RESEARCH ARTICLE A Generalized Mixing Length Closure for Eddy‐Diffusivity 10.1029/2020MS002161 Mass‐Flux Schemes of Turbulence and Convection Key Points: Ignacio Lopez‐Gomez1 , Yair Cohen1 , Jia He1, Anna Jaruga1,2 , and Tapio Schneider1,2 • EDMF schemes represent boundary layer (BL) turbulence and 1Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA, convection separately yet 2 consistently Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA • A mixing length model based on kinetic energy constraints represents turbulent fluxes in EDMF schemes Abstract Because of their limited spatial resolution, numerical weather prediction and climate models well have to rely on parameterizations to represent atmospheric turbulence and convection. Historically, • The resulting EDMF scheme captures dynamic regimes ranging largely independent approaches have been used to represent boundary layer turbulence and convection, from stable BLs to neglecting important interactions at the subgrid scale. Here we build on an eddy‐diffusivity mass‐flux ‐ stratocumulus topped BLs (EDMF) scheme that represents all subgrid‐scale mixing in a unified manner, partitioning subgrid‐scale fluctuations into contributions from local diffusive mixing and coherent advective structures and allowing them to interact within a single framework. The EDMF scheme requires closures for the interaction Correspondence to: between the turbulent environment and the plumes and for local mixing. A second‐order equation for T. Schneider, turbulence kinetic energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving a
[email protected] mixing length to be parameterized. Here, we propose a new mixing length formulation, based on constraints derived from the TKE balance. It expresses local mixing in terms of the same physical processes in all Citation: regimes of boundary layer flow.