Visual Analytics Tool for Java Virtual Machine Execution Traces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CDC Runtime Guide
CDC Runtime Guide for the Sun Java Connected Device Configuration Application Management System Version 1.0 Sun Microsystems, Inc. www.sun.com November 2005 Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries. THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, Java, J2ME, Java ME, Sun Corporate Logo and Java Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. -
The Java Hotspot VM Under the Hood
The Java HotSpot VM Under the Hood Tobias Hartmann Principal Member of Technical Staff Compiler Group – Java HotSpot Virtual Machine Oracle Corporation August 2017 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | About me • Joined Oracle in 2014 • Software engineer in the Java HotSpot VM Compiler Team – Based in Baden, Switzerland • German citizen • Master’s degree in Computer Science from ETH Zurich • Worked on various compiler-related projects – Currently working on future Value Type support for Java Copyright © 2017, Oracle and/or its affiliates. All rights reserved. Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 3 Outline • Intro: Why virtual machines? • Part 1: The Java HotSpot VM – JIT compilation in HotSpot – Tiered Compilation • Part 2: Projects – Segmented Code Cache – Compact Strings – Ahead-of-time Compilation – Minimal Value Types Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 4 A typical computing platform User Applications Application Software Java SE Java EE Java Virtual Machine System Software Operating system Hardware Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 5 A typical computing platform User Applications Application Software Java SE Java EE Java Virtual Machine System Software Operating system Hardware Copyright © 2017, Oracle and/or its affiliates. -
Technique: HTTP the Java Way
Technique: HTTP the Java way An article from Android in Practice EARLY ACCESS EDITION Charlie Collins, Michael D. Galpin, and Matthias Kaeppler MEAP Release: July 2010 Softbound print: Spring 2011 | 500 pages ISBN: 9781935182924 This article is taken from the book Android in Practice. The authors demonstrate how to send simple HTTP requests to a Web server using Java’s standard HTTP networking facilities. Tweet this button! (instructions here) Get 35% off any version of Android in Practice with the checkout code fcc35. Offer is only valid through www.manning.com. The standard Java class library already has a solution for HTTP messaging. An open-source implementation of these classes is bundled with Android’s class library, which is based on Apache Harmony. It’s simple and bare- bones in its structure and, while it supports features like proxy servers, cookies (to some degree), and SSL, the one thing that it lacks more than anything else is a class interface and component structure that doesn’t leave you bathed in tears. Still, more elaborate HTTP solutions are often wrappers around the standard Java interfaces and, if you don’t need all the abstraction provided, for example, by Apache HttpClient interfaces, the stock Java classes may not only be sufficient, they also perform much better thanks to a much slimmer, more low-level implementation. Problem You must perform simple networking tasks via HTTP (such as downloading a file) and you want to avoid the performance penalty imposed by the higher-level, much larger, and more complex Apache HttpClient implementation. Solution If you ever find yourself in this situation, you probably want to do HTTP conversations through a java.net.HttpURLConnection. -
Smart Execution of Distributed Application by Balancing Resources in Mobile Devices
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA SCUOLA DI INGEGNERIA E ARCHITETTURA DISI INGEGNERIA INFORMATICA TESI DI LAUREA in Reti di Calcolatori M Smart execution of distributed application by balancing resources in mobile devices and cloud-based avatars CANDIDATO: RELATORE: Giacomo Gezzi Chiar.mo Prof. Ing. Antonio Corradi CORRELATORE: Chiar.mo Prof. Cristian Borcea Anno Accademico 2014/2015 Sessione III 2 Abstract L’obiettivo del progetto di tesi svolto e` quello di realizzare un servizio di livello middleware dedicato ai dispositivi mobili che sia in grado di fornire il supporto per l’offloading di codice verso una infrastruttura cloud. In particolare il progetto si concentra sulla migrazione di codice verso macchine virtuali dedicate al singolo utente. Il sistema operativo delle VMs e` lo stesso utilizzato dal device mobile. Come i precedenti lavori sul computation offloading, il progetto di tesi deve garantire migliori per- formance in termini di tempo di esecuzione e utilizzo della batteria del dispositivo. In particolare l’obiettivo piu` ampio e` quello di adattare il principio di computation offloading a un contesto di sistemi distribuiti mobili, miglio- rando non solo le performance del singolo device, ma l’esecuzione stessa dell’applicazione distribuita. Questo viene fatto tramite una gestione di- namica delle decisioni di offloading basata, non solo, sullo stato del de- vice, ma anche sulla volonta` e/o sullo stato degli altri utenti appartenenti allo stesso gruppo. Per esempio, un primo utente potrebbe influenzare le decisioni degli altri membri del gruppo specificando una determinata richiesta, come alta qualita` delle informazioni, risposta rapida o basata su altre informazioni di alto livello. -
The Dzone Guide to Volume Ii
THE D ZONE GUIDE TO MODERN JAVA VOLUME II BROUGHT TO YOU IN PARTNERSHIP WITH DZONE.COM/GUIDES DZONE’S 2016 GUIDE TO MODERN JAVA Dear Reader, TABLE OF CONTENTS 3 EXECUTIVE SUMMARY Why isn’t Java dead after more than two decades? A few guesses: Java is (still) uniquely portable, readable to 4 KEY RESEARCH FINDINGS fresh eyes, constantly improving its automatic memory management, provides good full-stack support for high- 10 THE JAVA 8 API DESIGN PRINCIPLES load web services, and enjoys a diverse and enthusiastic BY PER MINBORG community, mature toolchain, and vigorous dependency 13 PROJECT JIGSAW IS COMING ecosystem. BY NICOLAI PARLOG Java is growing with us, and we’re growing with Java. Java 18 REACTIVE MICROSERVICES: DRIVING APPLICATION 8 just expanded our programming paradigm horizons (add MODERNIZATION EFFORTS Church and Curry to Kay and Gosling) and we’re still learning BY MARKUS EISELE how to mix functional and object-oriented code. Early next 21 CHECKLIST: 7 HABITS OF SUPER PRODUCTIVE JAVA DEVELOPERS year Java 9 will add a wealth of bigger-picture upgrades. 22 THE ELEMENTS OF MODERN JAVA STYLE But Java remains vibrant for many more reasons than the BY MICHAEL TOFINETTI robustness of the language and the comprehensiveness of the platform. JVM languages keep multiplying (Kotlin went 28 12 FACTORS AND BEYOND IN JAVA GA this year!), Android keeps increasing market share, and BY PIETER HUMPHREY AND MARK HECKLER demand for Java developers (measuring by both new job 31 DIVING DEEPER INTO JAVA DEVELOPMENT posting frequency and average salary) remains high. The key to the modernization of Java is not a laundry-list of JSRs, but 34 INFOGRAPHIC: JAVA'S IMPACT ON THE MODERN WORLD rather the energy of the Java developer community at large. -
Exploiting SAS Software Using Java Technology
Exploiting SAS® Software Using Java™ Technology Barbara Walters, SAS Institute Inc., Cary, NC Java programs are often delivered via the Internet. In order to protect the local machine from malicious programs, the Java language and the JVM Abstract provide a secure environment for application execution. The secure This paper describes how to use Java™ technology with SAS software. environment ensures that the client machine (the machine where the SAS Institute currently offers several Java development tools that allow browser is running) is not corrupted by the downloaded program and that applications to access SAS data and take advantage of SAS no information is stolen from the client machine. computational capabilities. This paper describes how to use these class libraries and address client/server configuration and performance Java security is based upon the “sandbox” model. The sandbox is the issues. set of resources (threads, socket connections, local files, etc.) that the downloaded Java code is allowed to access. The code is restricted from accessing resources outside of its sandbox. In executing Java applets, Introduction each Web browser defines the limits of the sandbox. Since its introduction in mid-1995, Java have become an integral part of The Security Manager enforces the limits of the sandbox. For applets, the World Wide Web. Java is a rich programming language that enables the Web browser controls the Security Manager. Each browser may put Web programmers to create sophisticated and responsive client/server different restrictions on applet behavior. The default limits imposed by applications. Because Java is portable and secure, users of Web the Security Manager are: applications can be confident that those applications will execute • Classes cannot access the local file system properly and not corrupt their computers. -
Sun Glassfish Enterprise Server V3 Preludetroubleshooting Guide
Sun GlassFish Enterprise Server v3 PreludeTroubleshooting Guide Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 820–6823–10 November 2008 Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries. U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JSP,JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun GlassFish, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. -
Apache Harmony Project Tim Ellison Geir Magnusson Jr
The Apache Harmony Project Tim Ellison Geir Magnusson Jr. Apache Harmony Project http://harmony.apache.org TS-7820 2007 JavaOneSM Conference | Session TS-7820 | Goal of This Talk In the next 45 minutes you will... Learn about the motivations, current status, and future plans of the Apache Harmony project 2007 JavaOneSM Conference | Session TS-7820 | 2 Agenda Project History Development Model Modularity VM Interface How Are We Doing? Relevance in the Age of OpenJDK Summary 2007 JavaOneSM Conference | Session TS-7820 | 3 Agenda Project History Development Model Modularity VM Interface How Are We Doing? Relevance in the Age of OpenJDK Summary 2007 JavaOneSM Conference | Session TS-7820 | 4 Apache Harmony In the Beginning May 2005—founded in the Apache Incubator Primary Goals 1. Compatible, independent implementation of Java™ Platform, Standard Edition (Java SE platform) under the Apache License 2. Community-developed, modular architecture allowing sharing and independent innovation 3. Protect IP rights of ecosystem 2007 JavaOneSM Conference | Session TS-7820 | 5 Apache Harmony Early history: 2005 Broad community discussion • Technical issues • Legal and IP issues • Project governance issues Goal: Consolidation and Consensus 2007 JavaOneSM Conference | Session TS-7820 | 6 Early History Early history: 2005/2006 Initial Code Contributions • Three Virtual machines ● JCHEVM, BootVM, DRLVM • Class Libraries ● Core classes, VM interface, test cases ● Security, beans, regex, Swing, AWT ● RMI and math 2007 JavaOneSM Conference | Session TS-7820 | -
CDC Runtime Guide
CDC Runtime Guide Java™ Platform, Micro Edition Connected Device Configuration, Version 1.1.2 Foundation Profile, Version 1.1.2 Optimized Implementation Sun Microsystems, Inc. www.sun.com December 2008 Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, Java, Solaris and HotSpot are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the United States and other countries. The Adobe logo is a registered trademark of Adobe Systems, Incorporated. Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. -
Tooling Support for Enterprise Development
TOOLING SUPPORT FOR ENTERPRISE DEVELOPMENT RYAN CUPRAK & REZA RAHMAN JAVA EE DEVELOPMENT • Java EE has had a bad reputation: • Too complicated • Long build times • Complicated/expensive tooling • Copious amounts of repetitive code • Expensive application servers • Overkill for most projects • Times have changed since 2000! • Java EE 5 made great strides leveraging new features introduced in Java 5. Java EE 6 pushes us forward. • Excellent tooling support combined with a simplification of features makes Java EE development fast, easy, and clean (maintainable). • It is Java EE – NOT J2EE!!! OBJECTIVE Challenge: Starting a new project is often painful. In this presentation you’ll learn: • How to setup a new Java EE project. • Disconnect between theory and practice. • Tools that you should consider learning/adding. • Best practices for Java EE development from tools side. When is the last time you evaluated your tools? APPLICATION TYPES Types of Java EE applications: • Prototype – verify technology, try different techniques, learn new features. • Throw-away – application which has a short-life space, temporary use. • Internal/external portal – application with a long life expectancy and which will grow over time. • Minimize dependence on tools. • Product – an application which deployed at a more than one customer site. Possibly multiple code branches. • Minimize dependence on tools. Life expectancy drives tooling decisions. PRELIMINARIES Considerations for a Java EE toolbox: • Build system: Ant, Maven, IDE specific? • Container: GlassFish/JBoss/ WebLogic/etc. • Technologies: EJB/JPA/CDI/JSF • IDE: Eclipse, NetBeans, IntelliJ IDEA • Other tools: Unit testing, integration testing, UI testing, etc. IDES • NetBeans • Easy to use Java EE templates. • Includes a pre-configured GlassFish container. -
Oracle Coherence Developer's Guide
Oracle® Fusion Middleware Developing Applications with Oracle Coherence 12c (12.1.2) E26039-03 May 2014 Documentation for Developers and Architects that describes how to develop applications that use Coherence for distributed caching and data grid computing. Includes information for installing Coherence, setting up Coherence clusters, configuring Coherence caches, and performing data grid operations. Oracle Fusion Middleware Developing Applications with Oracle Coherence, 12c (12.1.2) E26039-03 Copyright © 2008, 2014, Oracle and/or its affiliates. All rights reserved. Primary Author: Joseph Ruzzi This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. -
Design Pattern Implementation in Java and Aspectj
Design Pattern Implementation in Java and AspectJ Jan Hannemann Gregor Kiczales University of British Columbia University of British Columbia 201-2366 Main Mall 201-2366 Main Mall Vancouver B.C. V6T 1Z4 Vancouver B.C. V6T 1Z4 jan [at] cs.ubc.ca gregor [at] cs.ubc.ca ABSTRACT successor in the chain. The event handling mechanism crosscuts the Handlers. AspectJ implementations of the GoF design patterns show modularity improvements in 17 of 23 cases. These improvements When the GoF patterns were first identified, the sample are manifested in terms of better code locality, reusability, implementations were geared to the current state of the art in composability, and (un)pluggability. object-oriented languages. Other work [19, 22] has shown that implementation language affects pattern implementation, so it seems The degree of improvement in implementation modularity varies, natural to explore the effect of aspect-oriented programming with the greatest improvement coming when the pattern solution techniques [11] on the implementation of the GoF patterns. structure involves crosscutting of some form, including one object As an initial experiment we chose to develop and compare Java playing multiple roles, many objects playing one role, or an object [27] and AspectJ [25] implementations of the 23 GoF patterns. playing roles in multiple pattern instances. AspectJ is a seamless aspect-oriented extension to Java, which means that programming in AspectJ is effectively programming in Categories and Subject Descriptors Java plus aspects. D.2.11 [Software Engineering]: Software Architectures – By focusing on the GoF patterns, we are keeping the purpose, patterns, information hiding, and languages; D.3.3 intent, and applicability of 23 well-known patterns, and only allowing [Programming Languages]: Language Constructs and Features – the solution structure and solution implementation to change.