Investigating Polyhedra by Oracles and Analyzing Simple Extensions of Polytopes

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Polyhedra by Oracles and Analyzing Simple Extensions of Polytopes Investigating Polyhedra by Oracles and Analyzing Simple Extensions of Polytopes Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) von Dipl.-Comp.-Math. Matthias Walter geb. am 24. September 1986 in Wolmirstedt genehmigt durch die Fakultät für Mathematik der Otto-von-Guericke-Universität Magdeburg Gutachter: Prof. Dr. Volker Kaibel Otto-von-Guericke-Universität Magdeburg Prof. Dr. Marc Pfetsch Technische Universität Darmstadt eingereicht am: 16. Dezember 2015 Verteidigung am: 29. März 2016 Dedicated to Sarah. Zusammenfassung Ein wichtiges Hilfsmittel der Polyedrischen Kombinatorik ist die computer- gestützte Analyse von Polyedern, um deren strukturelle Eigenschaften zu untersuchen. Aufgrund des enumerativen Charakters der klas- sischen Algorithmen sind diese Ansätze bereits bei verhältnismäßig kleinen Dimensionen nur noch mit enormen Ressourcen zu bewältigen. Da oft die konvexen Hüllen der Lösungsmengen von Optimierungs- problemen von Interesse sind und es sehr effiziente Software (zum Beispiel im Falle gemischt-ganzzahliger linearer Optimierungsprobleme (MIPs)) zur Lösung dieser Probleme gibt, stellt sich die Frage, inwieweit man eine Analyse basierend auf solcher Software, oder formal einem Optimierungsorakel, durchführen kann. Dafür wurde im Rahmen der Arbeit die Softwarebibliothek IPO (Investigating Polyhedra by Oracles) entwickelt. Der erste Schritt einer Analyse ist in dem meisten Fällen die Bestimmung der affinen Hülle eines Polyeders P Rn, insbesondere der Dimension. Dazu wurde ein Algorithmus entwickelt,⊆ der mit 2n Orakel-Aufrufen auskommt und in der Praxis sehr effizient ist. Zudem wurde die Optimalität dieser Anzahl für den allgemeinen Fall bewiesen. Unter Nutzung einer entsprechen- den Implementation und des MIP-Lösers SCIP wurden Instanzen der MIPLIB 2.0 betrachtet und Dimensionen verschiedener Polyeder be- stimmt: Lineare Relaxierung und gemischt-ganzzahlige Hüllen vor und • nach Anwendung der Presolve-Routinen von SCIP. Optimale Seiten bezüglich der Zielfunktion der Instanz. • Durch gegebene Ungleichungen induzierte Seiten. • Die Hauptanwendung von IPO ist die Bestimmung von Facetten von P, da diese zu nicht dominierten Ungleichungen in einer Ungleichungs- beschreibung korrespondieren und daher ein großes Potential besitzen, bei der Lösung (mit Hilfe von MIP-Lösern) von Nutzen zu sein. Facetten- definierende Ungleichungen, welche von einem gegebenen Punkt maxi- mal verletzt werden, können mit Hilfe von Target-Cuts effektiv bestimmt werden. Dies wird zum Beispiel für Linearisierungen von Matching- Polytopen mit einem quadratischen Term demonstriert, indem mit Hilfe von IPO eine bisher unbekannte Klasse von Facetten entdeckt wurde. i Zusätzlich zur Facetten- und Affine-Hülle-Bestimmung hat IPO eine dritte Funktionalität, die die Überprüfung der Adjazenz zweier Ecken von P betrifft. Diese ist äquivalent dazu, dass der Normalenkegel an ihren Mittelpunkt (n 1)-dimensional ist. Da man mit Hilfe eines Optimierungsorakels für− P – ähnlich zu Target Cuts – ein Optimierungs- orakel für den betrachteten Normalenkegel konstruieren kann, reduziert sich das Adjazenzproblem ebenfalls auf das Affine-Hülle-Problem. Zur Demonstration wurden eine große Anzahl von Adjazenzen zufälliger Ecken von TSP-Polytopen überprüft, wobei als Orakel die TSP-Software concorde genutzt wurde. Damit IPO grundsätzlich korrekt arbeitet, die Probleme jedoch mög- lichst effizient löst, wird an vielen Stellen sowohl rationale als auch Gleitkomma-Arithmetik verwendet. Dies ist besonders bei Dimensio- nen größer als 500 enorm relevant, da hier gelegentlich exakte Zahlen mit Kodierungslängen von über 106 Bits auftreten. Um weiterhin die meist laufzeitintensiven Orakelaufrufe zu sparen, erlaubt IPO die Nut- zung von Heuristiken, von denen außer der Zulässigkeit der ange- gebenen Lösungen nichts verlangt wird. So können beispielsweise die gerundeten Lösungen von SCIP als heuristisch betrachtet und die exakte Version von SCIP zur “Verifikation” genutzt werden. Der zweite Teil der Arbeit fällt in das Forschungsgebiet der Erweiter- ten Formulierungen und basiert auf einem gemeinsam mit Volker Kaibel veröffentlichten Artikel. In diesem Gebiet geht es im Wesentlichen darum, ein gegebenes Polytop P als affine Projektion eines anderen Poly- tops Q mit möglichst wenigen Facetten darzustellen. Die größte Moti- vation hierfür ist die (in gewissem Sinne äquivalente) Frage, ob man ein lineares Optimierungsproblem über P mit Hilfe von weiteren Variablen als ein lineares Optimierungsproblem darstellen kann, welches mit sehr wenigen Ungleichungen auskommt. In der Arbeit wurde untersucht, inwieweit solche kompakten Dar- stellungen möglich sind, wenn man noch zusätzlich fordert, dass das Erweiterungspolytop Q ein einfaches Polytop ist, das gesuchte lineare Optimierungsproblem also nicht (primal) degeneriert ist. Einerseits haben bereits bekannte Klassen von Erweiterungspolytopen diese Eigen- schaft, andererseits kann man für jedes Polytop zunächst ein einfaches Erweiterungspolytop konstruieren. Die charakteristische Größe ist die sogenannte simple extension complexity, die die minimale Facettenzahl ii eines solchen einfachen Erweiterungspolytops angibt. Hierzu wurde eine Technik entwickelt, die es ermöglicht, aufgrund von Eigenschaften des Graphen von P untere Schranken an diese Größe zu bestimmen. Trotz der genannten positiven Beispiele stellt sich her- aus, dass die Eigenschaft sehr selten ist: Bereits wenig komplizierte Polytope, wie Hypersimplizes, die zudem nur schwach degeneriert sind, haben eine simple extension complexity in der Größenordnung der Anzahl der Ecken des Polytops, einer trivialen oberen Schranke. Wenig überraschend ist da, dass dies auch für zahlreiche kombina- torische Polytope der Fall ist, unter ihnen perfekte Matching-Polytope vollständiger und vollständiger bipartiter Graphen, Flusspolytope un- zerlegbarer azyklischer Netzwerke, Spannbaumpolytope vollständiger Graphen, sowie zufällige 0=1-Polytope mit gewissen Eckenanzahlen. Um die untere Schranke im Falle perfekter Matchings auf vollständigen Graphen zu beweisen, wurde ein Resultat von Padberg & Rao über Adjazenzbeziehungen entsprechender Polytope verbessert. In einem kurzen Abschnitt dieses Teils wird charakterisiert, wann zwei der (wenigen) bekannten Methoden zur Konstruktion von Er- weiterten Formulierungen Einfachheit herstellen. iii Summary An important tool of Polyhedral Combinatorics is the computer-aided analysis of polyhedra for understanding their structural properties, which are often related to an underlying optimization problem. Due to the enumerative nature of the classical algorithms for polyhedral analysis this approach can often only be pursued for relatively small dimensions or using an enormous amount of resources. Since many polyhedra of interest are convex hulls of feasible sets of optimization problems and since there exists efficient software (e.g., in case of mixed-integer linear optimization problems (MIPs)) for solving these problems even in higher dimensions, it is a reasonable question how to carry out an analysis based on such software, or more formally, on an optimization oracle. This thesis is accompanied by a software library IPO (Investigating Polyhedra by Oracles) specifically designed for this approach. A first step in such an analysis is typically the computation of the affine hull of a polyhedron P Rn, in particular its dimension. For this we developed an algorithm that⊆ needs at most 2n oracle calls and is very efficient in practice. We also prove that this number is the minimum in the worst case. Using our implementation and the MIP solver SCIP we investigated instances of the MIPLIB 2.0 and determined dimensions of several polyhedra: Linear relaxations and mixed-integer hulls before and after apply- • ing presolve routines of SCIP. Optimal faces with respect to the objective of the instance. • Faces induced by given inequalities. • The main application of IPO is the detection of some of P’s facets since those correspond to undominated inequalities in an inequality descrip- tion, and hence usually have great potential of being useful during the solving process (using a MIP solver). Facet-defining inequalities that are maximally violated by a given point can be found efficiently us- ing Target Cuts. In particular, this is demonstrated for linearizations of matching polytopes with one quadratic term, for which we determined a new class of facets using IPO. iv In addition to facet- and affine-hull computations, IPO has a third component that can check adjacency of two vertices of P. The latter is equivalent to the property that the dimension of the normal cone at their barycenter is equal to n 1. Since we can – similar to Target Cuts – construct an optimization oracle− for this normal cone, this problem reduces to the affine-hull problem. Again for demonstration purposes we tested a huge number of vertex pairs of TSP polytopes for adjacency, using the software concorde as an optimization oracle. Since we strive for efficiency, but still want to ensure correct behavior of IPO, we often use floating-point- and rational arithmetic. This is par- ticularly important for dimensions greater than 500 as then sometimes the occurring exact numbers have encoding lengths of more than 106 bits. In order to save costly oracle calls, IPO allows to use heuristics from which we do not require optimality of returned solutions. This way we can use, for instance, the rounded (potentially incorrect) solutions of SCIP and use the exact version of SCIP for verification purposes
Recommended publications
  • 7 LATTICE POINTS and LATTICE POLYTOPES Alexander Barvinok
    7 LATTICE POINTS AND LATTICE POLYTOPES Alexander Barvinok INTRODUCTION Lattice polytopes arise naturally in algebraic geometry, analysis, combinatorics, computer science, number theory, optimization, probability and representation the- ory. They possess a rich structure arising from the interaction of algebraic, convex, analytic, and combinatorial properties. In this chapter, we concentrate on the the- ory of lattice polytopes and only sketch their numerous applications. We briefly discuss their role in optimization and polyhedral combinatorics (Section 7.1). In Section 7.2 we discuss the decision problem, the problem of finding whether a given polytope contains a lattice point. In Section 7.3 we address the counting problem, the problem of counting all lattice points in a given polytope. The asymptotic problem (Section 7.4) explores the behavior of the number of lattice points in a varying polytope (for example, if a dilation is applied to the polytope). Finally, in Section 7.5 we discuss problems with quantifiers. These problems are natural generalizations of the decision and counting problems. Whenever appropriate we address algorithmic issues. For general references in the area of computational complexity/algorithms see [AB09]. We summarize the computational complexity status of our problems in Table 7.0.1. TABLE 7.0.1 Computational complexity of basic problems. PROBLEM NAME BOUNDED DIMENSION UNBOUNDED DIMENSION Decision problem polynomial NP-hard Counting problem polynomial #P-hard Asymptotic problem polynomial #P-hard∗ Problems with quantifiers unknown; polynomial for ∀∃ ∗∗ NP-hard ∗ in bounded codimension, reduces polynomially to volume computation ∗∗ with no quantifier alternation, polynomial time 7.1 INTEGRAL POLYTOPES IN POLYHEDRAL COMBINATORICS We describe some combinatorial and computational properties of integral polytopes.
    [Show full text]
  • Polyhedral Combinatorics, Complexity & Algorithms
    POLYHEDRAL COMBINATORICS, COMPLEXITY & ALGORITHMS FOR k-CLUBS IN GRAPHS By FOAD MAHDAVI PAJOUH Bachelor of Science in Industrial Engineering Sharif University of Technology Tehran, Iran 2004 Master of Science in Industrial Engineering Tarbiat Modares University Tehran, Iran 2006 Submitted to the Faculty of the Graduate College of Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2012 COPYRIGHT c By FOAD MAHDAVI PAJOUH July, 2012 POLYHEDRAL COMBINATORICS, COMPLEXITY & ALGORITHMS FOR k-CLUBS IN GRAPHS Dissertation Approved: Dr. Balabhaskar Balasundaram Dissertation Advisor Dr. Ricki Ingalls Dr. Manjunath Kamath Dr. Ramesh Sharda Dr. Sheryl Tucker Dean of the Graduate College iii Dedicated to my parents iv ACKNOWLEDGMENTS I would like to wholeheartedly express my sincere gratitude to my advisor, Dr. Balabhaskar Balasundaram, for his continuous support of my Ph.D. study, for his patience, enthusiasm, motivation, and valuable knowledge. It has been a great honor for me to be his first Ph.D. student and I could not have imagined having a better advisor for my Ph.D. research and role model for my future academic career. He has not only been a great mentor during the course of my Ph.D. and professional development but also a real friend and colleague. I hope that I can in turn pass on the research values and the dreams that he has given to me, to my future students. I wish to express my warm and sincere thanks to my wonderful committee mem- bers, Dr. Ricki Ingalls, Dr. Manjunath Kamath and Dr. Ramesh Sharda for their support, guidance and helpful suggestions throughout my Ph.D.
    [Show full text]
  • 3. Linear Programming and Polyhedral Combinatorics Summary of What Was Seen in the Introductory Lectures on Linear Programming and Polyhedral Combinatorics
    Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory lectures on linear programming and polyhedral combinatorics. Definition 3.1 A halfspace in Rn is a set of the form fx 2 Rn : aT x ≤ bg for some vector a 2 Rn and b 2 R. Definition 3.2 A polyhedron is the intersection of finitely many halfspaces: P = fx 2 Rn : Ax ≤ bg. Definition 3.3 A polytope is a bounded polyhedron. n n−1 Definition 3.4 If P is a polyhedron in R , the projection Pk ⊆ R of P is defined as fy = (x1; x2; ··· ; xk−1; xk+1; ··· ; xn): x 2 P for some xkg. This is a special case of a projection onto a linear space (here, we consider only coordinate projection). By repeatedly projecting, we can eliminate any subset of coordinates. We claim that Pk is also a polyhedron and this can be proved by giving an explicit description of Pk in terms of linear inequalities. For this purpose, one uses Fourier-Motzkin elimination. Let P = fx : Ax ≤ bg and let • S+ = fi : aik > 0g, • S− = fi : aik < 0g, • S0 = fi : aik = 0g. T Clearly, any element in Pk must satisfy the inequality ai x ≤ bi for all i 2 S0 (these inequal- ities do not involve xk). Similarly, we can take a linear combination of an inequality in S+ and one in S− to eliminate the coefficient of xk. This shows that the inequalities: ! ! X X aik aljxj − alk aijxj ≤ aikbl − alkbi (1) j j for i 2 S+ and l 2 S− are satisfied by all elements of Pk.
    [Show full text]
  • Linear Programming and Polyhedral Combinatorics Summary of What Was Seen in the Introductory Lectures on Linear Programming and Polyhedral Combinatorics
    Massachusetts Institute of Technology Handout 8 18.433: Combinatorial Optimization March 6th, 2007 Michel X. Goemans Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory lectures on linear programming and polyhedral combinatorics. Definition 1 A halfspace in Rn is a set of the form fx 2 Rn : aT x ≤ bg for some vector a 2 Rn and b 2 R. Definition 2 A polyhedron is the intersection of finitely many halfspaces: P = fx 2 Rn : Ax ≤ bg. Definition 3 A polytope is a bounded polyhedron. n Definition 4 If P is a polyhedron in R , the projection Pk of P is defined as fy = (x1; x2; · · · ; xk−1; xk+1; · · · ; xn) : x 2 P for some xkg. We claim that Pk is also a polyhedron and this can be proved by giving an explicit description of Pk in terms of linear inequalities. For this purpose, one uses Fourier-Motzkin elimination. Let P = fx : Ax ≤ bg and let • S+ = fi : aik > 0g, • S− = fi : aik < 0g, • S0 = fi : aik = 0g. T Clearly, any element in Pk must satisfy the inequality ai x ≤ bi for all i 2 S0 (these inequal- ities do not involve xk). Similarly, we can take a linear combination of an inequality in S+ and one in S− to eliminate the coefficient of xk. This shows that the inequalities: aik aljxj − alk akjxj ≤ aikbl − alkbi (1) j ! j ! X X for i 2 S+ and l 2 S− are satisfied by all elements of Pk. Conversely, for any vector (x1; x2; · · · ; xk−1; xk+1; · · · ; xn) satisfying (1) for all i 2 S+ and l 2 S− and also T ai x ≤ bi for all i 2 S0 (2) we can find a value of xk such that the resulting x belongs to P (by looking at the bounds on xk that each constraint imposes, and showing that the largest lower bound is smaller than the smallest upper bound).
    [Show full text]
  • ADDENDUM the Following Remarks Were Added in Proof (November 1966). Page 67. an Easy Modification of Exercise 4.8.25 Establishes
    ADDENDUM The following remarks were added in proof (November 1966). Page 67. An easy modification of exercise 4.8.25 establishes the follow­ ing result of Wagner [I]: Every simplicial k-"complex" with at most 2 k ~ vertices has a representation in R + 1 such that all the "simplices" are geometric (rectilinear) simplices. Page 93. J. H. Conway (private communication) has established the validity of the conjecture mentioned in the second footnote. Page 126. For d = 2, the theorem of Derry [2] given in exercise 7.3.4 was found earlier by Bilinski [I]. Page 183. M. A. Perles (private communication) recently obtained an affirmative solution to Klee's problem mentioned at the end of section 10.1. Page 204. Regarding the question whether a(~) = 3 implies b(~) ~ 4, it should be noted that if one starts from a topological cell complex ~ with a(~) = 3 it is possible that ~ is not a complex (in our sense) at all (see exercise 11.1.7). On the other hand, G. Wegner pointed out (in a private communication to the author) that the 2-complex ~ discussed in the proof of theorem 11.1 .7 indeed satisfies b(~) = 4. Page 216. Halin's [1] result (theorem 11.3.3) has recently been genera­ lized by H. A. lung to all complete d-partite graphs. (Halin's result deals with the graph of the d-octahedron, i.e. the d-partite graph in which each class of nodes contains precisely two nodes.) The existence of the numbers n(k) follows from a recent result of Mader [1] ; Mader's result shows that n(k) ~ k.2(~) .
    [Show full text]
  • Combinatorial Optimization, Packing and Covering
    Combinatorial Optimization: Packing and Covering G´erard Cornu´ejols Carnegie Mellon University July 2000 1 Preface The integer programming models known as set packing and set cov- ering have a wide range of applications, such as pattern recognition, plant location and airline crew scheduling. Sometimes, due to the spe- cial structure of the constraint matrix, the natural linear programming relaxation yields an optimal solution that is integer, thus solving the problem. Sometimes, both the linear programming relaxation and its dual have integer optimal solutions. Under which conditions do such integrality properties hold? This question is of both theoretical and practical interest. Min-max theorems, polyhedral combinatorics and graph theory all come together in this rich area of discrete mathemat- ics. In addition to min-max and polyhedral results, some of the deepest results in this area come in two flavors: “excluded minor” results and “decomposition” results. In these notes, we present several of these beautiful results. Three chapters cover min-max and polyhedral re- sults. The next four cover excluded minor results. In the last three, we present decomposition results. We hope that these notes will encourage research on the many intriguing open questions that still remain. In particular, we state 18 conjectures. For each of these conjectures, we offer $5000 as an incentive for the first correct solution or refutation before December 2020. 2 Contents 1Clutters 7 1.1 MFMC Property and Idealness . 9 1.2 Blocker . 13 1.3 Examples .......................... 15 1.3.1 st-Cuts and st-Paths . 15 1.3.2 Two-Commodity Flows . 17 1.3.3 r-Cuts and r-Arborescences .
    [Show full text]
  • Polyhedral Combinatorics : an Annotated Bibliography
    Polyhedral combinatorics : an annotated bibliography Citation for published version (APA): Aardal, K. I., & Weismantel, R. (1996). Polyhedral combinatorics : an annotated bibliography. (Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9627). Utrecht University. Document status and date: Published: 01/01/1996 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • 36 COMPUTATIONAL CONVEXITY Peter Gritzmann and Victor Klee
    36 COMPUTATIONAL CONVEXITY Peter Gritzmann and Victor Klee INTRODUCTION The subject of Computational Convexity draws its methods from discrete mathe- matics and convex geometry, and many of its problems from operations research, computer science, data analysis, physics, material science, and other applied ar- eas. In essence, it is the study of the computational and algorithmic aspects of high-dimensional convex sets (especially polytopes), with a view to applying the knowledge gained to convex bodies that arise in other mathematical disciplines or in the mathematical modeling of problems from outside mathematics. The name Computational Convexity is of more recent origin, having first ap- peared in print in 1989. However, results that retrospectively belong to this area go back a long way. In particular, many of the basic ideas of Linear Programming have an essentially geometric character and fit very well into the conception of Compu- tational Convexity. The same is true of the subject of Polyhedral Combinatorics and of the Algorithmic Theory of Polytopes and Convex Bodies. The emphasis in Computational Convexity is on problems whose underlying structure is the convex geometry of normed vector spaces of finite but generally not restricted dimension, rather than of fixed dimension. This leads to closer con- nections with the optimization problems that arise in a wide variety of disciplines. Further, in the study of Computational Convexity, the underlying model of com- putation is mainly the binary (Turing machine) model that is common in studies of computational complexity. This requirement is imposed by prospective appli- cations, particularly in mathematical programming. For the study of algorithmic aspects of convex bodies that are not polytopes, the binary model is often aug- mented by additional devices called \oracles." Some cases of interest involve other models of computation, but the present discussion focuses on aspects of computa- tional convexity for which binary models seem most natural.
    [Show full text]
  • Introduction to Polyhedral Combinatorics
    Introduction to Polyhedral Combinatorics Based on the lectures of András Frank Written by: Attila Joó University of Hamburg Mathematics Department Last modification: March 26, 2019 Contents 1 Introduction to linear programming .................................. 1 Basic notation ................................................. 1 Fourier-Motzkin elimination.......................................... 1 Polyhedral cones and generated cones .................................... 1 Bounds for a linear program.......................................... 2 Basic solutions ................................................. 3 Strong duality ................................................. 4 The structure of polyhedrons ......................................... 5 2 TU matrices ................................................. 6 Examples .................................................... 6 Properties of TU matrices........................................... 7 Applications of TU matrices.......................................... 8 Applications in bipartite graphs..................................... 8 Applications in digraphs......................................... 10 A further application........................................... 12 3 Total dual integrality ............................................ 13 Submodular flows................................................ 14 Applications of subflows............................................ 15 i 1 Introduction to linear programming Basic notation n Pn The scalar product of vectors x; y 2 R is xy := i=1
    [Show full text]
  • S-Hypersimplices, Pulling Triangulations, and Monotone Paths
    S-HYPERSIMPLICES, PULLING TRIANGULATIONS, AND MONOTONE PATHS SEBASTIAN MANECKE, RAMAN SANYAL, AND JEONGHOON SO Abstract. An S-hypersimplex for S ⊆ f0; 1; : : : ; dg is the convex hull of all 0=1-vectors of length d with coordinate sum in S. These polytopes generalize the classical hypersimplices as well as cubes, crosspoly- topes, and halfcubes. In this paper we study faces and dissections of S-hypersimplices. Moreover, we show that monotone path polytopes of S-hypersimplices yield all types of multipermutahedra. In analogy to cubes, we also show that the number of simplices in a pulling triangulation of a halfcube is independent of the pulling order. 1. Introduction d The cube d = [0; 1] together with the simplex ∆d = conv(0; e1;:::; ed) and the cross-polytope ♦d = conv(±e1;:::; ±ed) constitute the Big Three, three infinite families of convex polytopes whose geometric and combinatorial features make them ubiquitous throughout mathematics. A close cousin to the cube is the (even) halfcube d Hd := conv p 2 f0; 1g : p1 + ··· + pd even : d The halfcubes H1 and H2 are a point and a segment, respectively, but for d ≥ 3, Hd ⊂ R is a full- dimensional polytope. The 5-dimensional halfcube was already described by Thomas Gosset [11] in his classification of semi-regular polytopes. In contemporary mathematics, halfcubes appear under the name of demi(hyper)cubes [7] or parity polytopes [26]. In particular the name ‘parity polytope’ suggests a connection to combinatorial optimization and polyhedral combinatorics; see [6, 10] for more. However, halfcubes also occur in algebraic/topological combinatorics [13, 14], convex algebraic geometry [22], and in many more areas.
    [Show full text]
  • Arxiv:1904.05974V3 [Cs.DS] 11 Jul 2019
    Quasi-popular Matchings, Optimality, and Extended Formulations Yuri Faenza1 and Telikepalli Kavitha2? 1 IEOR, Columbia University, New York, USA. [email protected] 2 Tata Institute of Fundamental Research, Mumbai, India. [email protected] Abstract. Let G = (A [ B; E) be an instance of the stable marriage problem where every vertex ranks its neighbors in a strict order of preference. A matching M in G is popular if M does not lose a head-to-head election against any matching N. That is, φ(M; N) ≥ φ(N; M) where φ(M; N) (similarly, φ(N; M)) is the number of votes for M (resp., N) in the M-vs-N election. Popular matchings are a well- studied generalization of stable matchings, introduced with the goal of enlarging the set of admissible solutions, while maintaining a certain level of fairness. Every stable matching is a popular matching of minimum size. Unfortunately, it is NP-hard to find a popular matching of minimum cost, when a linear cost function is given on the edge set – even worse, the min-cost popular matching problem is hard to approximate up to any factor. Let opt be the cost of a min-cost popular matching. Our goal is to efficiently compute a matching of cost at most opt by paying the price of mildly relaxing popularity. Call a matching M quasi-popular if φ(M; N) ≥ φ(N; M)=2 for every matching N. Our main positive result is a bi-criteria algorithm that finds in polynomial time a quasi-popular matching of cost at most opt.
    [Show full text]
  • Scribability Problems for Polytopes
    SCRIBABILITY PROBLEMS FOR POLYTOPES HAO CHEN AND ARNAU PADROL Abstract. In this paper we study various scribability problems for polytopes. We begin with the classical k-scribability problem proposed by Steiner and generalized by Schulte, which asks about the existence of d-polytopes that cannot be realized with all k-faces tangent to a sphere. We answer this problem for stacked and cyclic polytopes for all values of d and k. We then continue with the weak scribability problem proposed by Gr¨unbaum and Shephard, for which we complete the work of Schulte by presenting non weakly circumscribable 3-polytopes. Finally, we propose new (i; j)-scribability problems, in a strong and a weak version, which generalize the classical ones. They ask about the existence of d-polytopes that can not be realized with all their i-faces \avoiding" the sphere and all their j-faces \cutting" the sphere. We provide such examples for all the cases where j − i ≤ d − 3. Contents 1. Introduction 2 1.1. k-scribability 2 1.2. (i; j)-scribability 3 Acknowledgements 4 2. Lorentzian view of polytopes 4 2.1. Convex polyhedral cones in Lorentzian space 4 2.2. Spherical, Euclidean and hyperbolic polytopes 5 3. Definitions and properties 6 3.1. Strong k-scribability 6 3.2. Weak k-scribability 7 3.3. Strong and weak (i; j)-scribability 9 3.4. Properties of (i; j)-scribability 9 4. Weak scribability 10 4.1. Weak k-scribability 10 4.2. Weak (i; j)-scribability 13 5. Stacked polytopes 13 5.1. Circumscribability 14 5.2.
    [Show full text]