An Antiviral Trap Made of Protein Nanofibrils and Iron Oxyhydroxide Nanoparticles

Total Page:16

File Type:pdf, Size:1020Kb

An Antiviral Trap Made of Protein Nanofibrils and Iron Oxyhydroxide Nanoparticles ARTICLES https://doi.org/10.1038/s41565-021-00920-5 An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles Archana Palika1, Antonius Armanious 1, Akram Rahimi1,2, Chiara Medaglia3, Matteo Gasbarri 4, Stephan Handschin1, Antonella Rossi 5,6, Marie O. Pohl7, Idoia Busnadiego7, Christian Gübeli1, Ravi B. Anjanappa8, Sreenath Bolisetty1,2, Mohammad Peydayesh 1, Silke Stertz7, Benjamin G. Hale 7, Caroline Tapparel3, Francesco Stellacci 4,9 and Raffaele Mezzenga 1,6 ✉ Minimizing the spread of viruses in the environment is the first defence line when fighting outbreaks and pandemics, but the current COVID-19 pandemic demonstrates how difficult this is on a global scale, particularly in a sustainable and environmen- tally friendly way. Here we introduce and develop a sustainable and biodegradable antiviral filtration membrane composed of amyloid nanofibrils made from food-grade milk proteins and iron oxyhydroxide nanoparticles synthesized in situ from iron salts by simple pH tuning. Thus, all the membrane components are made of environmentally friendly, non-toxic and widely available materials. The membrane has outstanding efficacy against a broad range of viruses, which include enveloped, non-enveloped, airborne and waterborne viruses, such as SARS-CoV-2, H1N1 (the influenza A virus strain responsible for the swine flu pandemic in 2009) and enterovirus 71 (a non-enveloped virus resistant to harsh conditions, such as highly acidic pH), which highlights a possible role in fighting the current and future viral outbreaks and pandemics. he current ongoing COVID-19 pandemic illustrates the For airborne viruses, suitable face masks, although effective, pose importance of valid therapeutic tools1, but also the notable the risk of further dissemination of the viruses when improperly Tlack of technologies capable of fighting the spread of viruses in handled20 and/or disposed21,22. Additionally, the generated plastic the environment. Many viruses diffuse and transmit in the environ- waste eventually emerges as a parallel environmental problem, espe- ment in water, some in their bulk form (waterborne viruses)2–4 and cially in times of pandemics10–12. For waterborne viruses, and despite others in small droplets suspended in the air (airborne viruses)5–9. decades-long technological developments, contaminated drinking A key defence strategy against infectious diseases is always the pre- water is still responsible for 500,000 annual deaths, of which more vention of pathogen transmission from an infected person to an than half occur in children under five years of age23. Non-enveloped uninfected one. This is achieved by using masks, gloves, physical enteric viruses, such as enteroviruses, adenoviruses and rotaviruses, barriers and disinfection, which introduces other challenges on a can cause gastrointestinal infections with diseases such as diarrhoea global scale, such as achieving the goal in a fully sustainable and and dysentery. It is estimated that ~40% of often-fatal childhood environmentally friendly way10–12. diarrhoea in developing countries is connected to viral agents24. In particular, the COVID-19 pandemic revealed the paradox Non-enveloped viruses can persist in water bodies for long periods that, although both technological and scientific knowledge are of time25 and can resist even some of the harshest treatments26,27. available to develop a vaccine within the record time of less than a This challenge is not only exclusive to unfavoured communities, year13,14, there is still a lack of preparedness to fight the rapid spread but extends also to countries with state-of-the-art water and waste- of new viruses until such vaccines are developed and a substantial water treatment facilities2. Furthermore, even enveloped viruses, portion of the population is vaccinated15. Without the appropriate such as influenza viruses and coronaviruses, which were often readiness, viruses spread widely and rapidly and, eventually, new regarded as unstable in water environments, have now been shown virus strains emerge via mutations16,17, which could potentially con- to remain highly infective for long times in bulk water bodies28,29: fer resistance to vaccines that target the original strain or increase SARS-CoV-2, for example, can retain its infectivity for longer than the virulence of the virus, and possibly lead to an endless vicious seven days in tap water and wastewater at room temperature30. cycle. Viruses can spread through many different routes, but mostly Therefore, the development of efficient barriers against the through fomites18, small water droplets5–9 and bulk water bodies spread of viruses via diffusing environmental fluids becomes cru- (which include wastewater)2–4. Proper hand hygiene serves as a very cial if global contamination is to be prevented. In spite of decades effective practice against the spread of infections through fomites19. of scientific and technological development, no existing tech- In all the other cases, however, virus inactivation must be tackled nology can universally eliminate viruses from water, unless it is in the hosting fluid, and the overarching strategy is then to target extremely energy intensive (for example, reverse osmosis)31 or starts the virus in its surrounding aqueous environment, may this be in to pose the risk of toxicity towards humans and the environment the form of microscopic suspended water droplets or bulk waters. (for example, silver-based technologies)32,33. All these limitations 1Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. 2BluAct Technologies GmbH, Zurich, Switzerland. 3Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland. 4Institute of Materials, Ecolé Polytechnique Fedé ralé de Lausanne (EPFL), Lausanne, Switzerland. 5Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy. 6Department of Materials, ETH Zurich, Zurich, Switzerland. 7Institute of Medical Virology, University of Zurich, Zurich, Switzerland. 8Department of Biology, ETH Zurich, Zurich, Switzerland. 9Department of Bioengineering, Ecolé Polytechnique Fedé ralé de Lausanne (EPFL), Lausanne, Switzerland. ✉e-mail: [email protected] 918 NatURE NanotECHNOLOGY | VOL 16 | August 2021 | 918–925 | www.nature.com/naturenanotechnology NATURE NANOTECHNOLOGY ARTICLES a b pH 2, 90 °C FeCl ·6H O Fabrication 3 2 5 h NaOH BLG AF–Fe BLG monomers BLG AF BLG AF–Fe Infectious viruses c d e Cellulose support 1 µm 1 µm Characterization No infectious viruses 1 µm 100 nm 1 µm Fig. 1 | Schematic, fabrication and characterization of BLG AF–Fe membranes. a, A schematic showing the filtration set-up. b, A schematic showing the fabrication processes of the BLG AF–Fe membranes. c, Cryo-SEM micrographs of freeze-fractured and freeze-etched hydrated BLG AF–Fe hybrids at two magnifications. d, Cryo-TEM image of the BLG AF–Fe hybrids; the BLG AF–Fe hybrids were prepared using a fivefold lower Fe concentration (10 mgFe ml−1) than the concentration normally used to prepare the membranes to enable the visualization of single Fe NPs. e, SEM micrographs of a chemically fixed and critical point-dried sample of the filter bulk material at two magnifications. Representations of the virions in a are reproduced from pictures on ViralZone51. The cartoon structure of the BLG monomers in b is based on the crystallographic structures 5IO552 obtained from the Protein Data Bank53 (http://www. rcsb.org/, accessed October 2020). render the existing technologies obsolete facing global challenges high-contrast images, the dense packing of the Fe NPs on the such as pandemics. surface of AFs. It is important to mention that the observed dif- To address such a challenge, we developed an antiviral mem- ference in the Fe NP density between the cryo-SEM (Fig. 1c) and brane trap composed of amyloid nanofibrils obtained from a the SEM (Fig. 1e) micrographs is due to the shrinkage of the sam- food-grade milk protein, β-lactoglobulin (BLG), modified in situ ple during preparation and drying. with iron oxyhydroxide nanoparticles (NPs) (Fig. 1a). The con- version of BLG monomers into a network of amyloid fibrils (AFs) Performance of membranes on enveloped viruses is a straightforward process achieved by simply lowering the pH We first tested this filtration membrane trap by filtering water that to 2.0 with simultaneous heating up to 90 °C; afterwards, the iron contained three different types of enveloped viruses: (1) Φ6, an oxyhydroxide NPs are precipitated directly on the formed network enveloped bacteriophage that infects Pseudomonas syringae bacte- 34 of AFs by raising the pH in the presence of FeCl3·6H2O. Figure 1b ria and is often used as a surrogate of human enveloped viruses , shows a schematic of the process; the detailed chemical analy- (2) H1N1, an influenza A virus strain responsible for the swine flu sis and composition of the iron NPs as studied by X-ray photo- pandemic in 200935 and (3) SARS-CoV-2, the coronavirus strain electron spectroscopy (XPS) reveals the presence of both iron(ii) responsible for the ongoing COVID-19 pandemic. The membrane and iron(iii) oxide and iron chloride species that coexist with the showed an efficiency of more than six orders of magnitude reduc- majority of iron oxyhydroxide NPs (Supplementary Fig. 1). By tion in infectivity for all three viruses (Fig. 2). The infectious virus depositing the produced material on a porous solid support, we concentrations went from ~106 PFU ml−1 before filtration to below
Recommended publications
  • Entry of the Membrane-Containing Bacteriophages Into Their Hosts
    Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host.
    [Show full text]
  • Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326786071 Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems Technical Report · July 2018 DOI: 10.13140/RG.2.2.14738.15043 CITATIONS READS 0 608 2 authors: Sandip Chattopadhyay Sarah Taft United States Environmental Protection Agency United States Environmental Protection Agency 74 PUBLICATIONS 435 CITATIONS 17 PUBLICATIONS 170 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Exposure Assessment of Livestock Carcass Management Options During Emergencies View project Waste Management - Encapsulation of Contaminated Wastes View project All content following this page was uploaded by Sandip Chattopadhyay on 02 August 2018. The user has requested enhancement of the downloaded file. EPA/600/R-18/221 | July 2018 www.epa.gov/homeland-security-research Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems Office of Research and Development Homeland Security Research Program EPA/600/R-18/221 July 2018 Exposure Pathways to High-Consequence Pathogens in the Wastewater Collection and Treatment Systems by Sandip Chattopadhyay, Ph.D. Sarah Taft, Ph.D. Threat and Consequence Assessment Division National Homeland Security Research Center Cincinnati, OH 45268 Contract No. EP-C-14-001 to ICF under Work Assignment 40 U.S. Environmental Protection Agency Project Officer Office of Research and Development Homeland Security Research Program Cincinnati, OH 45268 Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here under Contract No.
    [Show full text]
  • Geographic Differences in Sexual Reassortment in Rna Phage
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01040.x GEOGRAPHIC DIFFERENCES IN SEXUAL REASSORTMENT IN RNA PHAGE Kara J. O’Keefe,1,2 Olin K. Silander,3 Helen McCreery,4 Daniel M. Weinreich,5 Kevin M. Wright,6 Lin Chao,7 Scott V. Edwards,2 Susanna K. Remold,8 and Paul E. Turner1,9 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 3Core Program Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland 4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 5Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 6Department of Biology, Duke University, Durham, North Carolina 27708 7Section of Ecology, Evolution and Behavior, University of California, San Diego, La Jolla, California 92093 8Department of Biology, University of Louisville, Louisville, Kentucky 40292 9E-mail: [email protected] Received November 5, 2008 Accepted April 20, 2010 The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses.
    [Show full text]
  • Origins and Evolution of the Global RNA Virome
    bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Origins and Evolution of the Global RNA Virome 2 Yuri I. Wolfa, Darius Kazlauskasb,c, Jaime Iranzoa, Adriana Lucía-Sanza,d, Jens H. 3 Kuhne, Mart Krupovicc, Valerian V. Doljaf,#, Eugene V. Koonina 4 aNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA 5 b Vilniaus universitetas biotechnologijos institutas, Vilnius, Lithuania 6 c Département de Microbiologie, Institut Pasteur, Paris, France 7 dCentro Nacional de Biotecnología, Madrid, Spain 8 eIntegrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious 9 Diseases, National Institutes of Health, Frederick, Maryland, USA 10 fDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA 11 12 #Address correspondence to Valerian V. Dolja, [email protected] 13 14 Running title: Global RNA Virome 15 16 KEYWORDS 17 virus evolution, RNA virome, RNA-dependent RNA polymerase, phylogenomics, horizontal 18 virus transfer, virus classification, virus taxonomy 1 bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 ABSTRACT 20 Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in 21 animals and plants. The recent advances of metaviromics prompted us to perform a detailed 22 phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Unlocking the M13 (F1 and Fd) Virion
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Unlocking the M13 (f1 and fd) virion Investigation into the role of the pIII C-domain of F specific filamentous bacteriophage in infection A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand. Nicholas James Bennett 2009 Abstract Ff filamentous bacteriophage infect male (F+) strains of Escherichia coli and are assembled at the cell membranes, by a secretion-like, non-lethal process. The pIII protein, located at one end of the virion-filament, is required at both the beginning and the end of the phage life cycle. During infection, the N-terminal domains of pIII, N2 and N1, bind to the primary and secondary host receptors, F pilus and TolA protein, respectively. At the end of the life cycle, the pIII C-domain mediates the termination and release of virions. Thus, both entry and release involve structural transitions of the virus coupled to membrane transactions of the virion proteins. "Unlocking” of the highly stable virion presumably results in membrane integration during entry, whereas a reverse event, “locking” of the virion, occurs upon detachment from the membrane at termination step of assembly/secretion. Recently, it was shown that the pIII C-domain plays an active role at the step of entry. This finding implicates the C-domain of pIII in “unlocking” of the virion, presumably resulting in the exposure of the membrane anchor at the very C-terminus of pIII (Bennett & Rakonjac, 2006).
    [Show full text]
  • Cryo-EM Near-Atomic Structure of a Dsrna Fungal Virus Shows Ancient Structural Motifs Preserved in the Dsrna Viral Lineage
    Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage Daniel Luquea,b,1, Josué Gómez-Blancoa,1, Damiá Garrigac,1,2, Axel F. Brilotd, José M. Gonzáleza,3, Wendy M. Havense, José L. Carrascosaa, Benes L. Trusf, Nuria Verdaguerc, Said A. Ghabriale, and José R. Castóna,4 aDepartment of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Campus Cantoblanco, 28049 Madrid, Spain; bCentro Nacional de Microbiología/Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; cInstitut de Biologia Molecular de Barcelona/Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; dDepartment of Biochemistry, Brandeis University, Waltham, MA 02454-9110; eDepartment of Plant Pathology, University of Kentucky, Lexington, KY 40546; and fImaging Sciences Laboratory, Center for Information Technology/National Institutes of Health, Bethesda, MD 20892-5624 Edited by John E. Johnson, The Scripps Research Institute, La Jolla, CA, and accepted by the Editorial Board April 15, 2014 (received for review March 6, 2014) Viruses evolve so rapidly that sequence-based comparison is not The dsRNA viruses are found in bacteria, as well as in simple suitable for detecting relatedness among distant viruses. Struc- (fungi and protozoa) and complex (animals and plants) eukar- ture-based comparisons suggest that evolution led to a small yotes (12), but no archaea-infecting viruses are reported. Their number of viral classes or lineages that can be grouped by capsid genomes are isolated within a specialized icosahedral capsid or protein (CP) folds. Here, we report that the CP structure of the cell microcompartment that remains structurally undisturbed fungal dsRNA Penicillium chrysogenum virus (PcV) shows the throughout the viral cycle, thus avoiding induction of host cell progenitor fold of the dsRNA virus lineage and suggests a rela- defense mechanisms (13, 14).
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Virology 414 (2011) 103–109 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Toroidal surface complexes of bacteriophage ϕ12 are responsible for host-cell attachment Alejandra Leo-Macias a, Garrett Katz b, Hui Wei c, Alexandra Alimova c, A. Katz d, William J. Rice e, Ruben Diaz-Avalos e, Guo-Bin Hu a,1, David L. Stokes a,e, Paul Gottlieb c,f,⁎ a Skirball Institute, Department of Cell Biology, New York University School of Medicine, 540 First Ave., New York, NY 10016, USA b Department of Mathematics, The City College of New York, 160 Convent Ave., New York, NY 10031, USA c Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave., New York, NY 10031, USA d Department of Physics, The City College
    [Show full text]
  • Structure Unveils Relationships Between RNA Virus Polymerases
    viruses Article Structure Unveils Relationships between RNA Virus Polymerases Heli A. M. Mönttinen † , Janne J. Ravantti * and Minna M. Poranen * Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56 (Viikinkaari 9), 00014 Helsinki, Finland; heli.monttinen@helsinki.fi * Correspondence: janne.ravantti@helsinki.fi (J.J.R.); minna.poranen@helsinki.fi (M.M.P.); Tel.: +358-2941-59110 (M.M.P.) † Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, P.O. Box 56 (Viikinkaari 5), 00014 Helsinki, Finland. Abstract: RNA viruses are the fastest evolving known biological entities. Consequently, the sequence similarity between homologous viral proteins disappears quickly, limiting the usability of traditional sequence-based phylogenetic methods in the reconstruction of relationships and evolutionary history among RNA viruses. Protein structures, however, typically evolve more slowly than sequences, and structural similarity can still be evident, when no sequence similarity can be detected. Here, we used an automated structural comparison method, homologous structure finder, for comprehensive comparisons of viral RNA-dependent RNA polymerases (RdRps). We identified a common structural core of 231 residues for all the structurally characterized viral RdRps, covering segmented and non-segmented negative-sense, positive-sense, and double-stranded RNA viruses infecting both prokaryotic and eukaryotic hosts. The grouping and branching of the viral RdRps in the structure- based phylogenetic tree follow their functional differentiation. The RdRps using protein primer, RNA primer, or self-priming mechanisms have evolved independently of each other, and the RdRps cluster into two large branches based on the used transcription mechanism.
    [Show full text]
  • Three-Dimensional Structure of the Enveloped Bacteriophage W12: an Incomplete T = 13 Lattice Is Superposed on an Enclosed T = 1 Shell
    Three-Dimensional Structure of the Enveloped Bacteriophage W12: An Incomplete T = 13 Lattice Is Superposed on an Enclosed T = 1 Shell Hui Wei1, R. Holland Cheng3, John Berriman5¤, William J. Rice5, David L. Stokes4,5, A. Katz6, David Gene Morgan2., Paul Gottlieb1,6.* 1 Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York (CCNY), New York, New York, United States of America, 2 Nanoscience Center, Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America, 3 Department of Cellular and Molecular Biology, University of California at Davis, Davis, California, United States of America, 4 Structural Biology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America, 5 The New York Structural Biology Center, New York, New York, United States of America, 6 Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York, United States of America Abstract Background: Bacteriophage w12 is a member of the Cystoviridae, a unique group of lipid containing membrane enveloped bacteriophages that infect the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. The genomes of the virus species contain three double-stranded (dsRNA) segments, and the virus capsid itself is organized in multiple protein shells. The segmented dsRNA genome, the multi-layered arrangement of the capsid and the overall viral replication scheme make the Cystoviridae similar to the Reoviridae. Methodology/Principal Findings: We present structural studies of cystovirus w12 obtained using cryo-electron microscopy and image processing techniques. We have collected images of isolated w12 virions and generated reconstructions of both the entire particles and the polymerase complex (PC).
    [Show full text]
  • Bacteriophages: Therapeuticals and Alternative Applications
    Bacteriophages: therapeuticals and alternative applications Dr. ir. René A.A. van der Vlugt and Ing. Martin Verbeek Plant Research International, P.O. Box 16, 6700 AA Wageningen This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors. The contents of this publication may in no way be taken to represent the views of COGEM. Dit rapport is in opdracht van de Commissie Genetische Modificatie (COGEM) samengesteld. De meningen die in het rapport worden weergegeven zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. Page: 2 Van der Vlugt and Verbeek: Bacteriophages: therapeuticals and alternative applications Contents 1. Introduction…………………………………………………………………….…….. 5 2. Taxonomy of bacteriophages………………………………………………….… 7 2.1 Differentiation of bacteriophages on the basis of genetic material… 7 2.2 Differentiation of bacteriophages on the basis of their life cycle…… 10 2.2.1. Lysogenic phages……………………………………………………. 10 2.2.2 Lytic phages…………………………………………………………... 11 3. The history of bacteriophage therapy…………………………………………. 13 4. Applications of bacteriophage therapy……………………………………….. 15 4.1 Phages in animal systems………………………………………………….. 16 4.2 Phages in aquatic systems…………………………………………………. 16 4.3 Phages and food………………………………………………………….…… 17 4.3.1. Dairy products…………………………………………………….…… 17 4.3.2. Meat and poultry……………………………………………….……… 18 4.3.3. Sea food………………………………………………………………. 18 4.3.4. Fruits and vegetables………………………………………………... 18 4.3.5. Natural phage defense mechanisms……………………………….. 19 4.4 Phage therapy for bacterial diseases of plants…………………………. 21 5. Possible problems in the applications of phages………………………….. 23 5.1 Bacteriophage specificity…………………………………………………… 23 5.2 Bacteriophage immunogenicity……………………………………………. 23 5.3 Bacterial cell lysis……………………………………………………………. 23 6. Improvement of bacteriophages………………………………………………… 25 7.
    [Show full text]
  • Bacteriophages: an Illustrated General Review Ramin Mazaheri Nezhad Fard 1,2*
    Iranian Journal of Virology 2018;12(1): 52-62 ©2018, Iranian Society of Virology Review Article Bacteriophages: An Illustrated General Review Ramin Mazaheri Nezhad Fard 1,2* 1. Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. 2. Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran. Table of Contents Bacteriophages: An Illustrated General Review…………………………...…………………………………………………………..52 Abstract .................................................................................................................................... 52 Introduction .............................................................................................................................. 53 Background .......................................................................................................................... 53 History.................................................................................................................................. 53 Taxonomy ............................................................................................................................ 55 Morphology.......................................................................................................................... 55 Conclusions .............................................................................................................................. 59 Acknowledgments...................................................................................................................
    [Show full text]