, Panagiotis Kassavetis 2, William Berrigan 3 , Simge Yonter 4, Debra Ehrlich 2 and Katharine E. Alter 5,* 1 MedStar/Georgetown University National Rehabilitation Hospital, Washington, DC 20010, USA; [email protected] 2 National Institutes of Neurological Disorders and Stroke, Bethesda, MD 20892 USA; [email protected] (B.I.K.); [email protected] (P.K.); [email protected] (D.E.) 3 Emory School of Medicine, Emory University, Atlanta, GA 30322, USA; [email protected] 4 Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1604, USA; [email protected] 5 Functional and Applied Biomechanics Section, Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1604, USA * Correspondence: [email protected] Received: 29 August 2020; Accepted: 27 September 2020; Published: 30 September 2020 Abstract: Chemodenervation of cervical musculature using botulinum neurotoxin (BoNT) is established as the gold standard or treatment of choice for management of Cervical Dystonia (CD). The success of BoNT procedures is measured by improved symptomology while minimizing side effects and is dependent upon many factors including: clinical pattern recognition, identifying contributory muscles, BoNT dosage, and locating and safely injecting target muscles. In patients with CD, treatment of anterocollis (forward flexion of the neck) and anterocaput (anterocapitis) (forward flexion of the head) are inarguably challenging. The longus Colli (LoCol) and longus capitis (LoCap) muscles, two deep cervical spine and head flexor muscles, frequently contribute to these patterns. Localizing and safely injecting these muscles is particularly challenging owing to their deep location and the complex regional anatomy which includes critical neurovascular and other structures. Ultrasound (US) guidance provides direct visualization of the LoCol, LoCap, other cervical muscles and adjacent structures reducing the risks and side effects while improving the clinical outcome of BoNT for these conditions. The addition of electromyography (EMG) provides confirmation of muscle activity within the target muscle. Within this manuscript, we present a technical description of a novel US guided approach (combined with EMG) for BoNT injection into the LoCol and LoCap muscles for the management of anterocollis and anterocaput in patients with CD. Keywords: cervical dystonia; botulinum toxins; anterocaput; anterocollis; injection technique; longus colli; longus capitis; ultrasound guidance; head and neck; chemodenervation Key Contribution: This manuscript describes a novel ultrasound guided technique for botulinum toxin injections in the longus colli and capitis muscles. The technique provides clearly identified sonoacoustic/anatomic landmarks that localizes the target muscle and identifies the safest path of the needle to said muscle(s). Toxins 2020, 12, 626; doi:10.3390/toxins12100626 www.mdpi.com/journal/toxins Toxins 2020, 12, 626 2 of 10 Toxins 2020, 12, x FOR PEER REVIEW 2 of 10 1. Introduction Dystonia isis a neurologicala neurological movement movement disorder disorder in which in sustainedwhich sustained or repetitive or musclerepetitive contractions muscle resultcontractions in twisting result and in repetitivetwisting and movements repetitive or abnormalmovements fixed or postureabnormal [1 ].fixed Cervical posture Dystonia [1]. Cervical (CD) is theDystonia most common(CD) is the focal most dystonia common with focal a reported dystonia prevalence with a rangingreported up prevalence to 4100 cases ranging per million up to with4100 ancases incidence per million of 8–12 with cases an incidence per million of person-years8–12 cases per [2 million]. person-years [2]. The symptoms of CD include abnormal neck postures, involuntary head and neck movements, tremor, neckneck pain,pain, andand eveneven involvedinvolved muscularmuscular hypertrophyhypertrophy [[3].3]. CD can be associatedassociated with similar dystonic symptoms symptoms in in nearby nearby muscles, muscles, such such as those as those in the in shoulder, the shoulder, upper upper back and/or back and face./or These face. Thesesymptoms symptoms often have often a have debilitating a debilitating impact impact on an onindividual’s an individual’s function function and quality and quality of life. of life. EEffectiveffective management management of of CD CD requires requires a thoughtful a thoughtful physical physical examination examination of the of head the headand neck and neckmusculature, musculature, observation observation of involuntary of involuntary movements movements and postures, and postures, and patient and patientreport of report muscle of musclepulling, pulling,tightness tightness and pain. and This pain. evaluation This evaluation helps to guide helps muscle to guide selec muscletion for selection targeted for treatment. targeted treatment.Predominant Predominant movement movement patterns patternsare used are to used subtype to subtype CD CDinto into torticollis torticollis (neck/head (neck/head turning), turning), laterocollis (tilting),(tilting), anterocollis anterocollis (Figure (Fig1urea), anterocaput1a), anterocaput (Figure 1(Figb) (neckure or1b) head (neck flexion, or head respectively), flexion, orrespectively), retrocollis/retrocaput or retrocollis/retrocapu (neck/head extension)t (neck/head and or lateralextension) shift (combinationand or lateral of shift laterocollis (combination to one side of andlater laterocaputocollis to one to the side opposite and latero side)caput [4,5]. Patientsto the mayopposite also haveside) a[4,5 combination]. Patients of may these also postures have [ 6a] (Figurecombination1c, Video of these S1). Predominantpostures [6] (Fig anterocollisure 1c, Video occurs S1 in). 25%Predominant of those with anterocollis cervical dystoniaoccurs in [ 725%]. of those with cervical dystonia [7]. (a) (b) (c) Figure 1. Clinical patterns of cervical dystonia. ( (aa)) anterocollis; anterocollis; ( (b) anterocapitis; anterocapitis; ( c) c combinedombined pattern of anterocollis and retrocapitis.retrocapitis. The gold standard of treatment for focal dystonias, including CD, is botulinum toxin (BoNT). The effifficacycacy ofof BoNTBoNT treatmenttreatment dependsdepends onon aa numbernumber ofof factorsfactors includingincluding properproper musclemuscle selectionselection based on patient presentation. The more complex the cervical dystonia, the more difficult difficult the muscle selection [[8].8]. The seven (or(or eight)eight) known serotypes of botulinum toxin are neurotoxins produced by the Clostridium botulinum botulinum bacterium, bacterium, all all of which of which act at act presynaptic at presynaptic neuromuscular neuromuscular (NMJ) (NMJ)and neuro and- neuro-glandularglandular junctions junctions to block to block the therelease release of ofneurotransmitters neurotransmitters (acetylcholine (acetylcholine and and othe others)rs) from presynaptic vesiclesvesicles [9[9,10,10].]. When When injected injected in in muscle, muscle, BoNTs BoNTs decrease decrease the the release release of acetylcholineof acetylcholine at the at NMJ,the NMJ, producing producing graded graded/dose/dose-dependent,-dependent, reversible, reversible, denervation denervation weakness weakness [11 ].[11]. The The mechanism mechanism of actionof action in relievingin relieving dystonia dystonia symptoms symptoms is not is not solely sol dueely due to its to weakening its weakening effects effects on muscle. on muscle. BoNTs BoNTs also havealso have effects effects on various on various central central and peripheral and peripheral pathways pathways implicated implicated in the pathogenesis in the pathogenesis of dystonia. of Thedystonia. efficacy The of efficacy BoNT is of well-documented BoNT is well-documented in the literature in the for literature the treatment for the of treatment muscle overactivity of muscle syndromes,overactivity includingsyndromes, CD including with satisfactory CD with symptom satisfactory relief symptom in approximately relief in approximately 80%–85% of cases 80% [12–85%,13]. Bothof cases the e[12,13fficacy]. andBoth safety the efficacy of BoNT and therapy safety is largelyof BoNT dependent therapy is on largely delivery dependent of BoNT into on thedelivery affected of musclesBoNT into contributing the affected to dystonic muscles postures contributing/movements to dystonic while avoidingpostures/movements untargeted muscles while andavoiding other structures.untargeted Accuratelymuscles and placing other BoNTstructures. within Accurately a muscle while placing avoiding BoNT otherwithin structures a muscle relies while heavily avoiding on accessibilityother structures of the relies muscle heavily which on isaccessibility directly influenced of the muscle by regional which anatomy.is directly To influenced increase the by accuracyregional andanatomy. safety To of increase injections, the cliniciansaccuracy and utilize safet ay number of injections, of localization clinicians techniquesutilize a number including of localization anatomic techniques including anatomic landmarks, palpation, range of motion, electromyography (EMG), Toxins 2020, 12, 626 3 of 10 landmarks, palpation, range of motion, electromyography (EMG), electrical stimulation (E-Stim)
Recommended publications
  • 3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations
    3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations Bharat R. Dave, D. Devanand, and Gautam Zaveri Introduction This chapter analyzes the problems of dysphagia, dysphonia, and esophageal tears during the Pathology involving the anterior subaxial anterior approach to the cervical spine and cervical spine is most commonly accessed suggests ways of prevention and management. through an anterior retropharyngeal approach (Fig. 3.1). While this approach uses tissue planes to access the anterior cervical spine, visceral Dysphagia structures such as the trachea and esophagus and nerves such as the recurrent laryngeal Dysphagia or difficulty in swallowing is a nerve (RLN), superior laryngeal nerve (SLN), and symptom indicative of impairment in the ability pharyngeal plexus are vulnerable to direct or to swallow because of neurologic or structural traction injury (Table 3.1). Complaints such as problems that alter the normal swallowing dysphagia and dysphonia are not rare following process. Postoperative dysphagia is labeled as anterior cervical spine surgery. The treating acute if the patient presents with difficulty in surgeon must be aware of these possible swallowing within 1 week following surgery, complications, must actively look for them in intermediate if the presentation is within 1 to the postoperative period, and deal with them 6 weeks, and chronic if the presentation is longer expeditiously to avoid secondary complications. than 6 weeks after surgery. Common carotid artery Platysma muscle Sternohyoid muscle Vagus nerve Recurrent laryngeal nerve Longus colli muscle Internal jugular artery Anterior scalene muscle Middle scalene muscle External jugular vein Posterior scalene muscle Fig. 3.1 Anterior retropharyngeal approach to the cervical spine.
    [Show full text]
  • Injection Into the Longus Colli Muscle Via the Thyroid Gland
    Freely available online Case Reports Injection into the Longus Colli Muscle via the Thyroid Gland Małgorzata Tyślerowicz1* & Wolfgang H. Jost2 1Department of Neurophysiology, Copernicus Memorial Hospital, Łódź, PL, 2Parkinson-Klinik Ortenau, Wolfach, DE Abstract Background: Anterior forms of cervical dystonia are considered to be the most difficult to treat because of the deep cervical muscles that can be involved. Case Report: We report the case of a woman with cervical dystonia who presented with anterior sagittal shift, which required injections through the longus colli muscle to obtain a satisfactory outcome. The approach via the thyroid gland was chosen. Discussion: The longus colli muscle can be injected under electromyography (EMG), computed tomography (CT), ultrasonography (US), or endoscopy guidance. We recommend using both ultrasonography and electromyography guidance as excellent complementary techniques for injection at the C5-C6 level. Keywords: Anterior sagittal shift, longus colli, thyroid gland, sonography, electromyography Citation: Tyślerowicz M, Jost WH. Injection into the longus colli muscle via the thyroid gland. Tremor Other Hyperkinet Mov. 2019; 9. doi: 10.7916/tohm.v0.718 *To whom correspondence should be addressed. E-mail: [email protected] Editor: Elan D. Louis, Yale University, USA Received: August 13, 2019; Accepted: October 24, 2019; Published: December 6, 2019 Copyright: © 2019 Tyślerowicz and Jost. This is an open-access article distributed under the terms of the Creative Commons Attribution–Noncommercial–No Derivatives License, which permits the user to copy, distribute, and transmit the work provided that the original authors and source are credited; that no commercial use is made of the work; and that the work is not altered or transformed.
    [Show full text]
  • Respiratory Function of the Rib Cage Muscles
    Copyright @ERS Journals Ltd 1993 Eur Respir J, 1993, 6, 722-728 European Respiratory Journal Printed In UK • all rights reserved ISSN 0903 • 1936 REVIEW Respiratory function of the rib cage muscles J.N. Han, G. Gayan-Ramirez, A. Dekhuijzen, M. Decramer Respiratory function of the rib cage muscles. J.N. Han, G. Gayan-Ramirez, R. Respiratory Muscle Research Unit, Labo­ Dekhuijzen, M. Decramer. ©ERS Journals Ltd 1993. ratory of Pneumology, Respiratory ABSTRACT: Elevation of the ribs and expansion of the rib cage result from the Division, Katholieke Universiteit Leuven, co-ordinated action of the rib cage muscles. We wished to review the action and Belgium. interaction of the rib cage muscles during ventilation. Correspondence: M. Decramer The parasternal intercostal muscles appear to play a predominant role during Respiratory Division quiet breathing, both in humans and in anaesthetized dogs. In humans, the para­ University Hospital sternal intercostals act in concert with the scalene muscles to expand the upper rib Weligerveld 1 cage, and/or to prevent it from being drawn inward by the action of the diaphragm. B-3212 Pellenberg The external intercostal muscles are considered to be active mainly during inspira­ Leuven tion, and the internal intercostal muscles during expiration. Belgium The respiratory activity of the external intercostals is minimal during quiet breathing both in man and in dogs, but increases with increasing ventilation. In­ Keywords: Chest wall mechanics contractile properties spiratory activity in the external intercostals can be enhanced in anaesthetized ani­ rib cage muscles mals and humans by inspiratory mechanical loading and by col stimulation, rib displacement suggesting that the external intercostals may constitute a reserve system, that may be recruited when the desired expansion of the rib cage is increased.
    [Show full text]
  • The Anomalous Human Levator Claviculae Muscle: a Case Report
    Central Annals of Vascular Medicine & Research Case Report *Corresponding author Kunwar P Bhatnagar, Department of Anatomical Sciences and Neurobiology, University of Louisville, 7000 Creekton, USA, Tel: 150-2456-4779; Email: bhatnagar@ The Anomalous Human Levator louisville.edu Submitted: 08 February 2021 Claviculae Muscle: A Case Accepted: 20 February 2021 Published: 24 February 2021 ISSN: 2378-9344 Report Copyright © 2021 Bhatnagar KP, et al. Kunwar P Bhatnagar1* and Timothy D Smith2 OPEN ACCESS 1Department of Anatomical Sciences and Neurobiology, University of Louisville, USA 2School of Physical Therapy, Slippery Rock University, USA Keywords • Anomalous muscle • Levator claviculae Abstract • omo-trachelien • Omocervicalis This case report describes the observation of a unilaterally present anomalous levator claviculae muscle in a 66 -year-old human male. The observations were made during routine laboratory dissections. In our 80- • Sternomastoideus some years of cumulative human dissection education prior to this detection, this was the first observation (with about 45 cadavers dissected yearly) of this muscle. The levator claviculae muscle was observed with intact nerve supply from the ventral ramus of C3, indicating its functional status. The muscle was lambda (λ)-shaped with its stem oriented cranially, attaching to the fascia of the longus capitis muscle at the level of the transverse process of the fourth cervical vertebra. More inferiorly, the stem splits into a pars medialis and pars lateralis each with fascial attachments to the clavicle within the middle third of the bone. Both parts had fascial attachments to the clavicle within the middle third of the bone, and the lateral part passed medial to the external jugular vein.
    [Show full text]
  • Cervical Spine and Cervicothoracic Junction Alexander R
    46 Cervical Spine and Cervicothoracic Junction Alexander R. Riccio, Tyler J. Kenning, John W. German SUMMARY OF KEY POINTS the approximate cervical spinal levels for the purposes of the skin incision. These include the hyoid bone (C3), thyroid • Understanding the anatomy of the cervical spine and cartilage (C4-5), cricoid cartilage (C6), and carotid tubercle neck is of the utmost importance for the surgeon (C6). These landmarks, however, may not be universally reli- operating in this region. able because, depending on a patient’s body habitus, they may be difficult to palpate reliably; moreover, the relationships are • The anatomy of this region can be classified from only an estimate and variability exists. superficial to deep and further analyzed by system, The most prominent structure of the upper dorsal surface including muscle, bone, nerves, vasculature, and soft of the nuchal region is the inion, or occipital protuberance. tissue. This may be palpated in the midline and is a part of the • Regarding the nerves in the neck, more focused occipital bone. The spinous processes of the cervical vertebrae consideration is taken for surgical purposes when may then be followed caudally to the vertebral prominence, discussing the laryngeal nerve as a result of the variably corresponding to the spinous process of C6, C7 (most potential morbidity associated with iatrogenic injury common), or T1. to this nerve. The prominent surface structure of the ventral neck is the • The vertebral artery is discussed in specific detail as laryngeal prominence, which is produced by the underlying well due to its clinical importance and proximity to thyroid cartilage.
    [Show full text]
  • Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and Main Principals Of
    Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and main principals of anatomical, pharmaceutical and clinical terminology (Student's book) Simferopol, 2017 Contents No. Topics Page 1. UNIT I. Latin language history. Phonetics. Alphabet. Vowels and consonants classification. Diphthongs. Digraphs. Letter combinations. 4-13 Syllable shortness and longitude. Stress rules. 2. UNIT II. Grammatical noun categories, declension characteristics, noun 14-25 dictionary forms, determination of the noun stems, nominative and genitive cases and their significance in terms formation. I-st noun declension. 3. UNIT III. Adjectives and its grammatical categories. Classes of adjectives. Adjective entries in dictionaries. Adjectives of the I-st group. Gender 26-36 endings, stem-determining. 4. UNIT IV. Adjectives of the 2-nd group. Morphological characteristics of two- and multi-word anatomical terms. Syntax of two- and multi-word 37-49 anatomical terms. Nouns of the 2nd declension 5. UNIT V. General characteristic of the nouns of the 3rd declension. Parisyllabic and imparisyllabic nouns. Types of stems of the nouns of the 50-58 3rd declension and their peculiarities. 3rd declension nouns in combination with agreed and non-agreed attributes 6. UNIT VI. Peculiarities of 3rd declension nouns of masculine, feminine and neuter genders. Muscle names referring to their functions. Exceptions to the 59-71 gender rule of 3rd declension nouns for all three genders 7. UNIT VII. 1st, 2nd and 3rd declension nouns in combination with II class adjectives. Present Participle and its declension. Anatomical terms 72-81 consisting of nouns and participles 8. UNIT VIII. Nouns of the 4th and 5th declensions and their combination with 82-89 adjectives 9.
    [Show full text]
  • Relation of Roots and Trunks of Brachial Plexus to Scalenus Anterior Muscle and Its Clinical Significance
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 11, Issue 4 (Nov.- Dec. 2013), PP 03-05 www.iosrjournals.org Relation of roots and trunks of brachial plexus to scalenus anterior muscle and its clinical significance Yogesh1, Viveka S2, Sudha M J3, Santosh Kumar S.C4, Sanjay Revankar5 1Assistant Professor, Department of Anatomy, Shridevi Institute of Medical Sciences & Research Hospital, Tumkur 2Assistant Professor, Department of Anatomy, Azeezia Institute of Medical Sciences, Kollam 3Assistant Professor, Department of Pharmacology, Azeezia Institute of Medical Sciences, Kollam 4 Department of Pharmacology, Shridevi Institute of Medical Sciences & Research Hospital, Tumkur 5Post graduate, Department of Anatomy, A J Institute of Medical Sciences, Mangalore. Abstract: Variations in the structures at the root of neck are important in understanding many clinical and surgical conditions. Scalenus anterior, the key muscle in the neck, usually related to the roots of brachial plexus in its posterior aspect. This study was designed to evaluate the relations of roots of brachial plexus to the scalene muscles. Posterior triangles of neck on both sides were studied in 24 cadavers. In two cases C5 and C6 pierced scalenus anterior muscle and emerged from its anterior surface. In other specimen roots of C5, C6 and C7 entered scalenus muscle and exited anterolateraly in a sequential manner. Knowledge of such variations is important for anaesthetists and surgeons. Key words: Scalenus anterior; Scalenus medius; roots of brachial plexus; variations I. Introduction Brachial plexus is formed by union of ventral rami of lower four cervical nerves and first thoracic nerve.
    [Show full text]
  • THE MAIN PERIPHERAL CONNECTIONS of the HUMAN SYMPATHETIC NERVOUS SYSTEM by T
    THE MAIN PERIPHERAL CONNECTIONS OF THE HUMAN SYMPATHETIC NERVOUS SYSTEM By T. K. POTTS, M.B., CH.M. (SYDNEY)1 BIIE recent investigation (5,7) of the functional significance of the sympathetic system by 1)r N. D). itoyle and Professor J. I. Hunter has revealed the necessity for a re-examination of the anatomy of the human sympathetic system. Ini particular the operations of ramisectioni (7, 8) devised by Dr Royle, in collabora- tion with Professor Hunter, call for a more exact determination of the precise position and topographical relations of the sympathetic cord and its ram? cotitnunicantes than at present is available. The dissection described ill this note was undertaken primarily to provide the surgeon with this guidance. In this matter, two regions stand out as having assumed an added interest ill the light of recent research. I refer to those regions associated with the operations known as cervical, and lumbar sympathetic ramisection, which are performed to remove the rigidity of the musculature of the extremities ill spastic paralysis (2,3,4,5, 7, 8, 9,10). As a description of the rari commnunicantes necessarily involves some mention of the arrangement of corresponding ganglia, this will be done in considering the various regions. To facilitate demonstration, the services of Miss D. Harrison were procured and, under my guidance, faithful repro- dluetions of the dissection were made by her. The dissection has been mounted, and placed in the Wilson. Museum of Anatomy, at the Medical School, Uni- versity of Sydney. The cervical portion of the sympathetic is characterized by the absence of segmental ganglia, and of white rami comnimunicantes.
    [Show full text]
  • The Role of Ultrasound for the Personalized Botulinum Toxin Treatment of Cervical Dystonia
    toxins Review The Role of Ultrasound for the Personalized Botulinum Toxin Treatment of Cervical Dystonia Urban M. Fietzek 1,2,* , Devavrat Nene 3 , Axel Schramm 4, Silke Appel-Cresswell 3, Zuzana Košutzká 5, Uwe Walter 6 , Jörg Wissel 7, Steffen Berweck 8,9, Sylvain Chouinard 10 and Tobias Bäumer 11,* 1 Department of Neurology, Ludwig-Maximilians-University, 81377 Munich, Germany 2 Department of Neurology and Clinical Neurophysiology, Schön Klinik München Schwabing, 80804 Munich, Germany 3 Djavad Mowafaghian Centre for Brain Health, Division of Neurology, University of British Columbia Vancouver, Vancouver, BC V6T 1Z3, Canada; [email protected] (D.N.); [email protected] (S.A.-C.) 4 NeuroPraxis Fürth, 90762 Fürth, Germany; [email protected] 5 2nd Department of Neurology, Comenius University, 83305 Bratislava, Slovakia; [email protected] 6 Department of Neurology, University of Rostock, 18147 Rostock, Germany; [email protected] 7 Neurorehabilitation, Vivantes Klinikum Spandau, 13585 Berlin, Germany; [email protected] 8 Department of Paediatric Neurology, Ludwig-Maximilians-University, 80337 Munich, Germany; [email protected] 9 Schön Klinik Vogtareuth, 83569 Vogtareuth, Germany 10 Centre hospitalier de l’Université de Montréal, Montréal, QC H2X 3E4, Canada; [email protected] 11 Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany * Correspondence: urban.fi[email protected] (U.M.F.); [email protected] (T.B.) Abstract: The visualization of the human body has frequently been groundbreaking in medicine. In the last few years, the use of ultrasound (US) imaging has become a well-established procedure Citation: Fietzek, U.M.; Nene, D.; for botulinum toxin therapy in people with cervical dystonia (CD).
    [Show full text]
  • Hyperfunctional Laryngeal Conditions: Muscle Tension
    Karen Drake MA, CCC-SLP Linda Bryans MA, CCC-SLP Jana Childes MS, CCC-SLP Identify disorders that can be classified as hyperfunctional laryngeal conditions Describe how laryngeal hyperfunction can contribute to dysphonia, chronic cough and paradoxical vocal fold motion (PVFM) Describe how treatment may be modified to better address these interrelationships 2 3 “MTD can be described as the pathological condition in which an excessive tension of the (para)laryngeal musculature, caused by a diverse number of etiological factors, leads to a disturbed voice.” ◦ Van Houtte, Van Lierde & Claeys (2011) Descriptive label Multiple etiological factors Diagnosed by specific findings on videostroboscopy Voice therapy is the treatment of choice – supported by a joint statement of the AAO and ASHA in 2005 Hoarseness Poor vocal quality Vocal fatigue Increase voicing effort/strain Difficulty with projection Inability to be understood over background noise or the telephone Voice breaks Periods of voice loss Sore throat Globus sensation Throat clearing Pressure, tightness or tension Tenderness Difficulty getting a full breath Running out of air with speaking Difficulty swallowing secretions Disturbed Altered tension of Changed position inclination of extrinsic muscles of larynx in neck cartilaginous structures Tension of intrinsic Voice disturbance musculature Van Houtte, Van Lierde & Claeys (2011) Excess jaw tension Lingual posture and/or tension Altered resonance focus Breath holding Poor coordination of breath and voice Pharyngeal
    [Show full text]
  • Muscular and Skeletal Changes in Cervical Dysphonic in Women
    Original Article Muscular and Skeletal Changes in Cervical Dysphonic in Women Alterações Musculares e Esqueléticas Cervicais em Mulheres Disfônicas Laiza Carine Maia Menoncin*, Ari Leon Jurkiewicz**, Kelly Cristina A. Silvério***, Paulo Monteiro Camargo****, Nathália Martii Monti Wolff*****. * Master in Communication Disorders at the University Tuiuti. Physiotherapist. ** PhD, UNIFESP. Professor of the Masters Program in Communication Disorders at the University Tuiuti. *** Doctor Unicamp. Professor, Master’s and Doctoral Program in Communication Disorders at the University Tuiuti. **** PhD in Clinical - Surgical UFPR. Head of the Department of Laryngology of the Hospital Angelina Caron. ***** Medical. ENT resident. Institution: University of Tuiuti Curitiba. Curitiba / PR - Brazil. Mail Address: Nathan Wolff Monti Martini - Sector Master Program in Communication Disorders - Rua Sydnei A. Rangel Santos, 238 - Curitiba / PR - Brazil - Zip code: 82010-330 - Telephone: (+55 41) 3331-7700 - E-mail: [email protected] Article received on June 14, 2010. Approved on 1 October 2010. SUMMARY Introduction: The vocal and neck are associated with the presence of tension and cervical muscle contraction. These disorders compromise the vocal tract and musculoskeletal cervical region and, thus, can cause muscle shortening, pain and fatigue in the neck and shoulder girdle. Objective: To evaluate and identify cervical abnormalities in women with vocal disorders, and neck pains comparing them to women without vocal complaints independent of the neck. Method: This prospective study of 32 subjects studied in the dysphonic group and 18 subjects in the control group, aged between 25 and 55 year old female. The subjects underwent assessments, ENT, orthopedic, physical therapy and voice recording. Results: At Rx cervical region more patients in the control group had this normal, however, with regard to the reduction of spaces interdiscal dysphonic patients prevailed.
    [Show full text]
  • Levator Scapulae Muscle Asymmetry Presenting As a Palpable Neck Mass: CT Evaluation
    Levator Scapulae Muscle Asymmetry Presenting as a Palpable Neck Mass: CT Evaluation Barry A. Shpizner1 and Roy A . Hollida/ PURPOSE: To define the normal CT anatomy of the levator scapulae muscle and to report on a series of five patients who presented with a palpable mass in the posterior triangle due to asymmetry of the levator scapulae muscles. PATIENTS AND METHODS: The contrast-enhanced CT examinations of the neck in 25 patients without palpable masses were reviewed to es tablish the normal CT appearance of the levator scapulae muscle. We retrospectively reviewed the contrast-enhanced CT examinations of the neck in five patients who presented with a palpable mass secondary to asymmetric levator scapulae muscles . RESULTS: In three patients who had undergone unilateral radical neck dissection, hypertrophy of the ipsi lateral levator scapulae muscle was found. In one patient, the normal levator scapulae muscle produced a fa ctitious "mass" due to atrophy of the contralateral levator scapulae muscle. One patient had an intramuscular neoplasm of the levator scapulae. CONCLUSION: Asymmetry of the levator scapulae muscles , an unusual cause of a posterior triangle mass, can be diagnosed using CT. Index terms: Neck, muscles; Neck, computed tomography AJNR 14:461-464, Mar/ Apr 1993 The levator scapulae muscle can be identified between January 1987 and March 1991 were reviewed. A ll readily on axial images by its characteristic ap­ patients presented with a palpable mass in the posterior pearance and its relationship to the other muscles triangle of the infrahyoid neck. The patients, three men forming the boundaries of the posterior triangle.
    [Show full text]