From F to DOT: Type Soundness Proofs with Definitional Interpreters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dotty Phantom Types (Technical Report)
Dotty Phantom Types (Technical Report) Nicolas Stucki Aggelos Biboudis Martin Odersky École Polytechnique Fédérale de Lausanne Switzerland Abstract 2006] and even a lightweight form of dependent types [Kise- Phantom types are a well-known type-level, design pattern lyov and Shan 2007]. which is commonly used to express constraints encoded in There are two ways of using phantoms as a design pattern: types. We observe that in modern, multi-paradigm program- a) relying solely on type unication and b) relying on term- ming languages, these encodings are too restrictive or do level evidences. According to the rst way, phantoms are not provide the guarantees that phantom types try to en- encoded with type parameters which must be satised at the force. Furthermore, in some cases they introduce unwanted use-site. The declaration of turnOn expresses the following runtime overhead. constraint: if the state of the machine, S, is Off then T can be We propose a new design for phantom types as a language instantiated, otherwise the bounds of T are not satisable. feature that: (a) solves the aforementioned issues and (b) makes the rst step towards new programming paradigms type State; type On <: State; type Off <: State class Machine[S <: State] { such as proof-carrying code and static capabilities. This pa- def turnOn[T >: S <: Off] = new Machine[On] per presents the design of phantom types for Scala, as im- } new Machine[Off].turnOn plemented in the Dotty compiler. An alternative way to encode the same constraint is by 1 Introduction using an implicit evidence term of type =:=, which is globally Parametric polymorphism has been one of the most popu- available. -
Chapter 5 Type Declarations
Ch.5: Type Declarations Plan Chapter 5 Type Declarations (Version of 27 September 2004) 1. Renaming existing types . 5.2 2. Enumeration types . 5.3 3. Constructed types . 5.5 4. Parameterised/polymorphic types . 5.10 5. Exceptions, revisited . 5.12 6. Application: expression evaluation . 5.13 °c P. Flener/IT Dept/Uppsala Univ. FP 5.1 Ch.5: Type Declarations 5.1. Renaming existing types 5.1. Renaming existing types Example: polynomials, revisited Representation of a polynomial by a list of integers: type poly = int list ² Introduction of an abbreviation for the type int list ² The two names denote the same type ² The object [4,2,8] is of type poly and of type int list - type poly = int list ; type poly = int list - type poly2 = int list ; type poly2 = int list - val p:poly = [1,2] ; val p = [1,2] : poly - val p2:poly2 = [1,2] ; val p2 = [1,2] : poly2 - p = p2 ; val it = true : bool °c P. Flener/IT Dept/Uppsala Univ. FP 5.2 Ch.5: Type Declarations 5.2. Enumeration types 5.2. Enumeration types Declaration of a new type having a finite number of values Example (weekend.sml) datatype months = Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun fun weekend Sat = true | weekend Sun = true | weekend d = false - datatype months = Jan | ... | Dec ; datatype months = Jan | ... | Dec - datatype days = Mon | ... | Sun ; datatype days = Mon | ... | Sun - fun weekend ... ; val weekend = fn : days -> bool °c P. Flener/IT Dept/Uppsala Univ. FP 5.3 Ch.5: Type Declarations 5.2. -
Nominal Wyvern: Employing Semantic Separation for Usability Yu Xiang Zhu CMU-CS-19-105 April 2019
Nominal Wyvern: Employing Semantic Separation for Usability Yu Xiang Zhu CMU-CS-19-105 April 2019 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Jonathan Aldrich, Chair Heather Miller Alex Potanin, Victoria University of Wellington, NZ Submitted in partial fulfillment of the requirements for the degree of Master of Science. Copyright c 2019 Yu Xiang Zhu Keywords: Nominality, Wyvern, Dependent Object Types, Subtype Decidability Abstract This thesis presents Nominal Wyvern, a nominal type system that empha- sizes semantic separation for better usability. Nominal Wyvern is based on the dependent object types (DOT) calculus, which provides greater expressiv- ity than traditional object-oriented languages by incorporating concepts from functional languages. Although DOT is generally perceived to be nominal due to its path-dependent types, it is still a mostly structural system and relies on the free construction of types. This can present usability issues in a subtyping- based system where the semantics of a type are as important as its syntactic structure. Nominal Wyvern overcomes this problem by semantically separat- ing structural type/subtype definitions from ad hoc type refinements and type bound declarations. In doing so, Nominal Wyvern is also able to overcome the subtype undecidability problem of DOT by adopting a semantics-based sep- aration between types responsible for recursive subtype definitions and types that represent concrete data. The result is a more intuitive type system that achieves nominality and decidability while maintaining the expressiveness of F-bounded polymorphism that is used in practice. iv Acknowledgments This research would not have been possible without the support from the following in- dividuals. -
Cablelabs® Specifications Cablelabs' DHCP Options Registry CL-SP-CANN-DHCP-Reg-I13-160317
CableLabs® Specifications CableLabs' DHCP Options Registry CL-SP-CANN-DHCP-Reg-I13-160317 ISSUED Notice This CableLabs specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. You may download, copy, distribute, and reference the documents herein only for the purpose of developing products or services in accordance with such documents, and educational use. Except as granted by CableLabs in a separate written license agreement, no license is granted to modify the documents herein (except via the Engineering Change process), or to use, copy, modify or distribute the documents for any other purpose. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. To the extent this document contains or refers to documents of third parties, you agree to abide by the terms of any licenses associated with such third-party documents, including open source licenses, if any. Cable Television Laboratories, Inc. 2006-2016 CL-SP-CANN-DHCP-Reg-I13-160317 CableLabs® Specifications DISCLAIMER This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. Any use or reliance on the information or opinion in this document is at the risk of the user, and CableLabs and its members shall not be liable for any damage or injury incurred by any person arising out of the completeness, accuracy, or utility of any information or opinion contained in the document. -
Webassembly Specification
WebAssembly Specification Release 1.1 WebAssembly Community Group Andreas Rossberg (editor) Mar 11, 2021 Contents 1 Introduction 1 1.1 Introduction.............................................1 1.2 Overview...............................................3 2 Structure 5 2.1 Conventions.............................................5 2.2 Values................................................7 2.3 Types.................................................8 2.4 Instructions.............................................. 11 2.5 Modules............................................... 15 3 Validation 21 3.1 Conventions............................................. 21 3.2 Types................................................. 24 3.3 Instructions.............................................. 27 3.4 Modules............................................... 39 4 Execution 47 4.1 Conventions............................................. 47 4.2 Runtime Structure.......................................... 49 4.3 Numerics............................................... 56 4.4 Instructions.............................................. 76 4.5 Modules............................................... 98 5 Binary Format 109 5.1 Conventions............................................. 109 5.2 Values................................................ 111 5.3 Types................................................. 112 5.4 Instructions.............................................. 114 5.5 Modules............................................... 120 6 Text Format 127 6.1 Conventions............................................ -
Project Overview 1 Introduction 2 a Quick Introduction to SOOL
CMSC 22600 Compilers for Computer Languages Handout 1 Autumn 2016 October 6, 2016 Project Overview 1 Introduction The project for the course is to implement a small object-oriented programming language, called SOOL. The project will consist of four parts: 1. the parser and scanner, which coverts a textual representation of the program into a parse tree representation. 2. the type checker, which checks the parse tree for type correctness and produces a typed ab- stract syntax tree (AST) 3. the normalizer, which converts the typed AST representation into a static single-assignment (SSA) representation. 4. the code generator, which takes the SSA representation and generates LLVM assembly code. Each part of the project builds upon the previous parts, but we will provide reference solutions for previous parts. You will implement the project in the Standard ML programming language and submission of the project milestones will be managed using Phoenixforge. Important note: You are expected to submit code that compiles and that is well documented. Points for project code are assigned 30% for coding style (documentation, choice of variable names, and program structure), and 70% for correctness. Code that does not compile will not receive any points for correctness. 2 A quick introduction to SOOL SOOL is a statically-typed object-oriented language. It supports single inheritance with nominal subtyping and interfaces with structural subtyping. The SOOL version of the classic Hello World program is class main () { meth run () -> void { system.print ("hello world\n"); } } Here we are using the predefined system object to print the message. Every SOOL program has a main class that must have a run function. -
1 Intro to ML
1 Intro to ML 1.1 Basic types Need ; after expression - 42 = ; val it = 42: int -7+1; val it =8: int Can reference it - it+2; val it = 10: int - if it > 100 then "big" else "small"; val it = "small": string Different types for each branch. What will happen? if it > 100 then "big" else 0; The type checker will complain that the two branches have different types, one is string and the other is int If with then but no else. What will happen? if 100>1 then "big"; There is not if-then in ML; must use if-then-else instead. Mixing types. What will happen? What is this called? 10+ 2.5 In many programming languages, the int will be promoted to a float before the addition is performed, and the result is 12.5. In ML, this type coercion (or type promotion) does not happen. Instead, the type checker will reject this expression. div for integers, ‘/ for reals - 10 div2; val it =5: int - 10.0/ 2.0; val it = 5.0: real 1 1.1.1 Booleans 1=1; val it = true : bool 1=2; val it = false : bool Checking for equality on reals. What will happen? 1.0=1.0; Cannot check equality of reals in ML. Boolean connectives are a bit weird - false andalso 10>1; val it = false : bool - false orelse 10>1; val it = true : bool 1.1.2 Strings String concatenation "University "^ "of"^ " Oslo" 1.1.3 Unit or Singleton type • What does the type unit mean? • What is it used for? • What is its relation to the zero or bottom type? - (); val it = () : unit https://en.wikipedia.org/wiki/Unit_type https://en.wikipedia.org/wiki/Bottom_type The boolean type is inhabited by two values: true and false. -
Foundations of Path-Dependent Types
Foundations of Path-Dependent Types Nada Amin∗ Tiark Rompf †∗ Martin Odersky∗ ∗EPFL: {first.last}@epfl.ch yOracle Labs: {first.last}@oracle.com Abstract 1. Introduction A scalable programming language is one in which the same A scalable programming language is one in which the same concepts can describe small as well as large parts. Towards concepts can describe small as well as large parts. Towards this goal, Scala unifies concepts from object and module this goal, Scala unifies concepts from object and module systems. An essential ingredient of this unification is the systems. An essential ingredient of this unification is to concept of objects with type members, which can be ref- support objects that contain type members in addition to erenced through path-dependent types. Unfortunately, path- fields and methods. dependent types are not well-understood, and have been a To make any use of type members, programmers need a roadblock in grounding the Scala type system on firm the- way to refer to them. This means that types must be able ory. to refer to objects, i.e. contain terms that serve as static We study several calculi for path-dependent types. We approximation of a set of dynamic objects. In other words, present µDOT which captures the essence – DOT stands some level of dependent types is required; the usual notion for Dependent Object Types. We explore the design space is that of path-dependent types. bottom-up, teasing apart inherent from accidental complexi- Despite many attempts, Scala’s type system has never ties, while fully mechanizing our models at each step. -
Local Type Inference
Local Type Inference BENJAMIN C. PIERCE University of Pennsylvania and DAVID N. TURNER An Teallach, Ltd. We study two partial type inference methods for a language combining subtyping and impredica- tive polymorphism. Both methods are local in the sense that missing annotations are recovered using only information from adjacent nodes in the syntax tree, without long-distance constraints such as unification variables. One method infers type arguments in polymorphic applications using a local constraint solver. The other infers annotations on bound variables in function abstractions by propagating type constraints downward from enclosing application nodes. We motivate our design choices by a statistical analysis of the uses of type inference in a sizable body of existing ML code. Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory General Terms: Languages, Theory Additional Key Words and Phrases: Polymorphism, subtyping, type inference 1. INTRODUCTION Most statically typed programming languages offer some form of type inference, allowing programmers to omit type annotations that can be recovered from context. Such a facility can eliminate a great deal of needless verbosity, making programs easier both to read and to write. Unfortunately, type inference technology has not kept pace with developments in type systems. In particular, the combination of subtyping and parametric polymorphism has been intensively studied for more than a decade in calculi such as System F≤ [Cardelli and Wegner 1985; Curien and Ghelli 1992; Cardelli et al. 1994], but these features have not yet been satisfactorily This is a revised and extended version of a paper presented at the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), 1998. -
An Introduction to Lean
An Introduction to Lean Jeremy Avigad Leonardo de Moura Gabriel Ebner and Sebastian Ullrich Version 1fc176a, updated at 2017-01-09 14:16:26 -0500 2 Contents Contents 3 1 Overview 5 1.1 Perspectives on Lean ............................... 5 1.2 Where To Go From Here ............................. 12 2 Defining Objects in Lean 13 2.1 Some Basic Types ................................ 14 2.2 Defining Functions ................................ 17 2.3 Defining New Types ............................... 20 2.4 Records and Structures ............................. 22 2.5 Nonconstructive Definitions ........................... 25 3 Programming in Lean 27 3.1 Evaluating Expressions .............................. 28 3.2 Recursive Definitions ............................... 30 3.3 Inhabited Types, Subtypes, and Option Types . 32 3.4 Monads ...................................... 34 3.5 Input and Output ................................ 35 3.6 An Example: Abstract Syntax ......................... 36 4 Theorem Proving in Lean 38 4.1 Assertions in Dependent Type Theory ..................... 38 4.2 Propositions as Types .............................. 39 4.3 Induction and Calculation ............................ 42 4.4 Axioms ...................................... 45 5 Using Automation in Lean 46 6 Metaprogramming in Lean 47 3 CONTENTS 4 Bibliography 48 1 Overview This introduction offers a tour of Lean and its features, with a number of examples foryou to play around with and explore. If you are reading this in our online tutorial system, you can run examples like the one below by clicking the button that says “try it yourself.” #check "hello world!" The response from Lean appears in the small window underneath the editor text, and also in popup windows that you can read when you hover over the indicators in the left margin. Alternatively, if you have installed Lean and have it running in a stand-alone editor, you can copy and paste examples and try them there. -
The Essence of Dependent Object Types⋆
The Essence of Dependent Object Types? Nada Amin∗, Samuel Grütter∗, Martin Odersky∗, Tiark Rompf †, and Sandro Stucki∗ ∗ EPFL, Switzerland: {first.last}@epfl.ch † Purdue University, USA: {first}@purdue.edu Abstract. Focusing on path-dependent types, the paper develops foun- dations for Scala from first principles. Starting from a simple calculus D<: of dependent functions, it adds records, intersections and recursion to arrive at DOT, a calculus for dependent object types. The paper shows an encoding of System F with subtyping in D<: and demonstrates the expressiveness of DOT by modeling a range of Scala constructs in it. Keywords: Calculus, Dependent Types, Scala 1 Introduction While hiking together in the French alps in 2013, Martin Odersky tried to explain to Phil Wadler why languages like Scala had foundations that were not directly related via the Curry-Howard isomorphism to logic. This did not go over well. As you would expect, Phil strongly disapproved. He argued that anything that was useful should have a grounding in logic. In this paper, we try to approach this goal. We will develop a foundation for Scala from first principles. Scala is a func- tional language that expresses central aspects of modules as first-class terms and types. It identifies modules with objects and signatures with traits. For instance, here is a trait Keys that defines an abstract type Key and a way to retrieve a key from a string. trait Keys { type Key def key(data: String): Key } A concrete implementation of Keys could be object HashKeys extends Keys { type Key = Int def key(s: String) = s.hashCode } ? This is a revised version of a paper presented at WF ’16. -
Formats and Protocols for Continuous Data CD-1.1
IDC Software documentation Formats and Protocols for Continuous Data CD-1.1 Document Version: 0.3 Document Edition: English Document Status: Final Document ID: IDC 3.4.3 Document Date: 18 December 2002 IDC Software documentation Formats and Protocols for Continuous Data CD-1.1 Version: 0.3 Notice This document was published December 2002 as Revision 0.3, using layout templates established by the IPT Group of CERN and IDC Corporate Style guidelines. This document is a re-casting of Revision 0.2published in December 2001 as part of the International Data Centre (IDC) Documentation. It was first published in July 2000 and was repub- lished electronically as Revision 0.1 in September 2001 and as Revision 0.2 in December 2001 to include minor changes (see the following Change Page for Revision 0.2). IDC documents that have been changed substantially are indicated by a whole revision number (for example, Revision 1). Trademarks IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. Motorola is a registered trademark of Motorola Inc. SAIC is a trademark of Science Applications International Corporation. Sun is a registered trademark of Sun Microsystems. UNIX is a registered trademark of UNIX System Labs, Inc. This document has been prepared using the Software Documentation Layout Templates that have been prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/. page ii Final Abstract Version: 0.3 Abstract This document describes the formats and protocols of Continuous Data (CD-1.1), a standard to be used for transmitting continuous, time series data from stations of the International Monitoring System (IMS) to the International Data Centre (IDC) and for transmitting these data from the IDC to National Data Centers (NDCs).