Avizo Xlab Simulation Software for Material Properties Computation Based on 3D Images

Total Page:16

File Type:pdf, Size:1020Kb

Avizo Xlab Simulation Software for Material Properties Computation Based on 3D Images Avizo XLab Simulation Software For material properties computation based on 3D images Avizo XLab simulation software modules* XLAB MODULES provide efficient numerical simulation XLab Hydro Absolute permeability capabilities to compute material physical XLab Electro Electrical resistivity / Formation factor properties from a scanned sample (CT, XLab Thermo Thermal conductivity µCT, FIB-SEM, MRI). XLab Diffusion Molecular diffusivity Straightforward and faster analysis. Complement PHYSICAL PROPERTY CALCULATION challenging physical experiments with efficient simulations even on micro- and nanoscale samples: · Simply provide a few parameters about the material · Obtain simulation results directly and faster · Easily modify simulation parameters for swift reruns Time and resource-saving simulations. XLab solvers do THERMAL CONDUCTIVITY ABSOLUTE PERMEABILITY not require demanding conversions to geometric models, unlike geometry-based simulations: · Equations are solved using the time and resource-saving finite-volume method. · No software switching, no data file export and import anymore! Image processing, simulation, and analysis are fully integrated features. MOLECULAR DIFFUSIVITY ELECTRICAL RESISTIVITY All-in-one virtual materials characterization lab. FORMATION FACTOR Integrated with Avizo Fire, XLab simulation solvers provide a comprehensive digital lab for materials characterization: · Powerful 3D image processing and segmentation · Extensive quantification analysis tools · Direct intrinsic material properties calculation SEGMENTATION · GPU-enabled computation · Easy comparison of simulation results vs. images from experiment · Connection of custom algorithms to Avizo · High-end 3D visualization 3D IMAGES * XLab simulation modules are extensions of Avizo Fire 3D analysis software. Accelerate material analysis and design with Avizo XLab Simulation of an experiment: an experiment is simulated simulation software. by generating a constant disequilibrium between two Assessing and predicting material physical properties can opposite faces of the sample. The other faces are be challenging and may involve time-consuming and costly hermetically closed. The equations are solved and the procedures. Avizo XLab simulation software can resulting field is used to estimate the material property. considerably accelerate material analysis and design by Run fast iterative simulations. providing efficient numerical simulation capabilities based GPU acceleration: solving the system of equations for a on 3D images of scanned samples. numerical model of material properties is very compute- For material analysis and design. intensive. Natural resources The GPU implementation of XLab algorithms* · Rocks, Soils, Planetary considerably increases the computing speed, making XLab Materials science solvers extremely efficient tools for the numerical · Cements, Filters and catalysts, Wood, Ceramics, simulation of material properties. The powerful GPUs that Insulation materials, Explosives, Consumer products usually equip workstations on which Avizo and XLab run Electronics are thus optimally used, allowing users to perform multiple · Batteries, Fuel cells, Magnets, Sensors simulations in record time. Life sciences Stop and swiftly rerun computations: there will be times · Skin and membrane filtration, Bones and scaffolds, Drug when you want to stop XLab in the middle of a delivery computation. XLab provides a convenient way to stop computations and perform swift reruns based on the stored intermediate results. Image segmentation vs. material properties: the integration of XLab solvers with Avizo Fire virtual materials characterization lab enables fast simulation reruns to evaluate the impact of variations in image segmentation on material properties. Leverage avizo fire’s comprehensive digital lab. Avizo Fire is an integrated multimodality software solution Absolute permeability simulation. Acquisition device: x-ray micro-CT. to characterize material properties. It provides an extensive Courtesy of D. Bernard, ICMCB-CNRS. toolbox for advanced visualization, image processing, segmentation, registration, fusion and quantification, Compute properties using two approaches. image-based solvers, and geometric pre-processing for Computation of the intrinsic tensor: The continuum Finite Element Modeling or Pore Network Modeling. equations are derived using general methods such as The Avizo Fire environment allows you to integrate data volume averaging or homogenization. These methods are from multiple sources into a single environment from which developed under strong mathematical and physical you can seamlessly analyze 2D and 3D multimodality data. assumptions, and provide a way of predicting a tensor of Avizo Fire provides a unique platform for effective the intrinsic property. They require imposing periodic routine analysis and advanced research. Using template boundary conditions on a representative elementary workflows and a scripting facility, you can customize your volume and solving equations which are close to the Avizo Fire environment and automate frequent tasks. continuum ones. Avizo is extensible and can easily be integrated into any The resulting tensor provides the effective property of a application or workflow, thus allowing you to focus on your representative sample along the different directions. core competency. * Available for some XLab modules 2 FEI Explore. Discover. Resolve. XLAB HYDRO Computed property Absolute permeability By solving Stokes equations + Darcy’s law Specifications · Incompressible fluid · Newtonian fluid · Single-phase fluid (relative permeability not addressed) · Impermeable solid phase XLAB THERMO Computed property Thermal conductivity By solving Fourier’s law Specifications · Multi-phase material · Each phase property can be set individually i.e. each phase may be conductive or insulating · Conduction with pure diffusion (without convection nor radiation) · One-temperature model (continuity of temperature at phase interface) XLAB ELECTRO Computed property Electrical resistivity Formation factor By solving Ohm’s law Specifications · Solid phase is a perfect insulator · Single-phase fluid · Direct current voltage · Fluid phase saturated with conductive solution XLAB DIFFUSION Computed property Molecular diffusivity By solving Fick’s second law Specifications · Single chemical specie moving in solvent · Pure diffusion, without advection nor chemical reaction at fluid-solid interface · Fluid-phase saturated with solvent SUPPORTED PLATFORMS Windows XP/Vista/7, 64-bit Explore. Discover. Resolve. FEI 3 Avizo Fire Avizo Wind Avizo XLab PORE SPACE PARTITIONING Pore Network Modeling Absolute permeability Molecular diusivity IMAGE SEGMENTATION DIRECT 3D IMAGE-BASED SIMULATION Electrical resistivity Thermal conductivity Numerical solvers: 3D IMAGE STACK Abaqus, Ansys, Comsol, - MICRO-CT, FIB/SEM, ETC. - MESH GENERATION Fluent, OpenFOAM, StarCCM+, etc. ADVANCED POST-PROCESSING From 3D images to simulations. Avizo Fire software Comprehensive and extensible toolbox. Avizo Fire provides supports a variety of approaches to reliably model and a comprehensive and extensible toolbox for advanced simulate material physical properties. materials characterization. Pre-/post-processing for finite element modeling (FEM): All-in-one software application: from straightforward Avizo Fire uses the segmented 3D image data to generate visualization and measurement to advanced image a high-quality 3D mesh through advanced 3D surface processing, quantification and skeletonization, Avizo reconstruction and optimization tools, as well as volume Fire provides a comprehensive, multimodality digital meshing, which is exported to solvers. Avizo Wind is then lab for advanced 2D and 3D visualization, materials used to post-process results of the simulations. characterization, reconstruction of 3D models, pore Pre-/post-processing for pore network modeling (PNM): network analysis and calculation of physical properties. Avizo Fire’s advanced image processing tools enable pore Customize and expand Avizo Fire: Avizo’s expandability space partitioning and network modeling. External PNM makes it the ideal framework for organizations that require can also be imported into Avizo Fire. PNM allows fine rapid software customization to address their specific porosity analysis including pore size distribution, throat 2D/3D data visualization and analysis needs. radius size distribution, connectivity and coordination Use the built-in scripting language to customize Avizo number, as well as permeability computation. and easily automate tasks and workflows. Direct 3D image-based simulation: Avizo XLab simulation Use the Avizo XPand extension to create new custom software modules provide efficient numerical simulation components such as file readers and writers, to integrate capabilities to compute material physical properties from computation routines, and even to develop new a scanned sample (CT, µCT, FIB-SEM, MRI, etc.). Avizo visualization modules. XLab modules use the result of the segmentation to run straightforward image-based property simulations. World Headquarters Visualization Sciences Group Learn more at AVIZO3D.COM Phone +1.503.726.7500 Phone +33.(0)556.133.777 [email protected] ©2013. We are constantly improving the performance of our products—all specifications are subject to change without notice. FEI and the FEI logo are trademarks of FEI Company. Amira, Avizo, and Open Inventor are registered trademarks of Visual ization Sciences Group. All other trademarks belong to their respective owners. .
Recommended publications
  • References Cited Avizo—Three-Dimensional Visualization
    Geoinformatics 2008—Data to Knowledge 13 (for example, connect the roof of a geological layer with trial data. Wherever three-dimensional (3D) datasets need to those of an included cavity). be processed in material sciences, geosciences, or engineering applications, Avizo offers abundant state-of-the-art features 2. If a lattice unit intersects another lattice unit, we assume within an intuitive workflow and an easy-to-use graphical user that these lattice units are adjacent. This principle is for- interface. malized with proximity spaces (Naimpally and Warrack, 1970). This mathematical theory constitutes, in topology, an axiomatization of notions of “nearness”). Avizo XGreen Package—3D Visualization With the help of lattice units, two graphs are computed. Framework for Climatology Data The first one is an incidence graph, which describes relation- In these times, when climatology data have become more ships between objects and makes it possible to establish the and more complex with respect to size, resolution, and the interrelationship between them. The second one, a temporal numbers of chronological increments, the German Climate graph, represents, for one object, the evolution of its relation- Computing Center in Hamburg has chosen Mercury Com- ship with its own environment. puter Systems to develop a software extension called XGreen, This model has been used and validated in different appli- which is based on their visualization framework Avizo (for- cations, such as three-dimensional building simplification (Pou- merly known as “amira”). peau and Ruas, 2007), and in a context of a coal basin affected XGreen provides domain-specific enhancements for by anthropic subsidence due to extraction (Gueguen, 2007).
    [Show full text]
  • Bioimage Analysis Tools
    Bioimage Analysis Tools Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, Ulrike Schulze, Simon Norrelykke, Christian Tischer, Thomas Pengo To cite this version: Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, et al.. Bioimage Analysis Tools. Kota Miura. Bioimage Data Analysis, Wiley-VCH, 2016, 978-3-527-80092-6. hal- 02910986 HAL Id: hal-02910986 https://hal.archives-ouvertes.fr/hal-02910986 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Bioimage Analysis Tools 1 2 3 4 5 6 Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Pau/-Gilloteaux, - Ulrike Schulze,7 Simon F. Nerrelykke,8 Christian Tischer,9 and Thomas Penqo'" 1 European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany National Institute of Basic Biology, Okazaki, 444-8585, Japan 2/nstitute for Research in Biomedicine ORB Barcelona), Advanced Digital Microscopy, Parc Científic de Barcelona, dBaldiri Reixac 1 O, 08028 Barcelona, Spain 3German Center of Neurodegenerative
    [Show full text]
  • Open Inventor Toolkit ACADEMIC PROGRAM FAQ Updated June 2018
    Open Inventor Toolkit ACADEMIC PROGRAM FAQ Updated June 2018 • How can my organization qualify for this program ? • What support will my organization get under this program ? • How can I make an application available to collaborators • Can I use Open Inventor Toolkit in an open source project ? • What can I do with Open Inventor Toolkit under this program ? • What are some applications of Open Inventor Toolkit ? • What's the value of using Open Inventor Toolkit ? • What is Thermo Fisher expecting from my organization in exchange for the ability to use Open Inventor Toolkit free of charge ? • How does Open Inventor Toolkit relate to visualization applications ? • Can I use Open Inventor Toolkit to extend visualization applications ? • What languages, platforms and compilers are supported by Open Inventor Toolkit ? • What are some key features of Open Inventor Toolkit ? How can my organization qualify for this program ? Qualified academic and non-commercial organizations can apply for the Open Inventor Toolkit Academic Program. Through this program, individuals in your organization can be granted Open Inventor Toolkit development and runtime licenses, at no charge, for non-commercial use. Licenses provided under the Open Inventor Toolkit Academic Program allow you to both create and distribute software applications based on Open Inventor Toolkit. However, your application must be distributed free-of-charge for educational or research purposes. Your application must not generate commercial revenue nor be deployed by a corporation for in-house use nor be used in any other commercial manner Contact your account manager and we will provide you with more information on the details to qualify for this program.
    [Show full text]
  • Quantification of the Pore Size Distribution of Soils: Assessment of Existing Software Using Tomographic and Synthetic 3D Images
    Quantification of the pore size distribution of soils: assessment of existing software using tomographic and synthetic 3D images A.N. Houston, W. Otten, R. Falconer, O. Monga, P.C. Baveye and S.M. Hapca This is the accepted manuscript © 2017, Elsevier Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International: http://creativecommons.org/licenses/by-nc-nd/4.0/ The published article is available from doi: https:// doi.org/10.1016/j.geoderma.2017.03.025 1 2 3 Quantification of the pore size distribution of soils: Assessment of existing 4 software using tomographic and synthetic 3D images. 5 6 7 A. N. Houstona, W. Ottena,b, R. Falconera,c, O. Mongad, P.C.Baveyee, S.M. Hapcaa,f* 8 9 a School of Science, Engineering and Technology, Abertay University, 40 Bell Street, 10 Dundee DD1 1HG, UK. 11 b current address: School of Water, Energy and Environment, Cranfield University, 12 Cranfield MK43 0AL, UK. 13 c current address: School of Arts, Media and Computer Games , Abertay University, 14 40 Bell Street, Dundee DD1 1HG, UK. 15 d UMMISCO-Cameroun, UMI 209 UMMISCO, University of Yaoundé, IRD, University 16 of Paris 6, F-93143 Bondy Cedex, France. 17 e UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Avenue Lucien 18 Brétignières, Thiverval-Grignon 78850, France. 19 f current address: Dundee Epidemiology and Biostatistics Unit, School of Medicine, 20 Dundee University, Kirsty Semple Way, Dundee DD2 4BF, UK. 21 22 * Corresponding author. E-mail: [email protected] 1 23 Abstract: 24 25 The pore size distribution (PSD) of the void space is widely used to predict a range of 26 processes in soils.
    [Show full text]
  • Avizo® Earth the 3D Visualization Software for Geosciences and Oil & Gas
    DataSheet Avizo® Earth The 3D Visualization Software for Geosciences and Oil & Gas • Manages complex multi-modality information • Increases understanding of complex datasets • Simplifies critical decision-making • Scalable visualization application framework • Extensible architecture Avizo® Earth Edition software is a powerful, multifaceted On-Demand Innovation framework for integrating, manipulating, and visualizing your State-of-the-art visualization techniques provide the foundation seismic, geology, reservoir engineering, and petrography for Avizo, simplifying the complex to improve your efficiency, datasets. Geophysicists and geologists can use this solution so that you can meet your toughest business challenges. The to import, manage, interact with, and visualize multiple extensible architecture makes it easy for you to develop new sources within a single environment. modules, file formats, or types of visualization, and to integrate your own unique computational modules. Avizo’s high-quality The Avizo tool is applicable across the full spectrum of visual volume rendering, even for extremely large datasets and applications, including seismic data QC, pre-processing, and intensive GPU use, includes advanced lighting and iso-surface interpretation; reservoir modeling, characterization, and rendering, data transforming, and data combining on the fly. simulation; drilling planning, flow simulation, and engineering; 3D petrography, core sample analysis, and borehole imaging; and Cost-Effective Collaboration engineering design, training, and simulation. Using Avizo, you can import your data from multiple sources and integrate it all into a single environment, which frees you to focus On-Demand Information on your core competencies. The easy and flexible scripting facility Whether you are a geophysicist, a geologist, or a project manager, lets you customize Avizo and automate many tasks to increase Avizo provides you with a global solution for accessing and your effectiveness.
    [Show full text]
  • Internal Struct Characterization of Asph Concrete Using X Computed
    i Internal Structure Characterization of Asphalt Concrete using X -Ray Computed Tomography IBRAHIM ONIFADE Master of Science Thesis Stockholm, Sweden 2013 Internal Structure Characterization of Asphalt Concrete using X-ray Computed Tomography Ibrahim Onifade February 2013 TSC-MT 13-002 ©Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering Division of Highway and Railway Engineering Stockholm, 2013 Internal Structure Characterization of Asphalt Concrete using X-ray Computed Tomography Ibrahim Onifade Graduate Student Infrastructure Engineering Division of Highway and Railway Engineering Department of Civil and Architectural Engineering Royal Institute of Technology (KTH) SE-100 44 Stockholm [email protected] Abstract: This study is carried out to develop the workflow from image acqui- sition to numerical simulation for asphalt concrete (AC) microstructure. High resolution computed tomography (CT) images are acquired and the image quality is improved using digital image processing (DIP). Non-uniform illumination which results in inaccurate phase segmentation is corrected by applying an illumination profile to correct the background and flat-fields in the image. Distance map based watershed segmentation is used to accurately segment the phases and separate the aggregates. Quantitative analysis of the microstructure is used to determine the phase volumetric relationship and aggregates characteristics. The results of the phase reconstruction and internal structure quantification using this procedure shows a very high level of reliability. Numerical simulations are carried out in Two dimensions (2D) and Three dimen- sions (3D) on the processed AC microstructure. Finite element analysis (FEM) is used to capture the strength and deformation mechanisms of the AC microstruc- ture. The micromechanical behaviour of the AC is investigated when it is con- sidered as a continuum and when considered as a multi-phase model.
    [Show full text]
  • Ambient Occlusion - a Powerful Algorithm to Segment Shell and Skeletal Intrapores in Computed Tomography Data
    Takustr. 7 Zuse Institute Berlin 14195 Berlin Germany J. TITSCHACK,D.BAUM,K.MATSUYAMA,K.BOOS, C. FARBER¨ ,W.-A.KAHL,K.EHRIG,D.MEINEL, C. SORIANO,S.R.STOCK Ambient occlusion - a powerful algorithm to segment shell and skeletal intrapores in computed tomography data The manuscript will appear in a slightly modified version in Computers & Geosciences. ZIB Report 18-14 (March 2018) Zuse Institute Berlin Takustr. 7 14195 Berlin Germany Telephone: +49 30-84185-0 Telefax: +49 30-84185-125 E-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 Ambient occlusion – a powerful algorithm to segment shell and skeletal intrapores in computed tomography data Titschack, J.1,2, Baum, D.3, Matsuyama, K.2, Boos, K.1, Färber, C.2, Kahl, W.-A.4, Ehrig, K.5, Meinel, D.5, Soriano, C.6, Stock, S.R.7 1 MARUM – Center of Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany 2 SaM – Senckenberg am Meer, Abteilung Meeresforschung, Südstrand 40, 26382 Wilhelmshaven, Germany 3 ZIB – Zuse Institute Berlin, Takustraße 7, 14195 Berlin-Dahlem, Germany 4 Department of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359 Bremen, Germany 5 BAM - Bundesanstalt für Materialforschung und -prüfung, Devision 8.5, Unter den Eichen 87, 12205 Berlin, Germany 6 Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA 7 Feinberg School of Medicine, Northwestern University, Abbott Hall Suite 810, 710 N Lake Shore Drive, Chicago IL 60611, USA Corresponding author: Jürgen Titschack [email protected] phone +49 (0)421 218 65623 fax +49 (0)421 218 9865623 Abstract During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups.
    [Show full text]
  • Avizo Software for Materials Research
    Avizo Software for Materials Research Materials characterization and quality control LANIKA SOLUTIONS PRIVATE LIMITED TF-04, Gold Signature, No. 95, Mosque Road, Frazer Town, Bangalore - 560 005, INDIA Phone: +91 – 80 – 2548 4844 Fax: +91 – 80 – 2548 4846 Email: [email protected] www.lanikasolutions.com Industrial applications require stronger, lighter, cleaner and safer materials every day. For new developments or for better characterization of existing materials, Thermo Scientific™ Avizo™ Software allows for a better understanding of structure, properties and performance. No matter what modality is used to acquire digital data, Avizo Software provides optimized workflows for materials characterization. It also features image processing tools, simulation modules and capabilities for advanced defect analysis. On the cover: Porosity and permeability analysis of fiber reinforced concrete. Courtesy of EMPA. • Ceramics, glasses and porous media • Metals, alloys and powders • Composites, polymers and fibrous materials • Biomaterials • Batteries • Additive manufacturing • Semiconductors • Food and agriculture 3 From sample to knowledge From straightforward visualization and measurement to advanced image processing, quantification, analysis and reporting, Avizo Software provides a comprehensive, multimodality digital lab for advanced 2D/3D materials characterization and quality control. Digital workflow Data acquisition Import Filtering and Visualization • X-ray tomography: CT, • Raw images pre-processing • Interactive high-quality • Noise
    [Show full text]
  • Avizo® the 3D Visualization Software for Scientific and Industrial Data
    DataSheet Avizo® The 3D Visualization Software for Scientific and Industrial Data • Advanced 3D visualization and data analysis • Increases understanding of complex datasets • Manages complex multi-modality information • Versatile and extensible architecture Avizo® software is a powerful, multifaceted tool for Avizo’s state-of the-art features efficiently meet your specific visualizing, manipulating, and understanding scientific and requirements for 3D data visualization and analysis in scientific industrial data. Wherever three-dimensional datasets need and industrial fields, such as material and physical sciences, to be processed, Avizo offers a comprehensive feature set geosciences, computer-aided engineering, environmental and within an intuitive workflow and easy-to-use graphical user generic scientific activities. interface. Avizo software suite is organized to maximize flexibility and configurability, making it an ideal visualization environment for a wide range of application types. Powered by Open Inventor® by Mercury, Avizo is layered to optimize the environment for your specific needs. Avizo is packaged in different Editions, with optional eXtensions. Each Avizo Edition delivers tailored user interface and specific feature-set for each application area. Core Features Avizo’s comprehensive feature set addresses all aspects of 3D data acquisition, visualization, processing, analysis, and presentation. Advanced 3D Visualization Data Acquisition Surface rendering Data import Yield even more meaningful and informative 3D visualizations Load your data directly into Avizo. A large number of standard using a large range of drawing styles and color schemes. file formats are supported. Volume rendering Time-dependent data Perform direct visualization of 3D image data using a physically Process single-time steps and time-series data such as a flow based light emission/absorption model.
    [Show full text]
  • Avizo®/Amira® to Visualize and Process Large Data
    Which Hardware to Buy When using Avizo®/Amira® to visualize and process large data Introduction This document is intended to give recommendations about choosing a suitable workstation to run Avizo/Amira. The four most important components that need to be considered are the graphics card (GPU), the CPU, the RAM and the hard drive. The performance of direct volume rendering of large volumetric data or large triangulated surface visualization extracted from the data depends heavily on the GPU capability. The performance of image processing algorithms depends heavily on the performance of the CPU. The ability to quickly load or save large data depends heavily on the hard drive performance. And, of course, the amount of available memory in the system will be the main limitation on the size of the data that can be loaded and processed. Because the hardware requirements will widely vary according to the size of your data and your workflow, we strongly suggest that you take advantage of our supported evaluation version to try working with one of your typical data sets. In this document, the term “Avizo” refers to all Avizo editions (including Avizo ToGo) and all Avizo extensions, and the term “Amira“ refers to all Amira editions and extensions. Operating systems • Microsoft Windows 7/8/10 (64-bit). • Linux x86 64 (64-bit). Supported 64-bit architecture is Intel64/AMD64 architecture. Supported Linux distribution is Red Hat Enterprise Linux 6. • Mac OS X 10.9 (64-bit). Some of the editions and extensions are limited to specific platforms: • Avizo Inspect is supported only on Microsoft Windows (64-bit).
    [Show full text]
  • Release Notes Amira–Avizo Software Version 2020.1
    Release notes Amira–Avizo Software Version 2020.1 3D data visualization and analysis The aim of this document is to inform you about the most important new features, improvements and changes in this version of Thermo Scientific™ Amira-Avizo™ Software. Please read these Release Notes carefully. We would appreciate your feedback regarding this version. If you encounter any problems or have any suggestions for improvement, please do not hesitate to contact us at [email protected]. 1 © FEI SAS a part of Thermo Fisher Scientific. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Table of Contents Table of Contents .................................................................................................................................................................... 2 Avizo Software Lite and Amira Software: Enhancements and new features ....................................................................... 3 End of support ......................................................................................................................................................................... 3 Operating systems ................................................................................................................................................................... 3 Solved issues ...........................................................................................................................................................................
    [Show full text]
  • 17.05.2018 the Zuse Institute Berlin (ZIB)
    17.05.2018 The Zuse Institute Berlin (ZIB) is a non-university research institute under public law of the state of Berlin. The division "Mathematics for Life and Materials Sciences" is offer- ing a research position as software developer (f/m) reference code WA 26/18 pay grade E 13 TV-L Berlin (100%) in the department “Visual Data Analysis”. The position is offered at the earliest possible date and will be a fixed-term contract until December 31, 2019 with the option to be ex- tended. Job description You will work as a software developer in a technology transfer project. The goal of this project is the integration of new algorithms developed in the department “Visual Data Analysis” into the commercial versions of Amira and Avizo to guarantee a long-term maintenance of research results as a basis for future research. You will be responsible for the integration in the sense of software development, thereby working closely to- gether with our cooperation partner. Primary tasks: production of clean, efficient and documented code code refactoring troubleshooting and debugging of existing software synchronization of code bases support of researchers in developing software maintenance and advancement of our software development infrastructure (continuous integration and continuous delivery) We expect communication and teamwork skills as well as a high degree of independ- ence and commitment. We offer a challenging professional environment with excellent equipment and a friendly working atmosphere. Seite 1 von 2 Requirements: master’s degree in computer science, physics or mathematics experience as a software developer or similar role a very strong background in (object-oriented) software development with C++ and the version control system git good knowledge of Linux knowledge and experience in the development of visualization systems and/or computer visualization and graphics is of particular advantage analytical skills, especially for troubleshooting good command of spoken and written English The candidature of women is encouraged.
    [Show full text]