The Mechanisms of Extracellular Electron Transfer

Total Page:16

File Type:pdf, Size:1020Kb

The Mechanisms of Extracellular Electron Transfer The mechanisms of extracellular electron transfer Christy Ann Grobbler Bachelor of Science (Hon I) The University of Queensland, Brisbane, Australia A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Chemical Engineering Advanced Water Management Centre 1 Abstract In bioelectrochemical systems (BESs) microbial activity facilitates electricity generation and product synthesis. Using the microbial process of extracellular electron transfer (EET) Shewanella and Geobacter species can respire using a solid terminal electron acceptor, such as an anode in BES. Study of these microorganisms and how they behave at the molecular level is important for shining light on geomicrobial processes and development of BES. Through the use of molecular and electrochemical techniques, this PhD thesis will focus on the molecular mechanisms employed by bacterial biofilms on the anode of a BES, specifically Shewanella oneidensis MR-1 and Geobacter sulfurreducens DL-1. The physiology of these microorganisms appears to be directly associated with the operational conditions of the BES. The application of electrochemical and molecular studies enables the comparison and understanding of the cellular response to the BES operation, in particular on how they respond to changes in the anode potential. Quantitative proteomics from low biomass, biofilm samples is not well documented. The first objective of this thesis was to show the successful use of SWATH-MS for quantitative proteomic analysis of a microbial electrochemically active biofilm of Shewanella oneidensis MR-1. After growth at different potentials (+0.5 V, 0.0 V & -0.4 V vs. Ag/AgCl), biofilm proteins were extracted from anodes for proteomic assessment. SWATH-MS analysis identified 704 proteins, and quantitative comparison was made of those associated with tricarboxcylic acid (TCA) cycle. Metabolic differences detected between the biofilms suggested a branching of the S. oneidensis TCA cycle when grown at the different electrode potentials. In addition, the higher abundance of enzymes involved in the TCA cycle at higher potential indicated an increase in metabolic activity. This objective demonstrated SWATH-MS as a suitable method for studying differences between biomass limited biofilm samples. Subsequently, SWATH-MS and electrochemical methods were used to characterize anodic biofilms of S. oneidensis MR-1 and G. sulfurreducens DL-1. Experiments were conducted at the different electrode potentials of +0.5 V, 0.0 V and -0.4 V or at +0.1 V and +0.6 V for S. oneidensis and G. sulfurreducens respectively. SWATH-MS analysis revealed different strategies of adaption to changes in potential for both microorganisms, with S. oneidensis showing an increase in the relative abundance of its EET cytochromes with increased potential. In addition, these findings support the model that S. oneidensis nanowires are extensions of the outer membrane. Conversely, the majority of EET cytochromes quantified for G. sulfurreducens showed little or no significant change in relative abundance in response to electrode 2 potential. These results suggest S. oneidensis has greater adaptability in its regulation of EET cytochromes compared to G. sulfurreducens. Proteomic, bioelectrochemical and UV- HPLC methods, confirm the involvement and dominance of mediated electron transfer in biofilms of S. oneidensis respiring with an electrode. Furthermore, the relative higher abundance of a riboflavin biosynthesis protein, suggested the involvement of flavins in the EET of biofilms of G. sulfurreducens. Biofilms of G. sulfurreducens grown at the highly oxidative potential of +0.6 V, showed indications of oxidative stress, with lower current production, lower bioelectrochemical signals, and the presence of certain cellular protection mechanisms. Furthermore, similarities between the species were detected, with an increase in the relative abundance of TCA cycle proteins observed with higher rates of EET. In summary, this PhD thesis provides evidence that SWATH-MS is a reliable method to observe changes in the relative abundance of proteins in anodic biofilms of S. oneidensis and G. sulfurreducens. Furthermore, it provides insight into regulation of EET proteins, the physiological response to electrode potential, and how these differ between species of dissimilatory metal respiring bacteria. 3 Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. 4 Publications during candidature Peer-reviewed papers: Grobbler, C.; Virdis, B.; Nouwens, A.; Harnisch, F.; Rabaey, K.; Bond, P.L. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes. SYST APPL MICROBIOL. 2014, DOI: 10.1016/j.syapm.2014.11.007 Conference presentations: Grobbler, C.; Virdis, B.; Nouwens, A.; Harnisch, F.; Rabaey, K.; Bond, P.L. Effect of the anodic potential in the extracellular electron transfer capability of Shewanella oneidensis MR-1. Australian Society for Microbiology 2012 Annual Scientific Meeting, 1 to 4 July 2012. Brisbane (Australia). (Poster presentation) Grobbler, C.; Virdis, B.; Nouwens, A.; Harnisch, F.; Rabaey, K.; Bond, P.L. Molecular mechanisms of extracellular electron transfer. The University of Queensland Postgraduate Engineering Conference. 3rd of June 2013. Brisbane (Australia) (Oral presentation) Grobbler, C.; Virdis, B.; Nouwens, A.; Harnisch, F.; Rabaey, K.; Bond, P.L. Effect of the anodic potential in the extracellular electron transfer capability of Shewanella oneidensis MR-1. 4th International Microbial Fuel Cell Conference. 1 to 4 September 2013. Cairns (Australia). (Oral presentation) Grobbler, C.; Virdis, B.; Nouwens, A.; Harnisch, F.; Rabaey, K.; Bond, P.L. Quantitative proteomic analysis from biomass limited electroactive biofilms of Shewanella oneidensis MR-1 through SWATH-MS. 15th ISME International Symposium on Microbial Ecology. 24 to 29 August 2014. Seoul (South Korea). (Oral presentation) 5 Publications included in this thesis Grobbler, C.; Virdis, B.; Nouwens, A.; Harnisch, F.; Rabaey, K.; Bond, P.L. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes. SYST APPL MICROBIOL. 2014, DOI: 10.1016/j.syapm.2014.11.007 This paper has been modified and included as part of sections 4.1.1 and 5.1. The original paper is attached as Appendix A. Contributor Statement of contribution Christy Grobbler (Candidate) Designed experiments (60%) Conducted experiments (100%) Performed SWATH data analysis (95%) Wrote the paper (100%) Bernardino Virdis Designed experiments (20%) Edited paper (20%) Amanda Nouwens Operation of mass spectrometer (100%) Assisted with SWATH data analysis (5%) Edited the paper (5%) Falk Harnisch Designed experiments (5%) Edited the paper (10%) Korneel Rabaey Designed experiments (5%) Edited the paper (5%) Philip L. Bond Designed experiments (10%) Edited the paper (60%) 6 Contributions by others to the thesis This thesis includes the reporting of some important contributions made by other researchers that I have collaborated with throughout the duration of my PhD. These contributions are acknowledged as follows: Prof. Korneel Rabaey (Ghent University) and Dr. Bernardino Virdis (AWMC, UQ), who assisted with the set up and design of the bioelectrochemical systems and experiments. Dr. Amanda Nouwens, from the School of Chemical and Molecular Biosciences (SCMB, UQ) for assistance with proteomic procedures and the operation of the mass spectrometer, as well as initial interpretation of proteomic spectra. Statement of parts of the thesis submitted to qualify for the award of another degree None. 7 Acknowledgements My PhD has been a long and rewarding journey and one that could have never been completed on my own. First, I would like to thank my principle advisor Dr. Phil Bond who has guided me through both my honours and PhD research projects. No matter what the problem or question, I could always come
Recommended publications
  • Recent Advances in the Roles of Minerals for Enhanced Microbial Extracellular Electron Transfer
    UC Davis UC Davis Previously Published Works Title Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer Permalink https://escholarship.org/uc/item/5503m936 Authors Dong, G Chen, Y Yan, Z et al. Publication Date 2020-12-01 DOI 10.1016/j.rser.2020.110404 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Renewable and Sustainable Energy Reviews 134 (2020) 110404 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer Guowen Dong a,e,1, Yibin Chen b,1, Zhiying Yan d, Jing Zhang f, Xiaoliang Ji a, Honghui Wang f, Randy A. Dahlgren a,c, Fang Chen b, Xu Shang a, Zheng Chen a,f,* a Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, PR China b Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, 350300, PR China c Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, United States d Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China e Fujian Provincial Key Laboratory of Resource and Environment Monitoring & Sustainable Management and Utilization, College of Resources and Chemical Engineering, Sanming University, Sanming, 365000, PR China f School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China ARTICLE INFO ABSTRACT Keywords: Minerals are ubiquitous in the natural environment and have close contact with microorganisms.
    [Show full text]
  • Electron Transfer Through the Outer Membrane of Geobacter Sulfurreducens a DISSERTATION SUBMITTED to the FACULTY of the UNIVE
    Electron transfer through the outer membrane of Geobacter sulfurreducens A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Fernanda Jiménez Otero IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR IN PHILOSOPHY Dr. Daniel R. Bond May, 2018 Fernanda Jiménez Otero, 2018, © Acknowledgements This dissertation and the degree I have gained with it, would not have been possible without the help and support from an invaluable group of people. The training I received from Chi Ho Chan and Caleb Levar continues to be essential in the way I approach scientific endeavors. The quality of genetic studies and rigor in microbiology techniques they taught me is a standard I hope to meet throughout my career. Daniel Bond has been much more than I ever expected from an advisor. I have not only gained scientific knowledge from him, but I will take with me the example of what a great mentor represents. His enthusiasm for science is only rivaled by his commitment to past and present members of his laboratory. I am extremely honored to be able to count myself in that group, and I will do my best to represent him proudly in future endeavors. Throughout these five years, Jeff Gralnick has given me numerous opportunities to explore all aspects of a scientific career. Not only is Chapter 2 a result of his vision, but I feel less intimidated by a career in science as a result of his mentoring and support. The faculty members in my committee- Carrie Wilmot, Brandy Toner, and Larry Wackett, have made sure I am well prepared for i every step through graduate school.
    [Show full text]
  • Insights Into Advancements and Electrons Transfer Mechanisms of Electrogens in Benthic Microbial Fuel Cells
    membranes Review Insights into Advancements and Electrons Transfer Mechanisms of Electrogens in Benthic Microbial Fuel Cells Mohammad Faisal Umar 1 , Syed Zaghum Abbas 2,* , Mohamad Nasir Mohamad Ibrahim 3 , Norli Ismail 1 and Mohd Rafatullah 1,* 1 Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; [email protected] (M.F.U.); [email protected] (N.I.) 2 Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China 3 School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; [email protected] * Correspondence: [email protected] (S.Z.A.); [email protected] or [email protected] (M.R.); Tel.: +60-4-6532111 (M.R.); Fax: +60-4-656375 (M.R.) Received: 7 August 2020; Accepted: 19 August 2020; Published: 28 August 2020 Abstract: Benthic microbial fuel cells (BMFCs) are a kind of microbial fuel cell (MFC), distinguished by the absence of a membrane. BMFCs are an ecofriendly technology with a prominent role in renewable energy harvesting and the bioremediation of organic pollutants through electrogens. Electrogens act as catalysts to increase the rate of reaction in the anodic chamber, acting in electrons transfer to the cathode. This electron transfer towards the anode can either be direct or indirect using exoelectrogens by oxidizing organic matter. The performance of a BMFC also varies with the types of substrates used, which may be sugar molasses, sucrose, rice paddy, etc. This review presents insights into the use of BMFCs for the bioremediation of pollutants and for renewable energy production via different electron pathways. Keywords: bioremediation; renewable energy; organic pollutants; electrogens; wastewater 1.
    [Show full text]
  • Electrically Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms
    Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms Yuri A. Gorby*†, Svetlana Yanina*, Jeffrey S. McLean*, Kevin M. Rosso*, Dianne Moyles‡, Alice Dohnalkova*, Terry J. Beveridge‡, In Seop Chang§, Byung Hong Kim¶, Kyung Shik Kim¶, David E. Culley*, Samantha B. Reed*, Margaret F. Romine*, Daad A. Saffariniʈ, Eric A. Hill*, Liang Shi*, Dwayne A. Elias*,**, David W. Kennedy*, Grigoriy Pinchuk*, Kazuya Watanabe††, Shun’ichi Ishii††, Bruce Logan‡‡, Kenneth H. Nealson§§, and Jim K. Fredrickson* *Pacific Northwest National Laboratory, Richland, WA 99352; ‡Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1; ¶Water Environment and Remediation Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea; §Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; ʈDepartment of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211; **Department of Agriculture Biochemistry, University of Missouri, Columbia, MO 65211; ††Marine Biotechnology Institute, Heita, Kamaishi, Iwate 026-0001, Japan; ‡‡Department of Environmental Engineering, Pennsylvania State University, University Park, PA 16802; and §§Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089 Communicated by J. Woodland Hastings, Harvard University, Cambridge, MA, June 6, 2006 (received for review September 20, 2005) Shewanella oneidensis MR-1 produced electrically conductive pi- from 50 to Ͼ150 nm in diameter and extending tens of microns or lus-like appendages called bacterial nanowires in direct response longer (Fig. 1A; and see Fig. 5A, which is published as supporting to electron-acceptor limitation. Mutants deficient in genes for information on the PNAS web site).
    [Show full text]
  • Biosensors and Bioelectronics Bioelectrochemical Systems
    Biosensors and Bioelectronics 142 (2019) 111576 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Bioelectrochemical systems: Sustainable bio-energy powerhouses T ∗ Mahwash Mahar Gul, Khuram Shahzad Ahmad Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan ARTICLE INFO ABSTRACT Keywords: Bioelectrochemical systems comprise of several types of cells, from basic microbial fuel cells (MFC) to photo- Microbial fuel cells synthetic MFCs and from plant MFCs to biophotovoltaics. All these cells employ bio entities at anode to produce Photo MFCs bioenergy by catalysing organic substrates while some systems convert solar irradiation to energy. The current Plant MFCs review epitomizes the above-mentioned fuel cell systems and elucidates their electrical performances. Microbial Biophotovoltaics fuel cells have advantages over conventional fuel cells in terms of being sustainable whilst producing impressive Bioelectricity power efficiencies without any net carbon emissions. They can be utilized for several environmentally friendly applications including wastewater treatment and bio-hydrogen generation, apart from producing clean and green electricity. Multifarious heterotrophic and autotrophic microbes and plants have been studied for their potential as imperative components of fuel cell technology. MFCs also display some interesting applications, such as integration of plant MFCs into architecture to produce “green” cities. Biophotovoltaic technology is the current hot cake in this field, which aspires to achieve significant electrical efficiencies by light-induced water splitting mechanisms. Furthermore, the utilization of BPVs in space renders it a technology for the future. Compared with other fuel cell systems, this technology is still in its inception and requires further efforts to endeavour its use on commercial or industrial level.
    [Show full text]
  • Mechanisms of Novel Anaerobic Aromatic Degradation Pathways in Geobacter Daltonii
    Georgia State University ScholarWorks @ Georgia State University Biology Dissertations Department of Biology Summer 8-12-2014 Benzene and Beyond: Mechanisms of Novel Anaerobic Aromatic Degradation Pathways in Geobacter daltonii Alison Kanak Follow this and additional works at: https://scholarworks.gsu.edu/biology_diss Recommended Citation Kanak, Alison, "Benzene and Beyond: Mechanisms of Novel Anaerobic Aromatic Degradation Pathways in Geobacter daltonii." Dissertation, Georgia State University, 2014. https://scholarworks.gsu.edu/biology_diss/143 This Dissertation is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. BENZENE AND BEYOND: MECHANISMS OF NOVEL ANAEROBIC AROMATIC DEGRADATION PATHWAYS IN GEOBACTER DALTONII by ALISON KANAK Under the Direction of Kuk-Jeong Chin ABSTRACT Petroleum spills causes contamination of drinking water with carcinogenic aromatic compounds including benzene and cresol. Current knowledge of anaerobic benzene and cresol degradation is extremely limited and it makes bioremediation challenging. Geobacter daltonii strain FRC-32 is a metal-reducing bacterium isolated from radionuclides and hydrocarbon- contaminated subsurface sediments. It is notable for its anaerobic oxidation of benzene and its unique ability to metabolize p-, m-, or o-cresol as a sole carbon source. Location of genes involved in aromatic compound degradation and genes unique to G. daltonii were elucidated by genomic analysis using BLAST. Genes predicted to play a role in aromatic degradation cluster into an aromatic island near the start of the genome. Of particular note, G.
    [Show full text]
  • The Ins and Outs of Microorganism–Electrode Electron Transfer Reactions
    The ins and outs of microorganism–electrode electron transfer reactions Kumar, A., Huan-Hsuan Hsu, L., Kavanagh, P., Barrière, F., Lens, P. N. L., Lapinsonniere, L., Lienhard V, J. H., Schröder, U., Jiang, X., & Leech, D. (2017). The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, (1), [0024]. https://doi.org/10.1038/s41570-017-0024 Published in: Nature Reviews Chemistry Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 Nature Publishing Group. This work is made available subject to the publisher's terms. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:29. Sep. 2021 The ins and outs of microbial-electrode electron transfer reactions Amit Kumara&f, Huan-Hsuan Hsub Paul Kavanaghc, Frédéric Barrièred, Piet N.L. Lense, Laure Lapinsonniereb, John H. Lienhard Vf, Uwe Schröderg, Jiang Xiaochengb, Dónal Leechc aDepartment of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA.
    [Show full text]
  • Comparative Analysis of Type IV Pilin in Desulfuromonadales
    ORIGINAL RESEARCH published: 21 December 2016 doi: 10.3389/fmicb.2016.02080 Comparative Analysis of Type IV Pilin in Desulfuromonadales Chuanjun Shu, Ke Xiao, Qin Yan and Xiao Sun * State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China During anaerobic respiration, the bacteria Geobacter sulfurreducens can transfer electrons to extracellular electron accepters through its pilus. G. sulfurreducens pili have been reported to have metallic-like conductivity that is similar to doped organic semiconductors. To study the characteristics and origin of conductive pilin proteins found in the pilus structure, their genetic, structural, and phylogenetic properties were analyzed. The genetic relationships, and conserved structures and sequences that were obtained were used to predict the evolution of the pilins. Homologous genes that encode conductive pilin were found using PilFind and Cluster. Sequence characteristics and protein tertiary structures were analyzed with MAFFT and QUARK, respectively. The origin of conductive pilins was explored by building a phylogenetic tree. Truncation is a characteristic of conductive pilin. The structures of truncated pilins and their accompanying proteins were found to be similar to the N-terminal and C-terminal ends Edited by: of full-length pilins respectively. The emergence of the truncated pilins can probably be Marina G. Kalyuzhanaya, ascribed to the evolutionary pressure of their extracellular electron transporting function. San Diego State University, USA Genes encoding truncated pilins and proteins similar to the C-terminal of full-length pilins, Reviewed by: Fengfeng Zhou, which contain a group of consecutive anti-parallel beta-sheets, are adjacent in bacterial Shenzhen Institutes of Advanced genomes.
    [Show full text]
  • Microbiology
    Microbiology Microbial Nanowires: An Electrifying Tale --Manuscript Draft-- Manuscript Number: MIC-D-16-00123R3 Full Title: Microbial Nanowires: An Electrifying Tale Short Title: Microbial Nanowires Article Type: Review Section/Category: Biotechnology Corresponding Author: Mandira Kochar, PhD The Energy and Resources Institute New Delhi, INDIA First Author: Sandeep K Sure Order of Authors: Sandeep K Sure Leigh M Ackland, PhD Angel A Torriero, PhD Alok Adholeya, PhD Mandira Kochar, PhD Abstract: Electromicrobiology has gained momentum in the last ten years with advances in microbial fuel cells and the discovery of microbial nanowires (MNWs). The list of MNWs producing microorganisms is growing and providing intriguing insights into the presence of such microorganisms in diverse environments and the potential roles MNWs can perform. This review discusses the MNWs produced by different microorganisms, including their structure, composition and role in electron transfer through MNWs. Two hypotheses, metallic-like conductivity and an electron hopping model, have been proposed for electron transfer and we present a current understanding of both these hypotheses. MNWs are not only poised to change the way we see microorganisms but may also impact the fields of bioenergy, biogeochemistry and bioremediation, hence their potential applications in these fields are highlighted here. Downloaded from www.microbiologyresearch.org by Powered by Editorial Manager® and ProduXionIP: 202.54.61.254 Manager® from Aries Systems Corporation On: Tue, 01 Nov 2016 06:09:54 Manuscript Including References (Word document) Click here to download Manuscript Including References (Word document) Revision 3 Microbial Nanowires Review 6 1 Review Paper 2 Title: Microbial Nanowires: An Electrifying Tale 3 Running Title: Microbial Nanowires 4 5 Authors 6 Sandeep Sure,1 M.
    [Show full text]
  • Downloaded from IMG-JGI and NCBI (See Table 1 for Taxon Object Ids)
    bioRxiv preprint doi: https://doi.org/10.1101/668343; this version posted October 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenetic and structural diversity of aromatically dense pili from environmental 2 metagenomes 3 M. S. Bray1,2@, J. Wu1, C.C. Padilla1#, F. J. Stewart1, D. A. Fowle3, C. Henny4, R. L. Simister5, 4 K. J. Thompson5, S. A. Crowe2,5, J. B. Glass1, 2* 5 6 1School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; 7 2School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA; 8 3Department of Geology, University of Kansas, Lawrence, KS, USA; 9 4Research Center for Limnology, Indonesian Institute of Sciences, Cibinong, Indonesia; 10 5Department of Earth, Ocean, & Atmospheric Sciences; Department of Microbiology & 11 Immunology, University of British Columbia, Vancouver, BC, Canada 12 13 *Correspondence to: [email protected] 14 15 Running Title: Predicting e-pili 16 @Now at: Department of Biological Sciences, San Diego State University, San Diego, CA, USA 17 18 #Now at: Dovetail Genomics, LLC, Santa Cruz, CA, USA 19 1 bioRxiv preprint doi: https://doi.org/10.1101/668343; this version posted October 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Physiological Models of Geobacter Sulfurreducens and Desulfobacter Postgatei to Understand Uranium Remediation in Subsurface Systems
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2014 PHYSIOLOGICAL MODELS OF GEOBACTER SULFURREDUCENS AND DESULFOBACTER POSTGATEI TO UNDERSTAND URANIUM REMEDIATION IN SUBSURFACE SYSTEMS Roberto Orellana University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Environmental Microbiology and Microbial Ecology Commons, and the Microbial Physiology Commons Recommended Citation Orellana, Roberto, "PHYSIOLOGICAL MODELS OF GEOBACTER SULFURREDUCENS AND DESULFOBACTER POSTGATEI TO UNDERSTAND URANIUM REMEDIATION IN SUBSURFACE SYSTEMS" (2014). Doctoral Dissertations. 278. https://doi.org/10.7275/5822237.0 https://scholarworks.umass.edu/dissertations_2/278 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. PHYSIOLOGICAL MODELS OF GEOBACTER SULFURREDUCENS AND DESULFOBACTER POSTGATEI TO UNDERSTAND URANIUM REMEDIATION IN SUBSURFACE SYSTEMS A Dissertation Presented by ROBERTO ORELLANA ROMAN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2014 Microbiology Department © Copyright by Roberto Orellana Roman 2014 All Rights
    [Show full text]
  • Current Opinion-Nanowires.Pdf
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Available online at www.sciencedirect.com ScienceDirect Microbial nanowires for bioenergy applications 1,2 2 Nikhil S Malvankar and Derek R Lovley Microbial nanowires are electrically conductive filaments that and microbial electrosynthesis in which microorganisms facilitate long-range extracellular electron transfer. The model use electrons derived from electrodes for the reduction of for electron transport along Shewanella oneidensis nanowires carbon dioxide to methane or multi-carbon fuels [4,5]. is electron hopping/tunneling between cytochromes adorning the filaments. Geobacter sulfurreducens nanowires are One mechanism for external electron exchange is for comprised of pili that have metal-like conductivity attributed to microorganisms to reduce an electron acceptor to gener- overlapping pi–pi orbitals of aromatic amino acids. The ate an electron carrier molecule that can serve as an nanowires of Geobacter species have been implicated in direct electron donor for the electron-accepting microbe or interspecies electron transfer (DIET), which may be an electrode (Figure 1).
    [Show full text]