J Recombination: Mechanisms That Govern Locus Accessibility and Mitigate Against Genomic Instability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamics of Individual T Cell Repertoires: from Cord Blood to Centenarians Olga V
Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians Olga V. Britanova, Mikhail Shugay, Ekaterina M. Merzlyak, Dmitriy B. Staroverov, Ekaterina V. Putintseva, Maria A. This information is current as Turchaninova, Ilgar Z. Mamedov, Mikhail V. Pogorelyy, of September 27, 2021. Dmitriy A. Bolotin, Mark Izraelson, Alexey N. Davydov, Evgeny S. Egorov, Sofya A. Kasatskaya, Denis V. Rebrikov, Sergey Lukyanov and Dmitriy M. Chudakov J Immunol published online 13 May 2016 Downloaded from http://www.jimmunol.org/content/early/2016/05/12/jimmun ol.1600005 Supplementary http://www.jimmunol.org/content/suppl/2016/05/12/jimmunol.160000 http://www.jimmunol.org/ Material 5.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 13, 2016, doi:10.4049/jimmunol.1600005 The Journal of Immunology Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians Olga V. -
"Evolutionary Emergence of Genes Through Retrotransposition"
Evolutionary Emergence of Advanced article Genes Through Article Contents . Introduction Retrotransposition . Gene Alteration Following Retrotransposon Insertion . Retrotransposon Recruitment by Host Genome . Retrotransposon-mediated Gene Duplication Richard Cordaux, University of Poitiers, Poitiers, France . Conclusion Mark A Batzer, Department of Biological Sciences, Louisiana State University, Baton Rouge, doi: 10.1002/9780470015902.a0020783 Louisiana, USA Variation in the number of genes among species indicates that new genes are continuously generated over evolutionary times. Evidence is accumulating that transposable elements, including retrotransposons (which account for about 90% of all transposable elements inserted in primate genomes), are potent mediators of new gene origination. Retrotransposons have fostered genetic innovation during human and primate evolution through: (i) alteration of structure and/or expression of pre-existing genes following their insertion, (ii) recruitment (or domestication) of their coding sequence by the host genome and (iii) their ability to mediate gene duplication via ectopic recombination, sequence transduction and gene retrotransposition. Introduction genes, respectively, and de novo origination from previ- ously noncoding genomic sequence. Genome sequencing Variation in the number of genes among species indicates projects have also highlighted that new gene structures can that new genes are continuously generated over evolution- arise as a result of the activity of transposable elements ary times. Although the emergence of new genes and (TEs), which are mobile genetic units or ‘jumping genes’ functions is of central importance to the evolution of that have been bombarding the genomes of most species species, studies on the formation of genetic innovations during evolution. For example, there are over three million have only recently become possible. -
Evolution of Pogo, a Separate Superfamily of IS630-Tc1-Mariner
Gao et al. Mobile DNA (2020) 11:25 https://doi.org/10.1186/s13100-020-00220-0 RESEARCH Open Access Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates Bo Gao, Yali Wang, Mohamed Diaby, Wencheng Zong, Dan Shen, Saisai Wang, Cai Chen, Xiaoyan Wang and Chengyi Song* Abstracts Background: Tc1/mariner and Zator, as two superfamilies of IS630-Tc1-mariner (ITm) group, have been well-defined. However, the molecular evolution and domestication of pogo transposons, once designated as an important family of the Tc1/mariner superfamily, are still poorly understood. Results: Here, phylogenetic analysis show that pogo transposases, together with Tc1/mariner,DD34E/Gambol,and Zator transposases form four distinct monophyletic clades with high bootstrap supports (> = 74%), suggesting that they are separate superfamilies of ITm group. The pogo superfamily represents high diversity with six distinct families (Passer, Tigger, pogoR, Lemi, Mover,andFot/Fot-like) and wide distribution with an expansion spanning across all the kingdoms of eukaryotes. It shows widespread occurrences in animals and fungi, but restricted taxonomic distribution in land plants. It has invaded almost all lineages of animals—even mammals—and has been domesticated repeatedly in vertebrates, with 12 genes, including centromere-associated protein B (CENPB), CENPB DNA-binding domain containing 1 (CENPBD1), Jrk helix–turn–helix protein (JRK), JRK like (JRKL), pogo transposable element derived with KRAB domain (POGK), and with ZNF domain (POGZ), and Tigger transposable element-derived 2 to 7 (TIGD2–7), deduced as originating from this superfamily. Two of them (JRKL and TIGD2) seem to have been co-domesticated, and the others represent independent domestication events. -
Characterization of the T Cell Receptor Repertoire of Neonatal T Cells by RT-PCR and Single Strand Conformation Polymorphism Analysis
Bone Marrow Transplantation (2000) 26, 83–89 2000 Macmillan Publishers Ltd All rights reserved 0268–3369/00 $15.00 www.nature.com/bmt Characterization of the T cell receptor repertoire of neonatal T cells by RT-PCR and single strand conformation polymorphism analysis E Alfani1, AR Migliaccio2, M Sanchez1, AM Passarelli3 and G Migliaccio1 1Laboratory of Cell Biology and 2Clinical Biochemistry, Istituto Superiore di Sanita`, Rome; and 3Ospedale Civile Tivoli, Tivoli, Italy Summary: by other molecular mechanisms which include imprecise joining of V(D)J recombination,6 N-region diversification We have analyzed by reverse transcriptase-polymerase (random addition of nucleotides by terminal deoxy-ribonu- chain reaction (RT-PCR) the individual non-germ line cleotidyl transferase)7,8 and insertions of palindromic configurations of the T cell receptor (TCR) V chains nucleotides9 at specific points of the VD, DJ and VJ junc- expressed by T cells from eight individual cord blood tions. As a result of allele exclusion,10 each T cell clone specimens. cDNA from each cord blood was amplified expresses one and only one specifically rearranged TCR using a common primer coupled with a primer specific V chain. Therefore, the number of TCR V chain for each of 22 variable elements of the V chain family rearrangements expressed by a given population correlates and the amplified fragments were separated under high with its T cell clonality. resolution conditions. With cDNA from adult blood (as Cord blood (CB) has been proven to be a good source a control), all of the TCR chains were amplified as a of stem/progenitor cells for related and unrelated trans- smear consistent with the extensive polyclonality of plants.11,12 Successful engraftment with low graft-versus- adult T cells. -
Retrotransposon Long Interspersed Nucleotide Element1 (LINE1) Is
The Japanese Society of Developmental Biologists Develop. Growth Differ. (2012) 54, 673–685 doi: 10.1111/j.1440-169X.2012.01368.x Original Article Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration Wei Zhu,1 Dwight Kuo,2 Jason Nathanson,3 Akira Satoh,4,5 Gerald M. Pao,1 Gene W. Yeo,3 Susan V. Bryant,5 S. Randal Voss,6 David M. Gardiner5*and Tony Hunter1* 1Molecular and Cell Biology Laboratory and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, Departments of 2Bioengineering and 3Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA; 4Okayama University, R.C.I.S. Okayama-city, Okayama, 700-8530, Japan; 5Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California 92697, and 6Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, USA Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mam- mals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of sala- mander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. -
Distorted TCR Repertoires Define Multisystem Inflammatory Syndrome in Children
medRxiv preprint doi: https://doi.org/10.1101/2021.04.12.21255098; this version posted April 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Distorted TCR repertoires define multisystem inflammatory syndrome in children Amna Malik* 1, Eszter N. Tóth* 2, Michelle S. Teng 2, Jacob Hurst 2, Eleanor Watt 3, Lauren Wise 4, Natalie Kent 4, Jack Bartram 5, Louis GranDjean 6, Margarita Dominguez-Villar 7, Stuart ADams† 4 anD Nichola Cooper† 1 1 Centre for Haematology, Department of Immunology anD Inflammation, Imperial College LonDon, LonDon, UniteD KingDom 2 Etcembly Ltd, MagDalen Centre, Robert Robinson Way, OxforD, UniteD KingDom 3 Molecular anD Cellular Immunology Department, UCL Great OrmonD Street Institute of ChilD Health, LonDon, UniteD KingDom 4 SIHMDS-Haematology, Great OrmonD Street Hospital for ChilDren, LonDon, UniteD Kingdom 5 Department of Haematology, Great OrmonD Street Hospital for ChilDren, LonDon, UniteD Kingdom 6 PaeDiatric Infectious Diseases, Great OrmonD Street Hospital for ChilDren, LonDon, UniteD Kingdom 7 Department of Infectious Diseases, Imperial College LonDon, LonDon, UniteD KingDom *These authors have contributed equally to this work †These authors have jointly supervised CorresponDing author: Nichola Cooper Tel: +44 20 3313 4017 E-mail: [email protected] KeyworDs: Sars-Cov2, coronavirus, COVID-19, multisystem inflammatory synDrome, MIS-C, superantigen, TCR, immune repertoire, sequencing NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. -
Defining Natural Antibodies
PERSPECTIVE published: 26 July 2017 doi: 10.3389/fimmu.2017.00872 Defining Natural Antibodies Nichol E. Holodick1*, Nely Rodríguez-Zhurbenko2 and Ana María Hernández2* 1 Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States, 2 Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of NAbs may be required. Defining NAbs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined. Edited by: Keywords: natural antibody, antibodies, natural antibody repertoire, B-1 cells, B cell subsets, B cells Harry W. Schroeder, University of Alabama at Birmingham, United States NATURAL ANTIBODY (NAb) PRODUCING CELLS Reviewed by: Andre M. Vale, Both murine and human NAbs have been discussed in detail since the late 1960s (2, 3); however, Federal University of Rio cells producing NAbs were not identified until 1983 in the murine system (4, 5). -
U Klein Lecture 3
Introduction to Immunology Antigen Receptors and Generation of Antibody and T-Cell Receptor Diversity Ulf Klein [email protected] Adaptive Immunity The Adaptive or Acquired Immune Respone: • Is the response of antigen-specific lymphocytes to antigen, including the development of immunological memory • Are mediated by the clonal selection of antigen-specific lymphocytes • Immunoglobulins and T-cell receptors are the highly variable recognition molecules of adaptive immunity Effector Molecules of Adaptive Immunity The Antibodies Made Against a Pathogen Are Highly Specific for That Pathogen The Diversity of Antibodies and T-Cell Receptors Is Generated by Gene Rearrangement Through Somatic DNA Recombination Gene Rearrangement Produces a Diversity of Antigen Receptors in Lymphocytes Clonal Selection of B and T Lymphocytes 1. 3. 2. 4. The Immunoglobulin Molecule: • Made up of 2 identical heavy chains and 2 identical light chains • The antibody molecule has 2 functional domains Features of the Immunoglobulin Molecule • The flexible hinge allows it to bind with both arms to antigens on the surfaces of pathogens • The heavy and light chains are made from a series of similar protein domains The Hypervariable Regions of Antibody V Domains Lie in Discrete Loops at One End of the Domain Structure • The hypervariable loops contribute much of the antigen specificity of the antigen-binding site Hypervariable Regions in Heavy and Light-Chains Antigen-Binding Sites Can Have Diverse Structures • Epitopes of antigens can bind to pockets, grooves, extended -
A Review on the Population Genomics of Transposable Elements
G C A T T A C G G C A T genes Review On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements Yann Bourgeois and Stéphane Boissinot * New York University Abu Dhabi, P.O. 129188 Saadiyat Island, Abu Dhabi, UAE; [email protected] * Correspondence: [email protected] Received: 4 April 2019; Accepted: 21 May 2019; Published: 30 May 2019 Abstract: Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes. Keywords: transposable elements; population genetics; selection; drift; coevolution 1. Introduction Transposable elements (TEs) are repetitive DNA sequences that are ubiquitous in the living world and have the ability to replicate and multiply within genomes. -
The Future of Transposable Element Annotation and Their Classification in the Light of Functional Genomics
The future of transposable element annotation and their classification in the light of functional genomics -what we can learn from the fables of Jean de la Fontaine? Peter Arensburger, Benoit Piegu, Yves Bigot To cite this version: Peter Arensburger, Benoit Piegu, Yves Bigot. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from thefables of Jean de la Fontaine?. Mobile Genetic Elements, Taylor & Francis, 2016, 6 (6), pp.e1256852. 10.1080/2159256X.2016.1256852. hal-02385838 HAL Id: hal-02385838 https://hal.archives-ouvertes.fr/hal-02385838 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine? Peter Arensburger1, Benoît Piégu2, and Yves Bigot2 1 Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768 - United States of America. 2 Physiologie de la reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly – France Corresponding author address: Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768 - United States of America. -
HLA Class I-Associated Expansion of TRBV11-2 T Cells in Multisystem Inflammatory Syndrome in Children
HLA class I-associated expansion of TRBV11-2 T cells in Multisystem Inflammatory Syndrome in Children Rebecca A. Porritt, … , Mascha Binder, Moshe Arditi J Clin Invest. 2021. https://doi.org/10.1172/JCI146614. Research In-Press Preview COVID-19 Immunology Graphical abstract Find the latest version: https://jci.me/146614/pdf HLA Class I-associated expansion of TRBV11-2 T cells in Multisystem Inflammatory Syndrome in Children Rebecca A Porritt1,2,*, Lisa Paschold3,*, Magali Noval Rivas1,2,4, Mary Hongying Cheng5, Lael M Yonker6, Harsha Chandnani7, Merrick Lopez7, Donjete Simnica3, Christoph Schultheiß3, Chintda Santiskulvong8, Jennifer Van Eyk9, John K. McCormick10, Alessio Fasano6, Ivet Bahar5,ǂ, Mascha Binder3,ǂ and Moshe Arditi1,2,4,9,ǂ,† 1 Departments of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA 2 Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA 3 Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle- Wittenberg, 06120 Halle (Saale), Germany 4 Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. 5 Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA 6 Mucosal Immunology and Biology Research Center and Department of Pediatrics, Boston, Massachusetts General Hospital, MA, USA 7 Department of Pediatrics, Loma Linda University Hospital, CA, USA 8 Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA 9 Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA 10 Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada. -
Repeated Horizontal Transfers of Four DNA Transposons in Invertebrates and Bats Zhou Tang1†, Hua-Hao Zhang2†, Ke Huang3, Xiao-Gu Zhang2, Min-Jin Han1 and Ze Zhang1*
Tang et al. Mobile DNA (2015) 6:3 DOI 10.1186/s13100-014-0033-1 RESEARCH Open Access Repeated horizontal transfers of four DNA transposons in invertebrates and bats Zhou Tang1†, Hua-Hao Zhang2†, Ke Huang3, Xiao-Gu Zhang2, Min-Jin Han1 and Ze Zhang1* Abstract Background: Horizontal transfer (HT) of transposable elements (TEs) into a new genome is considered as an important force to drive genome variation and biological innovation. However, most of the HT of DNA transposons previously described occurred between closely related species or insects. Results: In this study, we carried out a detailed analysis of four DNA transposons, which were found in the first sequenced twisted-wing parasite, Mengenilla moldrzyki. Through the homology-based strategy, these transposons were also identified in other insects, freshwater planarian, hydrozoans, and bats. The phylogenetic distribution of these transposons was discontinuous, and they showed extremely high sequence identities (>87%) over their entire length in spite of their hosts diverging more than 300 million years ago (Mya). Additionally, phylogenies and comparisons of transposons versus orthologous gene identities demonstrated that these transposons have transferred into their hosts by independent HTs. Conclusions: Here, we provided the first documented example of HT of CACTA transposons, which have been so far extensively studied in plants. Our results demonstrated that bats had continuously acquired new DNA elements via HT. This implies that predation on a large quantity of insects might increase bat exposure to HT. In addition, parasite-host interaction might facilitate exchanging of their genetic materials. Keywords: Horizontal transfer, CACTA transposons, Mammals, Recent activity Background or isolated species.